Исследование зависимости производства ликероводочных изделий с экономическими показателями
Характеристика основных способов проверки коэффициентов парной корреляции на мультиколлинеарность. Анализ влияния валового сбора зерна, потребления пива и структуры населения на изменение производства ликероводочных изделий в Российской Федерации.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.11.2017 |
Размер файла | 13,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
1. Постановка задачи
Определить существует ли зависимость между производством ликероводочных изделий (Y) и:
1- валовый сбор зерна (X1);
2 - валовый сбор сахарной свеклы (X2);
3- потребление пива (X3);
4- население России (X4);
5- потребление водки (X5).
В случае обнаружения зависимости построить оптимальную модель, которая могла бы быть пригодной для прогноза.
2. Первичный анализ исходных данных
Анализ динамики производства ликероводочных изделий (Y) показывает, что за период наблюдения (N=21) минимальное производство был равно 138.1, а максимальным 209.2, тем самым изменение величины Y было в пределах 71.1. Вариация равная 12.2126% свидетельствует об однородности величины Y (<33%). Отклонение от среднего значения (176.5905) в среднем не превышало 17.5814 (среднее абсолютное отклонение), эксцесс (-1.1554) и асимметрия (-0.1873) утверждает, что распределение величины Y имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина Y имеет тенденцию к увеличению, средний темп прироста составляет - 0.981%.
Анализ динамики валового сбора зерна (X1) показывает, что за период наблюдения (N=21) минимальный сбор был равен 248.1, а максимальным 356.3, тем самым изменение величины X1 было в пределах 108.2. Вариация равная 10.6046% свидетельствует об однородности величины X1 (<33%). Отклонение от среднего значения (313.5953) в среднем не превышало 33.2555 (среднее абсолютное отклонение), эксцесс (-0.9713) и асимметрия (-0.5517) утверждает, что распределение величины X1 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина X1 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 1.0741% или на 0.0254 единиц измерения (% от номинала в миллионах тонн). Сбор до 16 наблюдения имеет тенденцию к увеличению, в период от 16 до 21 наблюдается падение сбора.
Анализ динамики валового сбора сахарной свеклы (X2) показывает, что за период наблюдения (N=21) минимальный сбор был равен 20812, а максимальный 33177, тем самым изменение величины X2 было в пределах 12365. Вариация равная 13.9157% свидетельствует об однородности величины X2 (<33%). Отклонение от среднего значения (26846.0952) в среднем не превышало 3735.8119 (среднее абсолютное отклонение), эксцесс (-1.1144) и асимметрия (0.324) утверждает, что распределение величины X2 имеет незначительный сдвиг вправо и плосковершинность.
Величина X2 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 0.9409%.
Анализ динамики потребление пива (X3) показывает, что за период наблюдения (N=21) минимальное потребление пива было 92.4, а максимальная 106.1, тем самым изменение величины X3 было в пределах 13.7. Вариация равная 3.8059% свидетельствует об однородности величины X3 (<33%). Отклонение от среднего значения (99.5857) в среднем не превышало 3.7902 (среднее абсолютное отклонение), эксцесс (5.6717) и асимметрия (1.4085) утверждает, что распределение величины X3 имеет незначительный сдвиг вправо и достаточно выраженную островершинность.
Величина X3 имеет тенденцию к росту, т.к. средний темп прироста составляет 0.0821% . Потребление пива во время 9 наблюдения имеет резкое падение.
Анализ динамики населения России (X4) показывает, что за период наблюдения (N=21) минимальное население было 130.1, а максимальное 147.4, тем самым изменение величины X4 было в пределах 17.3. Вариация равная 3.6811% свидетельствует об однородности величины X4 (<33%). Отклонение от среднего значения (138.7) в среднем не превышало 5.1057 (среднее абсолютное отклонение), эксцесс (-1.2575) и асимметрия (0.1499) утверждает, что распределение величины X4 имеет незначительный сдвиг вправо и незначительную плосковершинность.
Величина X4 имеет тенденцию к возрастанию, т.к. средний темп прироста составляет 0.6262% .Кривая распределения величины Х4 имеет небольшой подъем вверх.
Анализ динамики потребления водки (X5) показывает, что за период наблюдения (N=21) минимальное потребление было 133.5, а максимальное 208.5, тем самым изменение величины X5 было в пределах 75. Вариация равная 11.4207% свидетельствует о однородности величины X5 (<33%). Отклонение от среднего значения (175.9905) в среднем не превышало 20.0993 (среднее абсолютное отклонение), эксцесс (-0.7625) и асимметрия (-0.1934) утверждает, что распределение величины X5 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина X5 имеет тенденцию к уменьшению, т.к. средний темп прироста составляет -1.1457% . Потребление до 13 наблюдения возрастает, затем последовал медленный спад до 21 наблюдения.
3. Корреляционно-регрессионный анализ
Анализ коэффициентов парной корреляции говорит о наличии интенсивной связи Y с Х5 (0.9834), средней с Х4 (-0.5315) -знак минус указывает на обратную зависимость- и Х3 (-0.4266), слабой с Х2 (-0.1890) и Х1 (0.1176). Значит в модель стоит включить факторы Х3, Х4,Х5.
Следующим этапом идет проверка на мультиколлениарность, существует несколько способов данной проверки.
Способ 1. При проверке на мультиколлениарность (коэффициенты частной корреляции и t-статистика) видно, что существует взаимосвязь между:
Табл. 1
x1 |
x2 |
x3 |
x4 |
|
x2 |
x1 |
x1 |
||
x4 |
x4 |
x2 |
Следовательно в модель включается Х5 и Х4, т.к. коэффициент парной корреляции Y-X4 (-0.5315) больше, чем коэффициенты парной корреляции Y-X1 (0.1170) и Y-X3 (-0.4266) и Y-Х2(-0.1890).
Способ 2. Этот метод основан на анализе распределения корреляционной матрицы. Идея метода заключается в том что вводятся некоторые критерии на основе которого можно проверить о значимости отклонения корреляционной матрицы от ортогональной, для этого вводится величина:
Х2= N-1-1/6(2*n+5)*ln|R|
по расчетам ХИ квадрат равно 80.469 больше табличного, значит между переменными существует мультиколлениарность. Для определения степени мультиколлениарности вводим величину:
W=(Cii-1)-(N-n)/(n-1)
где Сii - диагональный элемент матрицы обратной корреляционной.
Табл. 2
Wii |
Wii |
f-критерий |
|
W11 |
3.622 |
0.0139 |
|
W22 |
1.93 |
0.12648 |
|
W33 |
6.18 |
0.00081 |
|
W44 |
2.181 |
0.08999 |
|
W55 |
6.225 |
0.00077 |
Данная таблица указывает, что наиболее коллениарна Х2, затем Х4 и можно сказать что Х3 и Х5 вовсе не коллениарны. Следовательно в модель лучше включить Х3 и Х5, но проведенный последующий регрессионный анализ указывает что лучше включать в модель Х2 и Х3, т.е. производство ликеро-водочных изделий (Y) зависит от валового сбора сахарной свеклы (X2) и потребления пива (X3).
Анализ уравнения регрессии говорит, что при росте Х5 на 1 единицу в своих единицах измерения увеличит Y на 1.0552 единицы в своих единицах измерения, Отклонения основного тренда носят случайный характер, а данная модель определяет Y на 96.71% ( R-квадрат). Относительная ошибка апроксимации указывает об адекватности математической модели. Степень рассеянности Y мала (дисперсия=3.909). Распределение Y является нормальным, в ряду нет автокорреляции нельзя, а проверка на стационарность случайного компонента с помощью Х2 (Х2=10.04) указывает что коэффициенты корреляции неоднородны.
Метод пресс.
Основан на выборе наилучшего уравнения регрессии для этого рассчитывают значения сумм квадратов расхождения:
Табл. 3
Хi |
отклонение |
Хi |
отклонение |
Хi |
отклонение |
Хi |
отклонение |
Хi |
отклонение |
|
1 |
9174.74 |
12 |
5598.67 |
123 |
5589.96 |
1234 |
538.735 |
12345 |
185.547 |
|
2 |
8969.93 |
13 |
7329.06 |
124 |
545.654 |
1235 |
217.694 |
|||
3 |
7608.97 |
14 |
2226.17 |
125 |
217.86 |
1245 |
185.690 |
|||
4 |
6674.29 |
15 |
256.857 |
134 |
1176.13 |
1345 |
236.652 |
|||
5 |
305.611 |
23 |
7607.95 |
135 |
240.845 |
2345 |
224.784 |
|||
24 |
256.856 |
145 |
256.53 |
|||||||
25 |
227.26 |
234 |
3506.0 |
|||||||
34 |
5628.28 |
235 |
224.949 |
|||||||
35 |
275.868 |
245 |
226.924 |
|||||||
45 |
266.522 |
345 |
236.662 |
Из таблицы видно лучше всего взять модель 25 или 125.
Табл. 4
модель |
R2 |
дисперсия |
|
25 |
0.9756 |
3.3709 |
|
125 |
0.9766 |
3.3005 |
Последующая проверка говорит, что модель 25 наиболее выгодна. Значит производство ликероводочных изделий (Y) зависит от 2- валового сбора сахарной свеклы (X2), 5- потребления водки (X5) на 97.66%.
Метод исключения.
Метод исключения основан на анализе коэффициентов регрессионного уравнения при условии, что переменная при этом коэффициенте в модель была включена последней.
Табл. 5
переменные в модели |
f-критерий |
переменные в модели |
f-критерий |
переменные в модели |
f-критерий |
переменные в модели |
f-критерий |
переменные в модели |
f-критерий |
|
Х1 |
3.1719 |
Х1 |
0.5331 |
Х1 |
0.7335 |
|||||
Х2 |
4.1314 |
Х2 |
1.7014 |
Х2 |
3.0429 |
Х2 |
1.8365 |
|||
Х3 |
0.0115 |
Х3 |
0.0121 |
|||||||
Х4 |
2.5988 |
Х4 |
8.6594 |
|||||||
Х5 |
28.553 |
Х5 |
394.844 |
Х5 |
419.872 |
Х5 |
23.6498 |
|||
Fкр |
4.4100 |
Fкр |
4.4100 |
Fкр |
4.4100 |
Fкр |
4.4100 |
Fкр |
4.4100 |
Следовательно в модель включается только Х5. Данная модель определяет Y на 96.71%, значит потребление водки (X5) значительно влияет на производство ликероводочных изделий (Y).
Метод главных компонент.
Метод главных компонент был предложен К. Пирсоном в 1901 году, а в дальнейшем развит и доработан. Метод основан на стандартизации переменных для чего используют следующие формулы:
Zij=(Xij-Xiсред)Si;
Si=[1/(n-1)*сумма(Xij-Xiсред)2](1/2);
где Zij стандартизованные переменные;
Si стандартизированное отклонение.
В модели участвуют главные компоненты Wj, которые представляют собой следующее:
Wj=V1Z1+V2Z2+...+VrZr,
где Vj собственный вектор, который удовлетворяет системе уравнений:
(Z'z-KI)*Vj=0,
где Z'z корреляционная матрица; КI характеристические корни уравнения |Z'z-KI|=0.
Корреляция главных компонент показывает тесноту связи Хi с главными компонентами. Переменные Х1,Х2,Х4 имеют интенсивную связь с первой главной компонентой, а Х3 среднюю, вторая главная компонента интенсивно связана с переменной Х5. Следовательно валовый сбор зерна (X1), валовый сбор сахарной свеклы (X2), население России (X4), потребление пива (X5) имеют некоторую гипотетическую величину, зависимую от них. Модель полученная по методу главных компонент определяет величину Y на 87.43% (R квадрат).
Прогнозирование.
Проведем прогнозы по полученным моделям и сделаем оценки прогнозов.
Табл. 6
прогноз |
Gt |
Dср |
Eпр-сред |
K |
KH |
KH1 |
V |
Vмю |
Vs |
Vl |
|
регрессия от факторов |
2.5273 |
1.55208 |
0.84378 |
0.13734 |
0.01591 |
0.016 |
0.137 |
0.008 |
0.00969 |
169.434 |
|
регрессия от главных компонент |
6.63374 |
4.78329 |
2.58704 |
0.36043 |
0.04176 |
0.043 |
0.360 |
0.002 |
0.07612 |
124.152 |
|
экспоненциальное сглаживание |
11.4203 |
7.73952 |
3.97460 |
0.62061 |
0.07189 |
0.074 |
0.620 |
0.006 |
0.16918 |
168.113 |
|
метод гармонических весов |
8.63744 |
3.71190 |
2.03568 |
0.46938 |
0.05437 |
0.056 |
0.469 |
0.018 |
0.07478 |
157.969 |
|
регрессия от времени |
16.6170 |
11.8509 |
6.213912 |
0.903012 |
0.104615 |
0.1083 |
0.903 |
0.012 |
0.169182 |
263.5587 |
Из данной таблицы видно, что наиболее точной моделью прогноза считается регрессия от факторов, т.к. Gt=2.5273. Eпр-сред указывает о точности высокой точности прогноза, К - о том что данная модель довольно сильно близка к эталонной (простая экстрополяция), КН - модель близка к совершенной, а КН1 - что модель лучше чем модель на уровне средней, V - что модель близка к простой экстрополяции, Vмю - что центральная тенденция определена точно, Vs - что отклонения фактических и прогнозных достаточно точно совпадают, Vl - слабая связь между прогнозными и фактическими значениями.
Заключение
валовой корреляция ликероводочный мультиколлениарность
Основными выводами по проведенной работе можно считать следующее:
1- производство ликероводочных изделий (Y) имеет тенденцию к постоянному росту;
2 - наиболее сильно оно зависит от потребления водки (Х5) и от валовогосбора сахарной свеклы (X2);
3 - наиболее лучшей моделью для проведения прогноза служит модель полученная по корреляционно-регрессионному методу, которая на 97,66% описывает производство ликероводочных изделий (Y);
4 - прогноз следует проводить по модели регрессии от факторов, характеристики которой наиболее достоверные;
5 - для построения наиболее точной модели следует рассмотреть большее количество факторов, влияние которых в большей мере бы определяло производство ликероводочных изделий (Y);
6 - влияние валового сбора зерна (X1), потребления пива (Х3) и населения России (Х4) фактически не существенно сказывается на изменение производства ликероводочных изделий (Y);
7 - полученная модель пригодна для прогноза лишь на краткосрочный период.
Размещено на Allbest.ru
...Подобные документы
Корреляционный и регрессионный анализ экономических показателей. Построение матрицы парных коэффициентов корреляции. Расчет и сравнение частных и парных коэффициентов корреляции. Построение регрессионной модели и её интерпретация, мультиколлинеарность.
курсовая работа [314,1 K], добавлен 21.01.2011Оценка связанностей между экономическими показателями на основе специальных статистических подходов. Составление графиков корреляционных полей на основе точечной диаграммы. Построение доверительного интервала для линейного коэффициента парной корреляции.
лабораторная работа [88,8 K], добавлен 28.02.2014Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Анализ построенной модели на мультиколлинеарность на основе показателей, характеризующих социально-экономическое развитие городов и районов Оренбургской области. Построение линейной зависимости или корреляции между двумя и более объясняющими переменными.
лабораторная работа [99,6 K], добавлен 03.02.2015Коэффициент парной линейной корреляции, формула его расчета. Вычисление коэффициента в MS Excel. Оценка достоверности выборочного коэффициента корреляции в качестве нулевой гипотезы. Выборочный критерий Стьюдента. Построение графика зависимости.
научная работа [622,6 K], добавлен 09.11.2014Исследование влияния ВРП, объёма инвестиций в основной капитал и численности экономически активного населения на среднемесячную заработную плату работников по регионам. Оценка тесноты связи с помощью показателей корреляции, детерминации, парной регрессии.
курсовая работа [370,1 K], добавлен 16.09.2017Определение коэффициентов линейной регрессии. Проверка гипотезы о присутствии гомоскедастичности, наличии автокорреляции. Оценка статистической значимости эмпирических коэффициентов регрессии и детерминации. Прогнозирование объемов производства консервов.
контрольная работа [440,1 K], добавлен 15.04.2014Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.
контрольная работа [298,2 K], добавлен 19.01.2011Исследование зависимости сменной добычи угля на одного рабочего от мощности пласта путем построения уравнения парной линейной регрессии. Построение поля корреляции. Определение интервальных оценок заданных коэффициентов. Средняя ошибка аппроксимации.
контрольная работа [2,1 M], добавлен 09.08.2013Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Изучение потребления на базе выборки бюджетов домашних хозяйств. Динамика потребления населения и потребительских цен. Анализ уровня и структуры потребления населением товаров и услуг. Особенности влияния доходов населения на потребительские расходы.
курсовая работа [160,0 K], добавлен 08.03.2011Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.
лабораторная работа [214,2 K], добавлен 17.10.2009Сущность регрессионного анализа и применение его в эконометрике. Инструментарий эконометрического исследования в области мультиколлинеарности, методы ее устранения. Исследование на мультиколлинеарность факторов, влияющих на экономические процессы.
курсовая работа [711,5 K], добавлен 15.02.2017Зависимость объемов розничного товарооборота от времени. Расчет коэффициентов корреляции, оценка тесноты связи между показателями промышленного производства. Прогнозирование по уравнениям трендов, однофакторным и многофакторным регрессионным моделям.
контрольная работа [237,5 K], добавлен 18.02.2011Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.
контрольная работа [79,3 K], добавлен 28.07.2013Моделирование экономических процессов с помощью однофакторной регрессии. Оценка параметров проекта методом наименьших квадратов. Расчет коэффициента линейной корреляции. Исследование множественной эконометрической линейной схемы на мультиколлинеарность.
курсовая работа [326,5 K], добавлен 19.01.2011Построение эконометрической модели спроса в виде уравнений парной и множественной регрессии. Отбор факторов для построения функции потребления. Расчет коэффициентов корреляции и детерминации, проверка правильности выбранных факторов и формы связи.
контрольная работа [523,7 K], добавлен 18.08.2010Определение методом регрессионного и корреляционного анализа линейных и нелинейных связей между показателями макроэкономического развития. Расчет среднего арифметического по столбцам таблицы. Определение коэффициента корреляции и уравнения регрессии.
контрольная работа [4,2 M], добавлен 14.06.2014Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010