Разработка математической модели комплексной оценки состояния электроэнергетических объектов
Актуальность задачи внедрения новых методов оценки технического состояния производственных фондов. Расчетные значения контролируемых параметров функционирования оборудования. Алгоритм оценки технического состояния фондов электроэнергетических объектов.
Рубрика | Экономико-математическое моделирование |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 26,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Разработка математической модели комплексной оценки состояния электроэнергетических объектов
И.Э. Гаглоева
А.З. Добаев
А.А. Дедегкаева
В настоящее время состояние электроэнергетики России не соответствует растущей потребности развития экономики и социальной структуры страны. К негативным факторам состояния электроэнергетики можно отнести: высокий уровень потерь, высокие риски надежного и качественного электроснабжения потребителей, снижение экономичности функционирования системы энергоснабжения, средства управления, не отвечающие современным требованиям, недостаточность применения новых технологий в электроэнергетических сетях, отставание во внедрении автоматизированных систем обработки данных [1-5].
Одним из приоритетных направлений в сфере электроэнергетики, согласно энергетической стратегии России до 2030 года, является создание высоко интегрированных интеллектуальных системообразующих и распределительных электрических сетей нового поколения в Единой энергетической системе России (интеллектуальные сети - Smart Grids) [6].
Интеллектуальная сеть -- качественно новый вид электрической сети, позволяющей осуществлять в реальном времени мониторинг и управление сетью, осуществлять коммуникации между потребителями и поставщиками, предоставляя возможность оптимизации потребления, сокращая стоимость электроэнергии, и тем самым обеспечивая новый уровень надежности и экономичности энергоснабжения [7].
Термин «Smart Grid» до сих пор не имеет единой, общепринятой интерпретации. Так национальная лаборатория энергетических технологий Министерства энергетики США (The National Energy Technology Laboratory USA - NETL) определяет Smart Grid как совокупность организационных изменений, новой модели процессов, решений в области информационных технологий, а также решений в области автоматизированных систем управления технологическими процессами и диспетчерского управления в электро-энергетике [8].
Наиболее полно общую функционально-технологическую идеологию этой концепции отражает сформулированное Институтом инженеров электротехники и электроники (The Institute of Electrical and Electronics Engineers - IEEE) определение Smart Grid как концепции полностью интегрированной, саморегулирующейся и самовосстанавливающейся электроэнергетической системы, имеющей сетевую топологию и включающей в себя все генерирующие источники, магистральные и распределительные сети и все виды потребителей электрической энергии, управляемые единой сетью информационно- управляющих устройств и систем в режиме реального времени [9].
Российские «умные сети» -- это комплексная модернизация и инновационное развитие всех субъектов электроэнергетики на основе передовых технологий и сбалансированных проектных решений глобально на всей территории страны [10].
Вместе с тем для реализации концепции активно-адаптивной сети в стране существуют сдерживающие факторы, к которым можно отнести: уровень развития информационных технологий, коммуникаций, альтернативных источников электроэнергии, широкий территориальный размах энергосистемы страны, значительная изношенность сетей и т. д.
В целях повышения надежности функционирования электроэнергетических объектов, контроля и управления параметрами оборудования при переходе активно-адаптивным сетям актуализируется задача разработки и внедрения новых методов оценки технического состояния производственных фондов.
Обычно используется два основных подхода к контролю технического состояния объекта: в пространстве параметров и в пространстве сигналов [11]. В первом случае тем или иным способом определяются текущие значения параметров объекта (коэффициенты передаточных функций, постоянные времени и т. д.), и оценивается отклонение их от номинального значения. Во втором случае проверяется отклонение выходных сигналов объекта и его блоков от расчетных значений. В обоих случаях объект считается функционирующим неправильно, если отклонение превышает допустимую величину [12].
Контролируемые параметры основного средства должны удовлетворять ограничениям вида:
Для оценки технического состояния при принятии решений по управлению производственными фондами электроэнергетических объектов необходимо определить текущие и расчетные (нормативные) значения параметров оборудования.
Расчетные значения контролируемых параметров функционирования оборудования описывается уравнением состояния:
Где - вектор расчетных технических параметров оборудования на момент начала эксплуатации объекта;
- условия эксплуатации оборудования на промежутке времени [t0, t];
Ki- вектор, характеризующий режим работы оборудования.
Результаты измерений параметров каждой единицы оборудований зависят от соответствующих технических параметров производственного актива и условий эксплуатации на момент измерений:
где vi(t) - вектор измерений технических параметров оборудования в текущий момент времени,
ui(t) - условия эксплуатации объекта в текущий момент времени.
Для определения состояния оборудования может быть применен интегрированный показатель оценки состоянияJ(t), учитывающий важность каждого из наблюдаемых параметров актива и существенность их отклонений:
(1)
где ci - весовые коэффициенты, учитывающие важность параметров;
- масштабирующий коэффициент, учитывающий существенность отклонений каждого параметра .
xi(t) - значения контролируемых параметров в текущий момент времени;
xi*(t) - расчетные значения контролируемых параметров;
I- количество контролируемых параметров оборудования.
Таким образом, выражение (4) позволяет получить количественную оценку технического состояния оборудования, но не учитывает важность самого основного средства, т.е. для разных видов оборудований могут быть получены показатели технического состояния J(t) с одинаковыми значениями; при этом каждый актив в силу своей физической природы и производственных мощностей может характеризоваться разным весом для обеспечения полноценного функционирования производственного процесса, которое должно учитывается при принятии решений. Для того чтобы рассчитанный показатель объективно отражал техническое состояние с учетом важности самого оборудования выражение (1) примет вид:
(2)
где wi- весовой коэффициент важности i-того оборудования;
J(t) - интегрированный показатель текущего технического состояния i-го оборудования.
Все используемые весовые коэффициенты определяются путем экспертного оценивания.
Тогда математическая модель оценки фактического технического состояния оборудования выглядит следующим образом:
Таким образом, значение интегрированного показателя Ji(t) отражает текущее технического состояние электроэнергетического оборудования с учетом важности производственного актива и существенностью отклонений каждого из его параметров. Результаты оценки состояния оборудования используются для прогноза состояния оборудования и его отдельных узлов на временном горизонте, на котором рассматриваются различные варианты технических решений.
Разрабатываемая автоматизированная система должна предоставлять пользователю комплексную оценку технического состояния не только каждой единицы оборудования и любых его группировок, но и электроэнергетического объекта в целом.
Для расчета показателя технического состояния электроэнергетического объекта используется соотношения вычисления средневзвешенного значения по всем составляющим:
где Jэ.о.(t) - показатель технического состояния электроэнергетического объекта в момент времени t.
Таким образом, разработан интегрированный показатель оценки технического состояния производственных фондов электроэнергетических объектов, учитывающий важность каждого из контролируемых параметров актива, существенность их отклонений и значимость самого актива. Результатом расчета интегрированного показателя технического состояния J(t) является определение степени тяжести состояния, как основного средства, так и электроэнергетического объекта в целом.Предложенная математическая модель может быть примененав системе поддержки принятия решений при планировании процесса обновления основных средств.
электроэнергетический производственный фонд алгоритм
Литература
1. Гаглоева И. Э., Добаев А. З. Применение систем автоматизации управления в интеллектуальных электроэнергетических сетях // Наука XXI века: новый подход: материалы II международной научно-практической конференции студентов, аспирантов и молодых учёных 28 сентября 2012 года, г. Санкт-Петербург. - Петрозаводск: ПетроПресс, 2012. - С.8-12.
2. Гаглоева И.Э. К вопросу о разработке модели обработки информации о техническом состоянии оборудования для повышения эффективности процесса обновления производственных фондов электроэнергетических объектов // Trendywspoіczesnejnauki (29.08.2013 - 31.08.2013 ) - Gdaсsk: Wydawca: Sp. zo.o. «Diamondtradingtour», 2013. -80 str. С.10-12.
3. Кумаритов А.М. Методы построения и функционирования информационной системы регионального рынка энергоресурсов // Аудит и финансовый анализ. Москва, 2007. Т. 5. С. 475-483.
4. Дебиев М.В. Алгоритм решения задачи оптимального распределения ресурсов энергоотрасли региона [Электронный ресурс] // «Инженерный вестник Дона», 2013, №3. - Режим доступа: http://www.ivdon.ru/magazine/archive/n3y2013/1783 (доступ свободный) - Загл. с экрана. - Яз. рус.
5. Шарапов Р.В. Аппаратные средства хранения больших объемов данных [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1371 (доступ свободный) - Загл. с экрана. - Яз. рус.
6. Энергетическая стратегия России на период до 2030 года, утверждена распоряжением Правительства Российской Федерации от 13 ноября 2009 г. №1715-р.
7. Бердников Р.Н. Политика инновационного развития и модернизации ОАО «ФСК ЕЭС» // Интернет ресурс, URL: http://www.fsk-ees.ru (Дата обращения: 22.10.2012).
8. The National Energy Technology Laboratory: A vision for the Modern Grid, March 2007. p. 162.
9. Smart Power Grids -- Talking about a Revolution // IEEE Emerging Technology Portal, 2009. p. 68.
10. Бударгин О.М. Умная сеть - платформа развития инновационной экономики // Интернет ресурс, URL: http: http://www.fsk-ees.ru (Дата обращения: 07.09.2013).
11. Васильев В. И., Гусев Ю. М., Иванов А. И. Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов. М.: Машиностроение, 1989. 240 с.
12. Жернаков С.В., Ефанов В.Н., Иванова Н.С. Идентификация сложных систем управления в ортогональном базисе экспоненциального вида // Вестник УГАТУ. - Уфа: УГАТУ, 2010. - Т.14, № 2(37). С.128-135.
Размещено на Allbest.ru
...Подобные документы
Главные требования к математическим моделям в САП. Применение принципа декомпозиции при математическом моделировании сложного технического объекта. Разработка приближенных моделей объектов на микроуровне. Сущность метода сеток, метода конечных элементов.
презентация [705,6 K], добавлен 09.02.2015Сущность банка, его деятельность и риски. Особенности развития банковского бизнеса в России. Управление риском в процессе кредитования. Модели оценки кредитоспособности заемщика. Математический аппарат в их разработке и его практическое применение.
дипломная работа [440,3 K], добавлен 30.05.2012Коэффициенты текущей ликвидности и инвестиционной активности - основные показатели оценки финансового состояния предприятия. Типы задач многокритериальной сравнительной оценки вариантов. Расчет минимума целевой функции поисковым методом Хука-Дживса.
курсовая работа [127,8 K], добавлен 29.05.2019Показатели наличия и структуры основных средств, виды их оценки. Показатели состояния и динамики основных производственных фондов. Показатели использования основных средств. Статистический анализ динамики использования основных средств. Индекс Струмилина.
курсовая работа [88,1 K], добавлен 25.02.2013Типовая структура организационно-экономической части дипломной работы. Разработка математической модели задачи и алгоритма ее решения. Методы расчета экономической эффективности пакета прикладных программ и внедрения новых методов расчета на ПЭВМ.
методичка [58,0 K], добавлен 16.01.2013Понятие, состав и структура основных фондов. Показатели износа и годности основных средств. Амортизационные отчисления: понятие, цели, задачи. Экономико-статистический анализ наличия и состояния основных фондов организаций Волгоградской области.
контрольная работа [29,8 K], добавлен 07.06.2015Понятие основных фондов и задачи их статистического изучения. Анализ выполнения плана, динамики и структуры основных фондов, их состояния, индексный анализ использования. Корреляционный анализ влияния фондоотдачи на прибыль от реализации продукции.
курсовая работа [1,2 M], добавлен 09.12.2013Повышение надежности метода оценки клиентов для снижения рисков при выдаче кредита путем определения ключевых параметров, влияющих на принятие решения. Использование банком скоринговых моделей на различных этапах оценки клиентов, алгоритм apriori.
дипломная работа [2,4 M], добавлен 25.07.2015Разработка экономико-математической модели распределения фондов минеральных удобрений. Ограничения модели по балансу выноса элементов питания, формированию годовых норм удобрений в ассортименте поставки, по полям севооборотов и кормовым угодьям.
курсовая работа [801,4 K], добавлен 17.12.2014Функция и экономическая деятельность предприятия. Сущность методов статистического анализа. Технологии проектирования имитационных математических моделей по оценке и анализу финансового состояния предприятия, экономическая эффективность от их внедрения.
дипломная работа [1,1 M], добавлен 12.12.2011Основные показатели финансового состояния предприятия. Кризис на предприятии, его причины, виды и последствия. Современные методы и инструментальные средства кластерного анализа, особенности их использования для финансово-экономической оценки предприятия.
дипломная работа [1,4 M], добавлен 09.10.2013Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.
курсовая работа [1,3 M], добавлен 09.07.2015Понятие простой экспертизы. Экспертное оценивание важности объектов. Усреднение экспертных оценок. Попарное сравнение объектов. Сложные экспертизы, метод дерева целей. Общие требования при структурировании проблемы. Применение метода анализа иерархий.
контрольная работа [241,5 K], добавлен 14.02.2011Составление математической модели задачи. Расчёт оптимального плана перевозок с минимальной стоимостью с использованием метода потенциалов. Оптимальный вариант специального передвижного оборудования для технического обеспечения управления производством.
контрольная работа [135,3 K], добавлен 01.06.2014Методики решения аналитической задачи оценки функционирования жилищно-коммунального хозяйства региона. Математическая модель, метод и алгоритм решения задачи планирования вывоза бытовых отходов на заводы по их переработке. Ввод дополнительной информации.
автореферат [755,5 K], добавлен 23.03.2009Моделирование работы регулировочного участка цеха. Выбор методов решения задачи. Критерий оценки эффективности процесса функционирования системы - вероятность отказа агрегату в первичной обработке. Алгоритмизация модели системы и ее машинная реализация.
курсовая работа [36,3 K], добавлен 27.01.2011Усовершенствование теории Альтмана. Разработка оптимизационных подходов для минимизации рисков. Реализация программных комплексов для анализа финансового состояния при оценке кредитоспособности предприятия о возможности принятия решения выдавать кредита.
дипломная работа [6,9 M], добавлен 16.02.2016Интервальная оценка показателей безотказности. Формулировка закона надёжности по полностью определённым и цензурированным выборкам. Планы наблюдения за эксплуатацией энергетических объектов. Планирование сроков и объемов технического обслуживания объекта.
презентация [1,2 M], добавлен 23.04.2014Решение математической двухпараметрической задачи оптимизации на основе методов линейного программирования. Выбор оптимальной профессии, для которой показатели безопасности будут минимальными или максимальными. Методика интегральной оценки условий труда.
контрольная работа [256,1 K], добавлен 29.04.2013Расчет параметров линейного уравнения множественной регрессии; определение сравнительной оценки влияния факторов на результативный показатель с помощью коэффициентов эластичности и прогнозного значения результата; построение регрессионной модели.
контрольная работа [1,1 M], добавлен 29.03.2011