Планирование экспериментов с получением линейных моделей. Проверка адекватности уравнения регрессии спланированного эксперимента

Особенности статистических методов планирования эксперимента с получением линейных моделей. Свойства полного факторного эксперимента типа 2k. Порядок заполнения и приемы построения матрицы планирования эксперимента. Расчет коэффициентов регрессии.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 08.03.2017
Размер файла 455,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство науки и образования Российской Федерации

Федеральное государственное бюджетное общеобразовательное учреждение высшего профессионального образования

Магнитогорский государственный технический университет им. Г.И. Носова

Реферат

на тему: Планирование экспериментов с получением линейных моделей. Проверка адекватности уравнения регрессии спланированного эксперимента

Магнитогорск 2016 г.

Содержание

  • Введение
  • 1. Планирование экспериментов с получением линейных моделей
  • 2. Полный факторный эксперимент типа 2k
  • 3. Свойства полного факторного эксперимента типа 2k
  • 4. Расчет коэффициентов регрессии
  • Заключение
  • Список литературы

Введение

Традиционные методы исследований связаны с экспериментами, которые требуют больших затрат, сил и средств, т.к. являются «пассивными» - основаны на поочередном варьировании отдельных независимых переменных в условиях, когда остальные стремятся сохранить неизменными. Эксперименты, как правило, являются многофакторными и связаны с оптимизацией качества материалов, отысканием оптимальных условий проведения технологических процессов, разработкой наиболее рациональных конструкций оборудования и т.д. Системы, которые служат объектом таких исследований, очень часто являются такими сложными, что не поддаются теоретическому изучению в разумные сроки. Поэтому, несмотря на значительный объем выполненных научно-исследовательских работ, из-за отсутствия реальной возможности достаточно полно изучить значительное число объектов исследования, как следствие, многие решения принимаются на основании информации, имеющей случайный характер, и поэтому далеки от оптимальных. Исходя из выше изложенного возникает необходимость поиска пути, позволяющего вести исследовательскую работу ускоренными темпами и обеспечивающим принятие решений, близких к оптимальным. Этим путем и явились статистические методы планирования эксперимента с получением линейных моделей.

1. Планирование экспериментов с получением линейных моделей

Работу по планированию эксперимента начинают со сбора априорной информации. Анализ этой информации позволяет получить представление о параметре оптимизации, о факторах, о наилучших условиях ведения исследования, о характере поверхности отклика и т.д. Априорную информацию можно получить из литературных источников, из опроса специалистов, путем выполнения однофакторных экспериментов. Последние, к сожалению, не всегда возможно осуществить, т.к. возможность их осуществления ограничена стоимостью опытов, их длительностью. На основе анализа априорной информации делается выбор экспериментальной области факторного пространства, который заключается в выборе основного (нулевого) уровня и интервалов варьирования факторов.

Основной уровень является исходной точкой для построения плана эксперимента, а интервалы варьирования определяют расстояния по осям координат от верхнего и нижнего уровней до основного уровня. При планировании эксперимента значения факторов кодируются путем линейного преобразования координат факторного пространства с переносом начала координат в нулевую точку и выбором масштабов по осям в единицах интервалов варьирования факторов. Используют здесь соотношение

где хi - кодированное значение фактора (безразмерная величина);

ci ?coi - натуральные значения фактора (соответственно текущее значение и на нулевом уровне);

е - натуральное значение интервала варьирования факторов (?С).

Получаются значения факторов, равные +1 (верхний уровень) и -1 (нижний уровень). Расположение экспериментальных точек в факторном пространстве для полного факторного эксперимента при k=2 и k=3 показана на рис. 1.1. Как видим, точки плана 22 задаются координатами вершин квадрата, а точки плана 23 - координатами вершин куба. По аналогичному принципу располагаются экспериментальные точки при k>3.

Рисунок 1.2

2. Полный факторный эксперимент типа 2k

Первый этап планирования эксперимента для получения линейной модели основан на варьировании на двух уровнях. В этом случае, при известном числе факторов, можно найти число опытов, необходимое для реализации всех возможных сочетаний уровней факторов. Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ). Если число уровней факторов равно двум, то имеем ПФЭ типа 2k . Условия эксперимента удобно записывать в виде таблицы, которую называют матрицей планирования эксперимента.

Таблица 1.1

3. Матрица планирования эксперимента

Матрица планирования для двух факторов приведена на табл. 1.1. При заполнении матрицы планирования значения уровней факторов, в целях упрощения, обозначают соответствующими знаками, а цифру 1 опускают. С учетом взаимодействия факторов х1 и х2 таблицу 1.1 можно переписать следующим образом:

Таблица 1.2 Матрица планирования

Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку - вектор-строкой. Таким образом, в табл. 1.1. мы имеем два вектора-столбца независимых переменных и один вектор-столбец параметра оптимизации. То, что записано в алгебраической форме, можно изобразить графически. В области определения факторов находится точка, соответствующая основному уровню, и проводят через нее новые оси координат, параллельные осям натуральных значений факторов. Далее выбирают масштабы по новым осям так, чтобы интервал варьирования для каждого фактора равнялся единице. Тогда условия проведения опытов будут соответствовать вершинам квадрата, при k=2, и вершинам куба, при k=3. Центрами этих фигур является основной уровень, а каждая сторона равна двум интервалам (рис. 1.2). Номера вершин квадрата и куба соответствуют номерам опытов в матрице планирования. Площадь, ограниченная этими фигурами, называется областью эксперимента. По аналогичному принципу располагаются экспериментальные точки при k>3.

Расположение точек в факторном пространстве для ПФЭ при k=2 и k=3

Рисунок 1.2

Если для двух факторов все возможные комбинации уровней легко найти перебором, то с ростом числа факторов возникает необходимость в некотором приеме построения матриц. Обычно используются три приема, основанные на переходе от матриц меньшей размерности к матрицам большей размерности. Рассмотрим первый прием. При добавлении нового фактора каждая комбинация уровней исходного фактора встречается дважды, в сочетании с верхним и нижним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Этот прием можно применить для матриц любой размерности. Во втором приеме вводится правило перемножения столбцов матрицы. При построчном перемножении уровней исходной матрицы получаем дополнительный столбец произведения х1 х2, далее повторим исходный план, а у столбца произведений знаки поменяем на обратный. Этот прием применим для построения матриц любой размерности, однако он сложнее, чем первый. Третий прием основан на чередовании знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два раза, в третьем - через четыре, в четвертом - через восемь и т.д. по степеням двойки. Пример построения матриц планирования р3 см. табл. 1.2.

Таблица 1.3 Матрица планирования эксперимента

Номер опыта

у

1

+

+

+

2

-

+

+

3

+

-

+

4

-

-

+

5

+

+

-

6

-

+

-

7

+

-

-

8

-

-

-

3. Свойства полного факторного эксперимента типа 2k

Полный факторный эксперимент относится к числу планов, которые являются наиболее эффективными при построении линейных моделей. Эффективность, иначе оптимальность, полного факторного эксперимента достигается за счет ниже перечисленных его свойств. Два свойства следуют непосредственно из построения матрицы.

Первое из них - симметричность относительно центра эксперимента - формулируется следующим образом: алгебраическая сумма элементов вектора-столбца каждого фактора равна нулю, или

где i = 1, 2, …, k - номер фактора,

N - число опытов.

Второе свойство - так называемое условие нормировки - формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или

Это следствие того, что значения факторов в матрице задаются +1 и -1. Мы рассмотрели свойства отдельных столбцов матрицы планирования. Рассмотрим свойства совокупности столбцов. Сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или

при i ? u , а также i,u = 0,1,..., k . Это важное свойство называется ортогональностью матрицы планирования.

Последнее, четвертое свойство называется ротатабельностью, т.е. точки в матрице планирования подбираются так, что точность предсказаний значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления. Выполнение этих условий обеспечивает минимальную дисперсию коэффициентов регрессии, но и равенство дисперсии.

3. Расчет коэффициентов регрессии

Построив матрицу планирования осуществляют эксперимент. Получив экспериментальные данные рассчитывают значения коэффициентов регрессии. Значение свободного члена (во) берут как среднее арифметическое всех значений параметра оптимизации в матрице:

где - значения параметра оптимизации в u-м опыте;

N - число опытов в матрице.

Линейные коэффициенты регрессии рассчитывают по формуле

где - кодированное значение фактора в u-м опыте.

Коэффициенты регрессии, характеризующие парное взаимодействие факторов, находят по формуле эксперимент линейный модель регрессия

Рассмотрим пример расчета коэффициентов регрессии для планирования , матрица планирования которой приведена в табл. 1.2

Рассмотрим уравнение регрессии для k=3.

где - свободный член;

, - линейные коэффициенты;

, , ,- коэффициенты двойного взаимодействия;

- коэффициент тройного взаимодействия.

Полное число всех возможных коэффициентов регрессии, включая, линейные коэффициенты и коэффициенты взаимодействий всех порядков, равно числу опытов полного факторного эксперимента. Чтобы найти число взаимодействий некоторого порядка, можно воспользоваться формулой числа сочетаний

где k - число факторов;

m - число элементов во взаимодействии.

Так, для плана число парных взаимодействий равно шести

Отсюда видно, что с ростом числа факторов число возможных взаимодействий быстро растет.

Заключение

Задачей планирования является выбор необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений. Частный случай этой задачи - планирование экстремального эксперимента. То есть эксперимента поставленного с целью поиска оптимальных условий функционирования объекта. Таким образом, планирование экстремального эксперимента - это выбор количества и условий проведения опытов, минимально необходимых для отыскания оптимальных условий.

Список литературы

1. Ахназарова С.Л., Кафаров В.В. - Методы оптимизации эксперимента в химической технологии (1985).

2. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. - М.: Наука, 1976.

3. Клепиков Н.П., Соколов С.Н. Анализ и планирование экспериментов методом максимума подобия. М.: Наука, 1964.

4. Федоров В.В. Теория оптимального эксперимента. М.: Наука, 1971.

Размещено на Allbest.ru

...

Подобные документы

  • Определение воспроизводимости эксперимента по критерию Кохрина и коэффициентов линейной модели. Проверка адекватности модели при помощи критерия Фишера. Значимость коэффициентов регрессии и расчеты в автоматическом режиме в программе Statgraphics plus.

    лабораторная работа [474,1 K], добавлен 16.06.2010

  • Понятие планирования эксперимента, его стадии и этапы развития. Математическое планирование факторного эксперимента в научных исследованиях, порядок и правила представления результатов. Требования к факторам и параметрам эксперимента, оценка ошибок.

    лекция [220,4 K], добавлен 13.11.2009

  • Нахождение оптимальных условий для производства мясных рубленых полуфабрикатов. Проведение факторного эксперимента. Сбор априорной информации, выбор параметров. Построение матрицы планирования эксперимента, проверка адекватности математической модели.

    курсовая работа [42,1 K], добавлен 03.11.2014

  • Принципы решения многофакторных оптимизационных задач методом крутого восхождения. Схема многофакторного эксперимента по взвешиванию образцов с равномерным и неравномерным дублированием: предпосылки регрессионного анализа, расчет дисперсии и регрессии.

    курсовая работа [195,9 K], добавлен 22.03.2011

  • Общие сведения о планировании эксперимента. Анализ методики составления планов эксперимента для моделей первого и второго порядков. Положения о планировании второго порядка. Ортогональные и рототабельные центральные композиционные планы второго порядка.

    реферат [242,7 K], добавлен 22.06.2011

  • Сущность и особенности планирования эксперимента, кодирование исходных факторов. Составление плана эксперимента для определения зависимости концентрации меди от расхода шихты, содержания кислорода в дутье. Выбор математической модели объекта исследования.

    курсовая работа [1,8 M], добавлен 11.12.2012

  • Составление и проверка матрицы планирования. Получение математической модели объекта. Проверка адекватности математического описания. Применение метода случайного баланса для выделения наиболее существенных входных переменных многофакторного объекта.

    курсовая работа [568,7 K], добавлен 31.08.2010

  • Составление матрицы плана факторного эксперимента и разработка матрицы его базисных функций. Написание алгебраического полинома плана и корреляционный анализ результатов эксперимента. Функция ошибки и среднеквадратичное отклонение регрессионной модели.

    контрольная работа [698,2 K], добавлен 13.06.2014

  • Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа [3,4 M], добавлен 10.02.2014

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Основы математического моделирования детерминированных и стохастических объектов. Идентификация объектов управления по переходной характеристике. Получение модели методом множественной линейной регрессии и проверка ее адекватности по критерию Фишера.

    курсовая работа [1,1 M], добавлен 14.10.2014

  • Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Типы взаимосвязей между переменными. Этапы интерпретации уравнения регрессии. Коэффициент (индекс) корреляции. Рассмотрение альтернативных моделей.

    контрольная работа [83,1 K], добавлен 14.02.2014

  • Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа [994,1 K], добавлен 29.06.2013

  • Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат [57,4 K], добавлен 25.01.2009

  • Расчет коэффициентов уравнения регрессии и оценка их значимости. Определение среднеквадратичного отклонения и среднеквадратичной ошибки, вычисление коэффициентов регрессии. Определение критериев Стьюдента. Расчет статистических характеристик модели.

    контрольная работа [137,2 K], добавлен 14.09.2009

  • Проведение регрессионного анализа опытных данных в среде Excel. Построение графиков полиномиальной зависимости и обобщенной функции желательности Харрингтона. Определение дисперсии коэффициентов регрессии. Оценка частных откликов по шкале желательности.

    контрольная работа [375,6 K], добавлен 21.01.2014

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа [100,5 K], добавлен 02.06.2014

  • Основные параметры уравнения регрессии, оценка их параметров и значимость. Интервальная оценка для коэффициента корреляции. Анализ точности определения оценок коэффициентов регрессии. Показатели качества уравнения регрессии, прогнозирование данных.

    контрольная работа [222,5 K], добавлен 08.05.2014

  • Получение функции отклика показателя качества Y2 и формирование выборки объемом 15 и более 60. Зависимость выбранного Y от одного из факторов Х. Дисперсионный анализ и планирование эксперимента. Проведение корреляционного и регрессионного анализа.

    курсовая работа [827,2 K], добавлен 19.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.