Методы главных компонент
Статистический подход в методе главных компонент. Многомерное нормальное распределение вариаций. Линейная модель метода главных компонент. Метод Фадеева – одновременное вычисление коэффициентов характеристического многочлена и присоединенной матрицы.
Рубрика | Экономико-математическое моделирование |
Предмет | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 27.10.2017 |
Размер файла | 586,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Создание модели анализа и прогнозирования социально-экономического развития Российских регионов методом главных компонент. Оценка основных экономических показателей региона. Формирование индикаторов устойчивого развития с использованием программы МИДАС.
курсовая работа [969,1 K], добавлен 29.08.2015Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.
контрольная работа [325,2 K], добавлен 13.08.2010Метод развертки вслепую. Понятия и построение модели для простейшего случая. Подгонка параметров: целевая функция, подбор независимых компонент и функции нелинейности. Настройка процесса обучения. Адаптация алгоритма под реалии рынка обмена валюты.
курсовая работа [1,1 M], добавлен 17.10.2016Оценка адекватности эконометрических моделей статистическим данным. Построение доверительных зон регрессий спроса и предложения. Вычисление коэффициента регрессии. Построение производственной мультипликативной регрессии, оценка ее главных параметров.
контрольная работа [1,2 M], добавлен 25.04.2010Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.
лабораторная работа [214,2 K], добавлен 17.10.2009Определение понятий "функциональные и структурные математические модели", рассмотрение их значение, главных функций и целей. Составление модели "черного ящика", простейшее отображение реальной системы. Метод исследования объектов с помощью их моделей.
реферат [13,2 K], добавлен 17.11.2015Случайная выборка из генеральной совокупности. Сущность метода Монте-Карло. Определение адекватности принятой эконометрической модели. Линейная регрессионная модель вида. Система нормальных уравнений в матричной форме. Параметры регрессионной модели.
контрольная работа [323,5 K], добавлен 08.12.2010Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.
контрольная работа [168,7 K], добавлен 08.10.2009Аналіз коефіцієнтів лінійних моделей: розрахунок коефіцієнтів цільової функції. Аналіз діапазону зміни компонент вектора обмежень. Приклад практичного використання двоїстих оцінок у аналізі економічної задачі. Складання по ній симплексної таблиці.
лекция [543,5 K], добавлен 10.10.2013Ковариационная матрица оценок коэффициентов регрессии. Оценка дисперсии ошибок. Сущность теоремы Гаусса-Маркова. Проверка статистических гипотез, доверительные интервалы. Расчет коэффициента детерминации, скорректированного коэффициента детерминации.
контрольная работа [1,4 M], добавлен 28.07.2013Представление матрицы в виде произведения унитарной и верхнетреугольной матрицы. Листинг программы. Зависимость погрешности от размерности матрицы на примере метода Холецкого. Приближенные методы решения алгебраических систем. Суть метода Зейделя.
контрольная работа [630,5 K], добавлен 19.05.2014Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.
контрольная работа [2,0 M], добавлен 05.04.2014Вычисление парных коэффициентов корреляции и построение их матрицы. Нахождение линейного уравнения связи, коэффициентов детерминации и эластичности. Аналитическое выравнивание ряда динамики методом наименьших квадратов. Фактические уровни вокруг тренда.
контрольная работа [121,1 K], добавлен 01.05.2011Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.
лабораторная работа [30,9 K], добавлен 05.12.2010Методи одержання стійких статистичних оцінок. Агломеративні методи кластерного аналізу. Грубі помилки та методи їх виявлення. Множинна нелінійна регресія. Метод головних компонент. Сутність завдання факторного аналізу. Робастне статистичне оцінювання.
курсовая работа [1,2 M], добавлен 28.04.2014Оценивание линейной прогностической функции на примере эконометрической модели в виде многочлена. Однопараметрическое семейство алгоритмов с мерой близости и и непараметрический подход. Эконометрика классификации: классы и кластеры, параметры регрессии.
реферат [222,3 K], добавлен 21.01.2009Сущность метода наименьших квадратов. Экономический смысл параметров кривой роста (линейная модель). Оценка погрешности и проверка адекватности модели. Построение точечного и интервального прогноза. Суть графического построения области допустимых решений.
контрольная работа [32,3 K], добавлен 23.04.2013Линейное программирование. Геометрическая интерпретация и графический метод решения ЗЛП. Симплексный метод решения ЗЛП. Метод искусственного базиса. Алгоритм метода минимального элемента. Алгоритм метода потенциалов. Метод Гомори. Алгоритм метода Фогеля.
реферат [109,3 K], добавлен 03.02.2009Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.
контрольная работа [994,1 K], добавлен 29.06.2013Назначение матричного метода прогнозирования и основные этапы его применения. Графическая основа модели развития объекта в матричном методе. Схемы оценки опосредствованных связей (влияния) комплексов при обработке матриц влияния и расчетов по графу.
презентация [752,6 K], добавлен 15.04.2015