Методы главных компонент

Статистический подход в методе главных компонент. Многомерное нормальное распределение вариаций. Линейная модель метода главных компонент. Метод Фадеева – одновременное вычисление коэффициентов характеристического многочлена и присоединенной матрицы.

Рубрика Экономико-математическое моделирование
Предмет Экономико-математическое моделирование
Вид реферат
Язык русский
Прислал(а) incognito
Дата добавления 27.10.2017
Размер файла 586,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Создание модели анализа и прогнозирования социально-экономического развития Российских регионов методом главных компонент. Оценка основных экономических показателей региона. Формирование индикаторов устойчивого развития с использованием программы МИДАС.

    курсовая работа [969,1 K], добавлен 29.08.2015

  • Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.

    контрольная работа [325,2 K], добавлен 13.08.2010

  • Метод развертки вслепую. Понятия и построение модели для простейшего случая. Подгонка параметров: целевая функция, подбор независимых компонент и функции нелинейности. Настройка процесса обучения. Адаптация алгоритма под реалии рынка обмена валюты.

    курсовая работа [1,1 M], добавлен 17.10.2016

  • Оценка адекватности эконометрических моделей статистическим данным. Построение доверительных зон регрессий спроса и предложения. Вычисление коэффициента регрессии. Построение производственной мультипликативной регрессии, оценка ее главных параметров.

    контрольная работа [1,2 M], добавлен 25.04.2010

  • Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.

    лабораторная работа [214,2 K], добавлен 17.10.2009

  • Определение понятий "функциональные и структурные математические модели", рассмотрение их значение, главных функций и целей. Составление модели "черного ящика", простейшее отображение реальной системы. Метод исследования объектов с помощью их моделей.

    реферат [13,2 K], добавлен 17.11.2015

  • Случайная выборка из генеральной совокупности. Сущность метода Монте-Карло. Определение адекватности принятой эконометрической модели. Линейная регрессионная модель вида. Система нормальных уравнений в матричной форме. Параметры регрессионной модели.

    контрольная работа [323,5 K], добавлен 08.12.2010

  • Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.

    контрольная работа [168,7 K], добавлен 08.10.2009

  • Аналіз коефіцієнтів лінійних моделей: розрахунок коефіцієнтів цільової функції. Аналіз діапазону зміни компонент вектора обмежень. Приклад практичного використання двоїстих оцінок у аналізі економічної задачі. Складання по ній симплексної таблиці.

    лекция [543,5 K], добавлен 10.10.2013

  • Ковариационная матрица оценок коэффициентов регрессии. Оценка дисперсии ошибок. Сущность теоремы Гаусса-Маркова. Проверка статистических гипотез, доверительные интервалы. Расчет коэффициента детерминации, скорректированного коэффициента детерминации.

    контрольная работа [1,4 M], добавлен 28.07.2013

  • Представление матрицы в виде произведения унитарной и верхнетреугольной матрицы. Листинг программы. Зависимость погрешности от размерности матрицы на примере метода Холецкого. Приближенные методы решения алгебраических систем. Суть метода Зейделя.

    контрольная работа [630,5 K], добавлен 19.05.2014

  • Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.

    контрольная работа [2,0 M], добавлен 05.04.2014

  • Вычисление парных коэффициентов корреляции и построение их матрицы. Нахождение линейного уравнения связи, коэффициентов детерминации и эластичности. Аналитическое выравнивание ряда динамики методом наименьших квадратов. Фактические уровни вокруг тренда.

    контрольная работа [121,1 K], добавлен 01.05.2011

  • Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

    лабораторная работа [30,9 K], добавлен 05.12.2010

  • Методи одержання стійких статистичних оцінок. Агломеративні методи кластерного аналізу. Грубі помилки та методи їх виявлення. Множинна нелінійна регресія. Метод головних компонент. Сутність завдання факторного аналізу. Робастне статистичне оцінювання.

    курсовая работа [1,2 M], добавлен 28.04.2014

  • Оценивание линейной прогностической функции на примере эконометрической модели в виде многочлена. Однопараметрическое семейство алгоритмов с мерой близости и и непараметрический подход. Эконометрика классификации: классы и кластеры, параметры регрессии.

    реферат [222,3 K], добавлен 21.01.2009

  • Сущность метода наименьших квадратов. Экономический смысл параметров кривой роста (линейная модель). Оценка погрешности и проверка адекватности модели. Построение точечного и интервального прогноза. Суть графического построения области допустимых решений.

    контрольная работа [32,3 K], добавлен 23.04.2013

  • Линейное программирование. Геометрическая интерпретация и графический метод решения ЗЛП. Симплексный метод решения ЗЛП. Метод искусственного базиса. Алгоритм метода минимального элемента. Алгоритм метода потенциалов. Метод Гомори. Алгоритм метода Фогеля.

    реферат [109,3 K], добавлен 03.02.2009

  • Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа [994,1 K], добавлен 29.06.2013

  • Назначение матричного метода прогнозирования и основные этапы его применения. Графическая основа модели развития объекта в матричном методе. Схемы оценки опосредствованных связей (влияния) комплексов при обработке матриц влияния и расчетов по графу.

    презентация [752,6 K], добавлен 15.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.