Исследование операций в экономике

Решение транспортной задачи методом минимальной стоимости. Определение комплексных показателей надежности нерезервированных систем связи. Сооружение траектории движения с минимальными затратами на перелет. Линейные алгебраические уравнения Колмогорова.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 26.10.2016
Размер файла 251,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

Задача №1

Решить транспортную задачу по данным таблицы 1.

Таблица 1 - Исходные данные

C

C2

C21

C22

C23

C24

C2

C31

C32

C33

C34

C35

C36

C40

C43

C44

C

5

4

6

8

4

5

2

3

7

1

4

6

2

3

5

4

6

N

A?

A2

A3

A?

B?

B?

B3

B4

B?

C??

C12

C13

5

11

27

19

30

14

9

20

13

31

3

7

2

В таблице 1 введены следующие обозначения:

Аi-запасы продукции на i-м пункте отправления (ПО);

Bj-заявки на продукцию от Bj пунктов назначения (ПН);

Cij-стоимость перевозки единицы продукции с i-го ПО в j-й ПН.

Сумма всех заявок должна быть равна сумме всех запасов. Общую стоимость перевозки обозначим Z.

Для сформированной задачи выполнить транспортную таблицу и применить к ней метод циклического переноса.

Решение задачи 1

Исходя из данных таблицы 1 исходная транспортная таблица имеет вид, представленный в таблице 2.

Таблица 2 Исходная транспортная таблица

Пункт отправления / Пункт назначения

заявки на продукцию

b1

b2

b3

b4

b5

14

9

20

13

31

запасы продукции

a1

11

3

7

2

5

4

a2

27

6

8

4

5

2

a3

19

3

7

1

4

6

a4

30

2

3

5

4

6

Шаг 1: При заполнении таблицы учитывалось условие закрытости транспортной задачи, т.е. сумма всех заявок равна сумме всех запасов: общее число заявок = 87, общие запасы = 87. Задача является сбалансированной (закрытой).

Шаг 2: Начальное опорное решение находится методом минимальной стоимости.

Для этого запасы в Аi пунктов отправления распределяются в соответствии с заявками Bj пунктов назначения и заполняются клетки с минимальными стоимостями перевозок. При этом все запасы должны быть распределены в соответствии с заявками. Хij - количество перевозимого груза.

Опорный план, полученный методом минимальной стоимости

Вычислим затраты для этого опорного решения:

Zнач = C13 ? X13 + C14 ? X14 + C15 ? X15 + C25 ? X25 + C33 ? X33 + C41 ? X41 + C42 ? X42 +C44 ? X44 = 1 ? 2 + 6 ? 5 + 4 ? 4 + 27 ? 2 + 19 ? 1 + 14 ? 2 + 9 ? 13 + 7 ? 4 = 204.

Шаг 3: Проверим полученный опорный план на невырожденность. Количество заполненных клеток N должно удовлетворять условию N=n+m-1. В нашем случае N=8, n+m=5+4=9 , что удовлетворяет условию невырожденности плана.

Шаг 4: Проведем поэтапное улучшение начального решения, используя метод потенциалов. Для определения сомножителя опорного решения необходимо найти потенциалы заполненных клеток. Сумма потенциалов равна стоимости перевозок

(ai + bj)= cij

a1 + b3 = 2

a1 + b4 = 5

a1 + b5 = 4

a2 + b5 = 2

a3 + b3 = 1

a4 + b1 = 2

a4 + b2 = 3

a4 + b4 = 4

Пусть a4 = 0. Тогда: a1 = 1; a2 = -1; a3 = 0; a4 = 0; b1 = 2; b2 = 3; b3 = 1; b4 = 4; b5 = 3.

Значение потенциалов записываем в таблицу рядом с Аi и Bj. Проверяем опорное решение на оптимальность для всех незаполненных клеток таблицы

a1 + b3 - c13 = 1 + 1 - 2 = 0 ? 0 a1 + b4 - c14 = 1 + 4 - 5 = 0 ? 0

a1 + b5 - c15 = 1 + 1 - 4 = -2 < 0 a2 + b5 - c25 = -1 + 3 - 2 = -4 < 0

a3 + b3 - c33 = 0 + 1 - 1 = 0 ? 0 a4 + b1 - c41 = 0 + 2 - 2 = 0 ? 0

a4 + b2 - c42 = 0 + 3 - 3 = 0 ? 0 a4 + b4 - c44 = 0 + 4 - 4 = 0 ? 0

Начальное опорное решение является оптимальным, т.к. нет положительных оценок. Значение целевой функции: Zопт=204.

2. Задача № 2

Соорудить траекторию движения ВС, соединяющую т. А и т. В. Затраты на перелет должны быть минимальны. Стоимость полета на каждом отрезке приведена внутри отрезка. Определить условное и безусловное оптимальные управления.

Решение задачи 2

Динамическое программирование специально приспособлено к так называемым многошаговым операциям.

Процесс динамического программирования разворачивается от конца (т.В) к началу (т.А) - условная оптимизация (условно оптимальное управление и условно минимальные затраты). Затем производится оптимизация от начала (т.А) к концу (т.В) - безусловная оптимизация (безусловно оптимальное управление и безусловно оптимальные затраты).

Для проведения условной оптимизации расстояние от А до В разделено в восточном направлении на 5 частей, а в северном - на 4 части. Тогда любой путь из А в В состоит из m = 4 + 5 = 9 отрезков, направленных на восток или на север. Процедуру условной оптимизации будем разворачивать в обратном направлении - от конца к началу. Прежде всего, произведем условную оптимизацию последнего, 9-го шага. Рассмотрим отдельно правый верхний угол нашей прямоугольной сетки. После 8-го шага мы можем быть в точке с затратами либо 7 (В1), либо 8 (В2). Перемещаемся в точку В1, из которой можно двигаться вниз (6 единиц), либо влево (5 единиц). Аналогичные операции проводятся по всем точкам, причем передвигаются в сторону, где затраты меньше. Условно минимальные затраты составили 47, что представлено в таблице 1.

Таблица 3 Процедура условной оптимизации

33

6

27

8

19

7

12

5

7

7

В

5

10

12

11

6

8

38

10

35

8

27

9

18

7

11

3

8

2

3

10

5

7

9

40

6

37

6

31

8

23

8

18

7

17

3

2

4

7

5

6

43

5

38

5

33

6

27

4

23

4

23

5

3

10

8

7

9

47

6

41

8

43

9

35

6

30

3

32

A

Затем проводиться безусловная оптимизация с движением из точки А в точку В, выбирая направления минимальной стоимости, что представлено в таблице 2, траектория, ведущая из А и В самым дешевым способом отмечена красным цветом.

Таблица 4 Безусловное оптимальное управление

33

6

27

8

19

7

12

5

7

7

В

5

10

12

11

6

8

38

10

35

8

27

9

18

7

11

3

8

2

3

10

5

7

9

40

6

37

6

31

8

23

8

18

7

17

3

2

4

7

5

6

43

5

38

5

33

6

27

4

23

4

23

5

3

10

8

7

9

47

6

41

8

43

9

35

6

30

3

32

3. Задача № 3

Определить комплексные показатели надежности нерезервированных средств связи. Исходные данные приведены в табл. 3.

Для решения задания 3 необходимо:

- определить состояние средства;

- построить размеченный граф состояний;

- написать систему линейных алгебраических уравнений;

-установить взаимосвязь между финальными вероятностями и определить их количественные значения.

Таблица 5

То

Тв

3000

1.5

Решение задачи 3

Наиболее простую структуру имеет нерезервированная система, состоящая из n элементов, у которой отказ одного из элементов приводит к отказу всей системы. В этом случае система S имеет логически последовательное соединение элементов (рисунок 1).

Схема логического соединения элементов нерезервированной системы

Нерезервированная восстанавливаемая система в произвольный момент времени находится в одном из двух состояний: работоспособном G0 или неработоспособном G1. Процесс ее функционирования можно отразить графом состояний (рисунок 2):

Размещено на http: //www. allbest. ru/

Граф состояний нерезервированной системы

Из состояния S0 в состояние S1 система переходит в результате отказов с интенсивностью л, а из S1 в S0 - в результате восстановления с интенсивностью µ. В дальнейшем будем считать, что потоки отказов и восстановлений являются простейшими: л = const, µ = const. Это значит, что производительность труда ремонтника постоянна и не зависит от времени. Поэтому время восстановления имеет экспоненциальный закон распределения

;

.

Одним из основных показателей надежности системы является ремонтопригодность - это степень приспособленности системы к предупреждению, обнаружению и устранению отказов. Ремонтопригодность системы можно оценить, например, средним значением времени устранения неисправности, другими словами, средним значением времени восстановления работоспособности после отказа TB.

В задаче TB = 1,5, следовательно µ = 1 / 1,5 ? 0,667.

Основным показателем надежности нерезервированной восстанавливаемой системы является коэффициент готовности Кг.

Для его определения рассмотрим работу системы на интервале времени (t,t+?t). Обозначим через P0(t), P0(t+?t) и P1(t),P1(t+?t) - вероятности того, что в момент времени t и t+?t система находится в состоянии S0 и S1. Тогда

P0(t)+P1(t)=1 и Kг=P0(t).

Обозначим также через P01(?t) и P10(?t) - условную вероятность того, что в момент времени t система находится или в состоянии S0 или в состоянии S1, а в момент времени t+?t или в состоянии S1 или в состоянии S0, т.е. за интервал времени ?t произошел отказ (восстановление) системы.

Будем считать, что за время ?t может произойти только один отказ или только одно восстановление. Тогда на интервале ?t могут произойти четыре несовместимые события: A1(S0, S0) - в момент времени t система находилась в состоянии S0, в момент времени t+?t она осталась в том же состоянии, т.е. отказа не произошло;A2(S0, S1) - отказ произошел;A3(S1, S0) - восстановление произошло; A4(S1, S1) - восстановление не произошло.

.

Положим . Тогда получим систему дифференциальных уравнений

,

которая дополняется условием P0(t)+P1(t).

Решение системы при начальных условиях P0(t)=1 и P1(t)=0, т.е. в начальный момент времени система работоспособна, имеет вид

.

Если в начальный момент времени система неработоспособна, то P0(0)=0, P1(0)=1 и решение системы имеет вид

.

При независимо от начального состояния системы (S0 или S1) вероятности Po(t)=Kг, P1(t) стремятся к постоянным значениям

; .

Это означает, что при экспоненциальных законах распределения времени наработки на отказ и времени восстановления, случайный процесс работы восстанавливаемой системы стабилизируется, и вероятность застать систему работоспособной в произвольный момент времени остается постоянной. Учитывая, что данный процесс является марковским, в системе дифференциальных уравнений при можно положить

и получить систему линейных алгебраических уравнений, откуда непосредственно находятся P0=Kг и P1:

Для нашего случая нам известно значение µ ? 0,667.

В вероятностной трактовке коэффициент готовности определяют по формуле:

,

где To - наработка на отказ (по условию задачи равна 3000),

TB - среднее время восстановления (по условию задачи равно 1,5).

Следовательно, коэффициент готовности равен Кг = 3000 / (3000 + 1,5) = 0,9995.

Откуда можно определить значение л (по формуле

, ? 0,00033.

Зная значения л и µ из последней системы уравнений можно определить финальные вероятности Р0 и Р1, которые равны 0,9995 и 0,0005 соответственно.

4. Задача № 4

Определить показатели надежности резервированных средств связи. Исходные данные приведены в табл. 4.

Для решения задачи 4 необходимо:

- определить состояние резервированной системы;

- построить размеченный граф состояний;

- написать систему линейных алгебраических уравнений Колмогорова;

- установить взаимосвязь между финальными вероятностями и определить их количественные значения;

- определить показатели надежности (среднее время безотказной работы и коэффициент готовности резервированной системы).

транспортный затрата нерезервированный алгебраический

Таблица 6

То, ч

Тв, ч

Тп, с

3000

1.5

45

Решение задачи 4

В резервированной системе отказ какого-либо элемента не обязательно приводит к отказу всей системы. Типичным случаем является логически параллельное соединение элементов (рисунок 1), при котором система отказывает тогда, когда отказывают все ее элементы. Такой тип резервирования называют постоянным или нагруженным (m-1)-кратным резервированием. В этом случае все элементы выполняют одну и ту же функцию, работают одновременно и равнонадежны.

Схема логического соединения элементов резервированной системы

Резервированная восстанавливаемая система описывается графом состояний (рисyнок 2).

Размещено на http: //www. allbest. ru/

Граф состояний резервированной системы

В отличие от нерезервированной системы резервированная система имеет 4 состояния: S0 - исправное; S1 - первый полукомплект работоспособен, а второй неисправен (ремонтируется); S2 - второй полукомплект работоспособен, а первый неисправен (ремонтируется); S3 - неработоспособное (оба комплекта ремонтируются).

С учетом условий задачи линейные алгебраические уравнения Колмогорова имеют вид:

2 · л · Р0 = µп · (Р1 + Р2) (1)

(л+ µп) · Р1 = л · Р0 + µв · Р3 (2)

(л+ µп)·Р2 = л · Р0 + µв · Р3 (3)

2 · µв · Р3 = л ·(Р1 + Р2) (4) ,

где л и µв - интенсивность отказа и восстановления;

µп - интенсивность переключения.

Система дополняется нормировочным уравнением

Р0+Р1+Р2+Р3=1. (5)

Из уравнений (2) и (3) видно, что Р1 = Р2. Тогда уравнение (1) запишется в виде:

или .

Уравнение (4) имеет вид:

.

Уравнение (5) имеет вид:

. .

Р0 = Т0 / (Т0 + 2Тп) = 3000 / (3000+2·45/3600) = 0,999991667.

Р1 = Р0 · Тп / Т0 = 0,999991667 · (45/3600) / 3000 = 0,00000417.

Р2 = Р0 · Тп / Т0 = 0,999991667 · (45/3600) / 3000 = 0,00000417.

Р3 = Р0 · ((Тп·Тв)/ Т0) = 0,999991667 · ((45/3600·1,5)/3000) = 0,00000625.

Определим среднее время безотказной работы резервированной системы:

Т01 = (Р0 · Тв) / (1- Р0) = (0,999991667 ·1,5) / (1 - 0,999991667) = 180 000 часов.

В вероятностной трактовке коэффициент готовности определяют по формуле:

,

где To - наработка на отказ (по условию задачи равна 3000),

TB - среднее время восстановления (по условию задачи равно 1,5).

Следовательно, коэффициент готовности равен Кг = 3000 / (3000 + 1,5) = 0,9995.

Список использованных источников

1. Вентцель Е.С. Исследование операций. Задачи, принципы, методология / Е.С.Вентцель. - М.: Наука, 1986.

2. Кремер Н.Ш. Исследование операций в экономике. Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман. - М.: ЮНИТИ, 2002.

3. Демидов Ю. М. Исследование операций. Пособие по выполнению контрольной работы.- М.: МГТУ ГА, 2010- 20 стр.

4. Волков И.K., Загоруйко Е.А. Исследование операций. Учебное пособие для вузов / под ред. B.C. Зарубина, A.П. Крищенко. - М.: Изд-во MГТУ им. Н.Э. Баумана, 2002.

5. Афанасьев М.Ю., Суворов Б.П. Исследование операций в экономике: модели, задачи, решения. Учебное пособие / М.Ю. Афанасьев, Б.П. Суворов. - М.: ИНФРА-М, 2003.

Размещено на Аllbest.ru

...

Подобные документы

  • Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.

    контрольная работа [458,1 K], добавлен 16.03.2012

  • Содержание методов аппроксимации Фогеля, потенциала, наименьшей стоимости и северо-западного угла как путей составления опорного плана транспортной задачи на распределение ресурсов с минимальными затратами. Ее решение при помощи электронных таблиц.

    курсовая работа [525,7 K], добавлен 23.11.2010

  • Особенности построения опорных планов транспортной модели методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Оптимизация транспортной модели открытого и закрытого типа с помощью метода потенциала на основе опорного плана.

    курсовая работа [68,6 K], добавлен 25.04.2014

  • Пример решения графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методами северо-западного угла и минимальной стоимости. Стохастическая модель управления запасами, ее значение для предприятий.

    контрольная работа [606,2 K], добавлен 04.08.2013

  • Программирование на Microsoft Visual C++ 6.0 для профессионалов. Составление алгоритма и решение задачи о посещении комивояжером городов с минимальными затратами времени. Железнодорожные перевозки, расчет авиационных линий, конвейерное производство.

    курсовая работа [43,3 K], добавлен 20.11.2008

  • Составление математической модели, целевой функции, построение системы ограничений и симплекс-таблиц для решения задач линейного программирования. Решение транспортной задачи: определение опорного и оптимального плана, проверка методом потенциалов.

    курсовая работа [54,1 K], добавлен 05.03.2010

  • Определение первичного опорного плана разными способами: методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Перепланировка поставок с помощью метода потенциалов для каждого плана. Анализ эффективности их использования.

    контрольная работа [67,2 K], добавлен 06.11.2012

  • Нахождение начального опорного плана методом минимальной стоимости, оптимизация его методом потенциалов. Решение задачи о назначениях с заданной матрицей затрат. Построение набора дуг, соединяющих все вершины сети и имеющих минимальную протяженность.

    контрольная работа [341,0 K], добавлен 24.04.2012

  • Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.

    реферат [4,1 M], добавлен 09.03.2011

  • Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.

    курсовая работа [56,9 K], добавлен 04.05.2011

  • Решение задачи линейного программирования графическим и симплекс-методом. Способы решения транспортных задач: методы северо-западного угла, наименьшей стоимости и потенциалов. Динамическое программирование. Анализ структуры графа, матрицы смежности.

    курсовая работа [361,8 K], добавлен 11.05.2011

  • Составление системы ограничений и целевой функции по заданным параметрам. Построение геометрической интерпретации задачи, ее графическое представление. Решение транспортной задачи распределительным методом и методом потенциалов, сравнение результатов.

    контрольная работа [115,4 K], добавлен 15.11.2010

  • Разработка математической модели, оптимизирующей работы по вывозу взорванной породы с минимальными транспортными затратами с учетом максимальной приемной возможностью отвалов. Запись целевой функции. Приведение системы ограничений к каноническому виду.

    курсовая работа [196,3 K], добавлен 22.10.2014

  • Графическое решение задач линейного программирования. Решение задач линейного программирования симплекс-методом. Возможности практического использования математического программирования и экономико-математических методов при решении экономических задач.

    курсовая работа [105,5 K], добавлен 02.10.2014

  • Понятие и содержание транспортной задачи, структура ее ограничений, составление соответствующей матрицы. Существующие методы ее разрешения, история их разработки и анализ эффективности: венгерский, потенциалов. Определение потенциалов текущего плана.

    контрольная работа [72,7 K], добавлен 23.04.2016

  • Расчет стоимости перевозок методом минимальных затрат. Нахождение условного оптимального равенства в процессе динамического программирования. Линейное алгебраическое уравнение Колмогорова для среднего времени безотказной работы резервированной системы.

    курсовая работа [315,4 K], добавлен 14.01.2011

  • Основные методы решения задачи оптимального закрепления операций за станками. Разработка экономико-математической модели задачи. Интерпретация результатов и выработка управленческого решения. Решение задачи "вручную", используя транспортную модель.

    курсовая работа [1,0 M], добавлен 25.01.2013

  • Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.

    контрольная работа [71,7 K], добавлен 17.09.2016

  • Определение транспортных задач закрытого и открытого типов. Построение опорных планов методом северо-западного угла, минимальной стоимости и методом Фогеля. Анализ оптимального плана по перевозке груза. Достижение минимума затрат и времени на перевозку.

    курсовая работа [6,2 M], добавлен 05.11.2014

  • Построение сетевых графиков. Оптимизация комплекса операций по времени. Процедура расчета временных параметров сетевого графика. Оптимизация комплекса операций по стоимости при фиксированном сроке выполнения проекта. Задача о потоке минимальной стоимости.

    контрольная работа [669,9 K], добавлен 14.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.