Задача о замене оборудования
Изображение всевозможных случаев замены оборудования с помощью ориентированного графа. Особенность календарного планирования трудовых ресурсов. Определение плана найма и увольнения бригад. Применение модели транспортной задачи в сетевой постановке.
Рубрика | Экономико-математическое моделирование |
Вид | лекция |
Язык | русский |
Дата добавления | 14.08.2017 |
Размер файла | 43,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задача о замене оборудования.
Ценность рассмотренных ранее задач состоит не только в их важном прикладном значении, но и в том, что многие другие реальные задачи, содержательно совершенно не связанные с условиями перечисленных задач, имеют аналогичные ММ и могут быть решены наиболее эффективными методами.
Пример такого типа задачи -
Задача о замене оборудования.
Пусть промышленное предприятие функционирует в течение некоторых промежутков времени с номерами . Для выполнения производственной программы предприятие арендует необходимое оборудование. Через какие-то промежутки времени оборудование заменяется на новое. Если оборудование эксплуатируется в промежутке времени (i, j), т.е. начинается эксплуатация в начале i-того периода и заменяется в начале j-того промежутка времени, то предприятие несет затраты (на аренду, тех. обслуживание, ремонт и т.п.).
Необходимо определить, в начале каких промежутков времени нужно заменять оборудование, чтобы суммарные затраты в течение рассматриваемых промежутков времени были бы минимальны.
Всевозможные случаи замены оборудования можно изобразить с помощью ориентированного графа:
Здесь узлы графа соответствуют номерам начала периодов. Если оборудование эксплуатируется в течение промежутка (i, j), то на графе ставится соответствующая дуга, взвешенная числом . Оборудование арендуется в начале 1-го периода, а процесс функционирования предприятия завершается в начале периода времени n.
Допустим, в процессе эксплуатации оборудование заменяется при i=2 и i=7, т.е. оборудование заменяется в начале первого, второго и седьмого периодов: и эксплуатируется до узла n. Тогда, очевидно, общая сумма затрат будет равна . А это выражение есть ни что иное, как длина пути (1,2,7,n).Таким, образом, каждому варианту замены оборудования можно поставить в соответствие некоторый путь из узла 1 в узел n. Т.е. множество вариантов замены оборудования отражается множеством путей на рассматриваемом графе. Следовательно, задача оптимального плана замены оборудования эквивалентна задаче поиска кратчайшего пути из узла 1 в узел n на рассматриваемой сети. (Предложить студентам записать ММ самостоятельно.)
Одна задача календарного планирования трудовых ресурсов.
Рассматривается функционирование предприятия в условиях сурового климата, его производственная программа может быть связана дополнительно с сезонностью. В таких условиях предприятию невыгодно создавать постоянные производственные коллективы и соответствующую социально-экономическую инфраструктуру.
Пусть рассматривается функционирование предприятия в течение n-1 промежутка времени, причем известно потребное количество бригад рабочих Rk () для выполнения производственной программы в течение к-того промежутка времени (периода). Если одна бригада рабочих на7имается в начале i-того промежутка и увольняется в начале j-того, т.е. используется в интервале (i,j), то затраты на содержание этой бригады равны .
Необходимо найти план найма и увольнения бригад, при котором в каждом промежутке времени должен выполняться заданный объем работ, а суммарные затраты на содержание бригад минимальны.
Всевозможные варианты найма и увольнения бригад можно изобразить в виде сети, в которой дуга (i,j) означает найм в начале i-того и увольнение в начале j-того периода.
Построение ММ.
Пусть - количество бригад, нанимаемых в начале i-того и увольняемых в начале j-того промежутков. Тогда ММ запишется:
,
-целые
В модели целевая функция (1) отражает суммарные затраты на содержание рабочих бригад. Ограничение (2) требует, чтобы в первом промежутке времени было ровно столько бригад, сколько требуется для выполнения работ на первом промежутке времени. Неравенство (3) допускает целесообразность содержания резервных бригад, т.к. они могут в конечном счете обойтись дешевле. Равенство (4) обеспечивает в последнем промежутке наличие ровно стольких бригад, сколько требуется. Условие (5) вытекает из физического смысла.
Модель (1)-(5) относится к классу задач линейного целочисленного программирования. Однако она тождественными преобразованиями сводится к модели транспортной задачи в сетевой постановке.
Неравенство (3) приводится к равенству введением доп. переменных:
,
,
Идея последующих тождественных преобразований заключается в следующем: из уравнений (7) и (4) соответственно вычитаем уравнения (2) и (7), записанные для участка с номером на единицу меньше. Запишем уравнение (7) для участка с номером к-1:
,
Далее, вычтем (8) из (7):
, и =
.
Проведя сокращения, можно записать:
,
Если вычесть из уравнения (7) с номером к=2 уравнение (2), то получим: ориентированный календарный транспортный сетевой
,
Теперь из уравнения (4) вычтем уравнение (7) с номером . Т.к. уравнение (4) аналогично (7) при и , то результат вычитания следует из формулы (9) при :
,
К полученной системе уравнений (9)-(11) присоединим уравнения (2) и (4), умножив (4) слева и с права на -1:
,
,
Полученные уравнения (9)-(13) эквивалентны уравнениям исходной задачи, которая теперь свелась к задаче (1), (9)-(13) с условиями
,
-целые
Далее можно условно интерпретировать:
- объем перевозки по дуге (i,j).
R1- запас продукции в первом узле,
Rк- Rк-1 - запас продукции k-того узла ,
Rn-1 - запас продукции n-ого узла.
Тогда уравнение (12) интерпретируется как объем вывоза из первого узла, равный запасу продукции в этом узле, т.е. аналогично уравнению для истока транспортной сети. Уравнение (13) интерпретируется как объем продукции, привозимой в размере потребности в узел n, т.е. аналогичное уравнению для стока транспортной сети.
Рассмотрим уравнение (10):
- определяет объем продукции, вывозимый из узла 2,
- объем продукции, ввозимый в узел 2 по дуге (1,2).
В сеть вводится дополнительная дуга (3,2), по которой перевозится продукция в объеме . Тогда - суммарный объем продукции, привозимой в узел 2. Следовательно уравнение (10) можно интерпретировать как уравнение баланса для промежуточных узлов транспортной задачи в сетевой постановке.
Аналогично в сеть добавляются дуги (k,k-1) для всех с объемами перевозок .
Тогда уравнения (9) интерпретируются как уравнения баланса для промежуточных пунктов ТЗ в сетевой постановке: суммарный объем вывозимой продукции минус суммарный объем ввозимой продукции равняется запасу продукции в этих узлах.
Таким образом, задача календарного планирования трудовых ресурсов (1)-(5) тождественными преобразованиями и добавлением новых дуг свелась к модели транспортной задачи в сетевой постановке (1), (9)-(13).
Размещено на Allbest.ru
...Подобные документы
Изучение порядка постановки задач и общая характеристика методов решения задач по календарному планированию: модель с дефицитом и без дефицита. Анализ решения задачи календарного планирования с помощью транспортной модели линейного программирования.
курсовая работа [154,0 K], добавлен 13.01.2012Характеристика модели замены оборудования. Принцип оптимальности Беллмана. Информационно-методическое обеспечение экономического моделирования. Задачи организации ремонтных работ на предприятии. Нахождение удельных затрат по покупке нового оборудования.
курсовая работа [2,5 M], добавлен 30.03.2013Главные элементы сетевой модели. Задача линейного программирования. Решение симплекс-методом. Составление отчетов по результатам, по пределам, по устойчивости. Составление первоначального плана решения транспортной задачи по методу северо-западного угла.
контрольная работа [747,3 K], добавлен 18.05.2015Статические детерминированные модели управления запасами. Задача о замене оборудования. Модель Солоу, золотое правило накопления. Оптимальное распределение ресурсов между предприятиями (отраслями) на n лет. Мультипликативная производственная функция.
контрольная работа [2,1 M], добавлен 22.09.2015Описание задачи линейного целочисленного программирования. Общий алгоритм решения задач с помощью метода границ и ветвей, его сущность и применение для задач календарного планирования. Пример использования метода при решении задачи трех станков.
курсовая работа [728,8 K], добавлен 11.05.2011Разработка экономико-математической модели и решение задачи линейного программирования с использованием математических методов. Транспортная задача в матричной постановке и ее свойства. Построение исходного допустимого плана. Критерий оптимальности.
курсовая работа [111,1 K], добавлен 16.01.2011Численные коэффициенты функции регрессии. Построение транспортной модели. Нахождение опорного плана методом Фогеля. Построение модели экономичных перевозок. Составление транспортной матрицы. Общая распределительная задача линейного программирования.
курсовая работа [1,3 M], добавлен 11.06.2010Сущность многопериодической транспортной задачи, построение дерева проблем. Особенности морфологического, функционального и информационного описания логистической системы. Формулировка транспортной задачи, представление ее математической модели.
курсовая работа [314,2 K], добавлен 12.05.2011Основные параметры сетевой модели системы планирования и управления. Правила построения сетевых графиков. Характеристики элементов сетевой модели. Метод пересмотра планов. Численная реализация задачи сетевого планирования. Метод графической оценки.
реферат [154,4 K], добавлен 19.03.2015Метод сетевого планирования и управления, его цели, задачи и необходимость. Определение минимальной стоимости комплекса производственных работ при заданной продолжительности его выполнения с помощью построения, анализа и оптимизации сетевого графика.
курсовая работа [39,6 K], добавлен 07.12.2010Особенности построения опорных планов транспортной модели методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Оптимизация транспортной модели открытого и закрытого типа с помощью метода потенциала на основе опорного плана.
курсовая работа [68,6 K], добавлен 25.04.2014Графический метод решения задачи оптимизации производственных процессов. Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством. Метод динамического программирования для выбора оптимального профиля пути.
контрольная работа [158,7 K], добавлен 15.10.2010Определение минимального значения целевой функции. Проведение проверки плана на оптимальность. Определение значения оценок для всех свободных клеток транспортной задачи, признака оптимальности. Введение перевозки, выявление цикла, перемещение по циклу.
задача [64,1 K], добавлен 20.05.2015Транспортная задача (Т-задача) как одна из наиболее распространенных специальных задач линейного программирования. Порядок и закономерности постановки данной задачи, аналитический и графический методы. Открытые и закрытые транспортные модели, их решение.
контрольная работа [419,4 K], добавлен 06.08.2010Составление математической модели задачи. Расчёт оптимального плана перевозок с минимальной стоимостью с использованием метода потенциалов. Оптимальный вариант специального передвижного оборудования для технического обеспечения управления производством.
контрольная работа [135,3 K], добавлен 01.06.2014Задача оптимального использования ресурсов при изготовлении трех видов продукции на максимум общей стоимости, рекомендации относительно развития производства. Анализ алгоритма решения закрытой транспортной задачи с применением распределительного метода.
контрольная работа [81,8 K], добавлен 17.12.2013Основные методы решения задачи оптимального закрепления операций за станками. Разработка экономико-математической модели задачи. Интерпретация результатов и выработка управленческого решения. Решение задачи "вручную", используя транспортную модель.
курсовая работа [1,0 M], добавлен 25.01.2013Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.
реферат [4,1 M], добавлен 09.03.2011Транспортная задача линейного программирования, закрытая модель. Создание матрицы перевозок. Вычисление значения целевой функции. Ввод зависимостей из математической модели. Установление параметров задачи. Отчет по результатам транспортной задачи.
контрольная работа [202,1 K], добавлен 17.02.2010Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.
курсовая работа [56,9 K], добавлен 04.05.2011