Эконометрические методы исследований
Расчет параметров уравнений линейной, экспоненциальной, полулогарифмической, обратной и гиперболической парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Анализ параметров уравнения регрессии, критерий Стьюдента.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.03.2017 |
Размер файла | 324,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вычисление определителя показано в шаблоне решения Excel
В нашем случае rx1 x2 имеют |r|>0.7, что говорит о мультиколлинеарности факторов и о необходимости исключения одного из них из дальнейшего анализа.
Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:
где хji - значение переменной хji в i-ом наблюдении.
Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение S.
Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:
ty = ?вjtxj
Для оценки в-коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:
rx1y=в1+rx1x2*в2 + ... + rx1xm*вm
rx2y=rx2x1*в1 + в2 + ... + rx2xm*вm
rxmy=rxmx1*в1 + rxmx2*в2 + ... + вm
Для наших данных (берем из матрицы парных коэффициентов корреляции):
-0.982 = в1 + 0.995в2
-0.983 = 0.995в1 + в2
Данную систему линейных уравнений решаем методом Гаусса: в1 = -0.343; в2 = -0.642;
Стандартизированная форма уравнения регрессии имеет вид:
y0 = -0.343x1 -0.642x2
Найденные из данной системы в-коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:
3. Анализ параметров уравнения регрессии.
Перейдем к статистическому анализу полученного уравнения регрессии: проверке значимости уравнения и его коэффициентов, исследованию абсолютных и относительных ошибок аппроксимации
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка е = Y - Y(x) = Y - X*s (абсолютная ошибка аппроксимации)
Y |
Y(x) |
е = Y - Y(x) |
е2 |
(Y-Yср)2 |
|е : Y| |
|
89 |
87.34 |
1.66 |
2.74 |
93.44 |
0.0186 |
|
83 |
84.42 |
-1.42 |
2.01 |
13.44 |
0.0171 |
|
80 |
80.66 |
-0.66 |
0.43 |
0.44 |
0.00821 |
|
77 |
77.52 |
-0.52 |
0.27 |
5.44 |
0.00678 |
|
75 |
74.6 |
0.4 |
0.16 |
18.78 |
0.00537 |
|
72 |
71.46 |
0.54 |
0.29 |
53.78 |
0.00746 |
|
0 |
5.91 |
185.33 |
0.0635 |
Средняя ошибка аппроксимации
Оценка дисперсии равна:
se2 = (Y - X*Y(X))T(Y - X*Y(X)) = 5.91
Несмещенная оценка дисперсии равна:
Оценка среднеквадратичного отклонения (стандартная ошибка для оценки Y):
Найдем оценку ковариационной матрицы вектора k = S * (XTX)-1
Дисперсии параметров модели определяются соотношением S2i = Kii, т.е. это элементы, лежащие на главной диагонали
Показатели тесноты связи факторов с результатом.
Если факторные признаки различны по своей сущности и (или) имеют различные единицы измерения, то коэффициенты регрессии bj при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы по силе влияния на результат.
К таким показателям тесноты связи относят: частные коэффициенты эластичности, в-коэффициенты, частные коэффициенты корреляции.
Частные коэффициенты эластичности.
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле:
Частный коэффициент эластичности показывает, насколько процентов в среднем изменяется признак-результат у с увеличением признака-фактора хj на 1% от своего среднего уровня при фиксированном положении других факторов модели.
Частный коэффициент эластичности |E1| < 1. Следовательно, его влияние на результативный признак Y незначительно.
Частный коэффициент эластичности |E2| < 1. Следовательно, его влияние на результативный признак Y незначительно.
Стандартизированные частные коэффициенты регрессии.
Стандартизированные частные коэффициенты регрессии - в-коэффициенты (вj) показывают, на какую часть своего среднего квадратического отклонения S(у) изменится признак-результат y с изменением соответствующего фактора хj на величину своего среднего квадратического отклонения (Sхj) при неизменном влиянии прочих факторов (входящих в уравнение).
По максимальному вj можно судить, какой фактор сильнее влияет на результат Y.
По коэффициентам эластичности и в-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.
Коэффициент вj может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (xj) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).
Косвенное влияние измеряется величиной: ?вirxj,xi, где m - число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - rxj,y.
Так для нашего примера непосредственное влияние фактора x1 на результат Y в уравнении регрессии измеряется вj и составляет -0.343; косвенное (опосредованное) влияние данного фактора на результат определяется как:
rx1x2в2 = 0.995 * -0.642 = -0.6388
Сравнительная оценка влияния анализируемых факторов на результативный признак.
5. Сравнительная оценка влияния анализируемых факторов на результативный признак производится:
- средним коэффициентом эластичности, показывающим на сколько процентов среднем по совокупности изменится результат y от своей средней величины при изменении фактора xi на 1% от своего среднего значения;
- в-коэффициенты, показывающие, что, если величина фактора изменится на одно среднеквадратическое отклонение Sxi, то значение результативного признака изменится в среднем на в своего среднеквадратического отклонения;
- долю каждого фактора в общей вариации результативного признака определяют коэффициенты раздельной детерминации (отдельного определения): d2i = ryxiвi.
d21 = -0.98 * (-0.343) = 0.34
d22 = -0.98 * (-0.642) = 0.63
При этом должно выполняться равенство:
?d2i = R2 = 0.97
Множественный коэффициент корреляции (Индекс множественной корреляции).
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции.
В отличии от парного коэффициента корреляции, который может принимать отрицательные значения, он принимает значения от 0 до 1.
Поэтому R не может быть использован для интерпретации направления связи. Чем плотнее фактические значения yi располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина Ry(x1,...,xm).
Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат. При значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.
Связь между признаком Y факторами X сильная
Расчёт коэффициента корреляции выполним, используя известные значения линейных коэффициентов парной корреляции и в-коэффициентов.
Коэффициент детерминации.
R2= 0.9842 = 0.968
Регрессионная статистика |
||||||||
Множественный R |
0,98392535 |
|||||||
R-квадрат |
0,968109095 |
|||||||
Нормированный R-квадрат |
0,946848491 |
|||||||
Стандартная ошибка |
1,403620053 |
|||||||
Наблюдения |
6 |
|||||||
Дисперсионный анализ |
||||||||
df |
SS |
MS |
F |
Значимость F |
||||
Регрессия |
2 |
179,4229 |
89,71144 |
45,53535 |
0,005695 |
|||
Остаток |
3 |
5,910448 |
1,970149 |
|||||
Итого |
5 |
185,3333 |
||||||
Y-пересечение |
110,3283582 |
58,86697 |
1,874198 |
0,157597 |
-77,0126 |
297,6693192 |
-77,0126028 |
|
Переменная X 1 |
-2,089552239 |
3,318471 |
-0,62967 |
0,573597 |
-12,6504 |
8,471304681 |
-12,65040916 |
|
Переменная X 2 |
-0,208955224 |
0,621243 |
-0,33635 |
0,75876 |
-2,18603 |
1,76811868 |
-2,186029128 |
СПИСОК ИСПОЛЬЗОВАННОЙ ЛитературЫ
1. Елисеева, И.И. Практикум по эконометрике [Текст]: учебное пособие / И.И. Елисеева, С.В. Курышева, Д.М. Гордиенко [и др.] - М.: Финансы и статистика, 2001. - 194с.
2. Кремер, Н.Ш. Эконометрика: учебник для вузов/ Под ред. проф. Н.Ш. Кремера; Н.Ш. Кремер, Б.А. Путко. - М.: ЮНИТИ-ДАНА, 2002. - 311с.
3. Практикум по эконометрике [Текст]: учебное пособие / ред. Елисеева, И.И. - М.: Финансы и статистика, 2001. - 192 с.: ил.
Размещено на Allbest.ru
...Подобные документы
Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.
контрольная работа [34,7 K], добавлен 14.11.2010Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.
контрольная работа [136,3 K], добавлен 25.09.2014Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [58,3 K], добавлен 17.10.2009Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.
контрольная работа [173,8 K], добавлен 22.11.2010Расчет уравнений линейной и нелинейной парной регрессии. Оценка тесноты связи расходов на перевозки и грузооборота с помощью показателей корреляции и детерминации. Оценка ошибки аппроксимации уравнений регрессии. Расчет прогнозного значения расходов.
курсовая работа [2,5 M], добавлен 26.12.2014Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.
курсовая работа [1,1 M], добавлен 07.08.2011Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Этапы и проблемы эконометрических исследований. Параметры парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Расчет коэффициентов автокорреляции второго порядка для временного ряда расходов на потребление.
контрольная работа [60,3 K], добавлен 05.01.2011Расчет параметров уравнений линейной и нелинейной парной регрессии, порядок проведения дисперсионного анализа. Оценка тесноты связи между ценами первичного рынка и себестоимостью с помощью показателей корреляции и детерминации, ошибки аппроксимации.
курсовая работа [923,5 K], добавлен 07.08.2013Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.
контрольная работа [261,1 K], добавлен 23.03.2010