Рейтинг как следствие принципа максимума энтропии

Использование методов статистической физики для математического моделирования сложной социальной системы. Определение рейтинга преподавателей учебных заведений принципом максимума энтропии. Анализ рейтинговой кривой в полулогарифмическом масштабе.

Рубрика Экономико-математическое моделирование
Вид статья
Язык русский
Дата добавления 26.06.2018
Размер файла 529,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Алтайский государственный медицинский университет

Санкт-Петербургский государственный аграрный университет

Рейтинг как следствие принципа максимума энтропии

доктор физико-математических наук Шайдук А.М.

кандидат физико-математических наук Останин С.А.

кандидат физико-математических наук Семёнов Г.А.

Аннотация

Для математического моделирования сложной социальной системы использованы методы статистической физики. Аналитически доказано, что рейтинг преподавателей учебных заведений определяется принципом максимума энтропии. Нормированные рейтинговые кривые имеют вид распределения Больцмана. По величине отклонения рейтинговой кривой от распределения Больцмана можно количественно оценивать величину управляющего воздействия на элементы системы. Анализ рейтинговой кривой в полулогарифмическом масштабе позволяет обнаружить скрытую структуру системы - определять количество подсистем и их статистические характеристики.

Ключевые слова: рейтинг, управление сложными системами, методы статистической физики.

Abstract

For the mathematical modeling of complex social systems used methods of statistical physics. Analytically proved that the rating of teachers of educational institutions is determined by the principle of maximum entropy. Standardized rating curve has the form of the Boltzmann distribution. The magnitude of deviations from the Boltzmann distribution curve rating may be quantified amount of control to the system elements. Analysis of the rating curve in the semi-log scale allows you to discover the hidden structure of the system - to determine the number of subsystems and their statistical characteristics.

Keywords: rating, control of complex systems, methods of statistical physics.

Вариационные ряды часто являются исходным объектом исследования случайных величин методами статистики [1-4]. Естественным образом вариационные ряды получаются при построении различных рейтингов [5-8].

Для целей анализа управляющих воздействий представляют интерес следующие вопросы. Влияют ли процессы управления на вид рейтинговой кривой? Какими процессами определяется вид рейтинговой кривой и можно ли эту кривую получить теоретически?

Основанием для подобных вопросов служит любопытное совпадение. На рисунке 1а приведён безразмерный рейтинг преподавателей одного из университетов, который представляет собой вариационный ряд, упорядоченный по убыванию некоторой характеристики - баллов, количественно характеризующих интеллектуальные ресурсы, созданные преподавателем. А на рисунке 1б представлен безразмерный ранжированный по убыванию значений компонент спектр случайного сигнала (нормального шума). Видно, что эти кривые практически совпадают, хоть и порождаются совершенно различными физическими и социальными процессами.

Рис. 1: а - рейтинг профессорско-преподавательского состава Алтайского государственного университета (АлтГУ); б - ранжированный спектр случайного сигнала

Попробуем доказать, что это совпадение не случайно. Относительно формирования рейтинга выдвинем следующие, на первый взгляд малоправдоподобные, гипотезы:

1. каждый субъект (преподаватель) с равной вероятностью (не зависящей от его квалификации и других качеств) может генерировать любой итоговый ресурс (получить балл) ;

2. итоговая рейтинговая кривая получается случайно;

3. наблюдаемая рейтинговая кривая является просто наивероятнейшей рейтинговой кривой или близкой к ней.

Оказывается, что перечисленных гипотез достаточно, чтобы получить явный вид рейтинговой кривой. Эта проблема (для функции плотности распределения в термодинамическом равновесии) давно решена в статистической физике (см., например, [9]). Чтобы не загружать читателя необходимостью разбираться с физической терминологией, приведём здесь краткий вывод, адаптированный к рассматриваемой задаче.

Для упрощения вывода разобьем ось непрерывного ресурса на небольшие интервалы и пронумеруем их снизу индексом , начиная с единицы. Координату середины интервала номер обозначим, как . Пусть - число объектов (преподавателей), обладающих ресурсом (баллами) величиной . В рамках модели формирования рейтинговой кривой считаем, что все объекты с равной вероятностью могут получить ресурс любой величины. Кроме того, должны выполняться условия:

(1)

где N (количество всех объектов) и E (общий ресурс) - постоянные величины. Тогда число способов N объектов распределить по ресурсам (т.е. число возможных рейтинговых кривых) есть

(2)

В соответствии с принятой гипотезой, наблюдаться будет та рейтинговая кривая, которая встречается чаще всего, т.е. соответствует максимуму функции (2). Обычно удобно искать не максимум функции , а максимум энтропии

(3)

по переменным Nk. Упростим выражение (3), используя приближение Стирлинга [9], справедливое при N»1 :

(4)

Для определения максимума энтропии (4) при дополнительных условиях (1) воспользуемся методом множителей Лагранжа [8], с помощью которого задача поиска условного экстремума сводится к поиску безусловного экстремума вспомогательной функции. Введем вспомогательную функцию

(5)

где в и г - множители Лагранжа. Условие максимума запишем как

(6)

Решением системы уравнений (6) будет совокупность функций

(7)

в которой неизвестные постоянные определяются из условий (1). Соотношение (7) и определяет число объектов Nk, обладающих ресурсом Чk. Число объектов, ресурс которых больше некоторого произвольно выбранного значения Х, можно определить из распределения ресурсов по объектам (7):

(8)

После вычисления интеграла (8) и нормировки получаем зависимость безразмерного ресурса от относительного рейтинга, показанную на рисунке 2 (гладкая линия).

Сходство теоретически полученного рейтинга и рейтинга профессорско-преподавательского состава АлтГУ подтверждает положенное в основу статистической модели предположение о случайном характере получения объектом некоторого ресурса. Напомним, что переход от дискретных значений к непрерывным и переход от сумм к интегралам возможен только при достаточно больших N. При небольших N не выполняется приближенное равенство (4), и для этого случая необходимо выполнить отдельный расчет. Численность преподавателей АлтГУ составляет около 1000 человек. Как видно из рис. 2, этого достаточно для того, чтобы можно было воспользоваться приближением Стирлинга и приближением (4).

Рис. 2. Рейтинг профессорско-преподавательского состава АлтГУ () и теоретически рассчитанный рейтинг (гладкая линия)

Проведенный анализ показывает, что кривая рейтинга профессорско-преподавательского состава АлтГУ определяется принципом максимального хаоса (энтропии). Вид рейтинговой кривой, в безразмерных координатах, может быть предсказан заранее. Можно заранее предсказать долю преподавателей, набравших баллы выше среднего, баллы в пять раз выше среднего и т.д. Можно заранее предсказать размер финансовых средств, предусмотренных на стимулирование так называемых «высоких» результатов. Наблюдаемое наличие незначительного управляющего воздействия (оно отражено несовпадением кривых) стимулирует лучших и демотивирует отстающих, то есть, направлено в сторону усугубления неравенства.

На рисунке 3 представлен рейтинг преподавателей другого учебного заведения - Ростовского государственного экономического университета (РГЭУ). Из сравнения рисунков 2 и 3 видно, что управляющие воздействия на преподавателей РГЭУ значительно меньше, чем на преподавателей АлтГУ. Перечисленные выше гипотезы, являющиеся содержательной основой математической модели, еще лучше подтверждаются реальными данными РГЭУ. Вероятно, в РГЭУ энтропия достигла своего максимума.

Рис. 3. Рейтинг преподавателей Ростовского государственного экономического университета (http://www.psysocwork.ru/fileadmin/docs/nestiraemaja/NRPSPBGIPSR.xls)

Описанная выше модель включает в себя предположение о том, что каждый участник с равной вероятностью может обладать любым ресурсом в пределах области определения этого ресурса. Эта гипотеза, естественная для молекулярного движения, кажется странной для субъектов, обладающих собственными целями и способностью к их достижению. Более разумной представляется гипотеза о том, что сознательное поведение людей влияет на распределение ресурсов (в данном случае баллов) между ними. Например, можно предположить, что люди стремятся к обладанию некоторым средним уровнем ресурса, и если субъект имеет значение ресурса ниже среднего, он предпримет меры к увеличению ресурса (тем более в случае баллов, когда ресурс не требуется отбирать у другого субъекта).

Если принять эту последнюю гипотезу, то плотность статистического распределения числа людей по значениям ресурса должна иметь максимум в районе среднего значения ресурсов. Для численного анализа возможности этой гипотезы будем использовать нормальное распределение

(9)

В качестве среднего значения S0 и стандартного отклонения у примем их численные значения, полученные из реального рейтинга. Разумеется, нормировочный множитель Z необходимо вычислить заново, поскольку в данном случае распределение имеет смысл лишь при положительных S.

Однако, использование соотношения (9) приводит к качественно иному поведению рейтинговой кривой, существенно отличающемуся от наблюдаемой и принципиально отличающемуся от гипотезы о равновероятном распределении. На рисунке 4а приведены результаты численного моделирования рейтинговой кривой для распределения типа (9). Наблюдается существенное различие между наблюдаемыми рейтингами (рисунки 2, 3) и результатами моделирования. Причём различие носит и очевидный качественный характер, теперь субъекты, занявшие далеко не первые места в рейтинге, получили ресурсы, большие по сравнению с равновероятным распределением ресурсов.

Рис. 4. Рейтинг субъектов: а - при нормальном распределении ресурсов () и равновероятном распределении ресурсов (гладкая линия); б - уровень денежных доходов населения в целом по России и по субъектам Российской федерации за 2014 год (http://www.gks.ru/wps)

Это отчётливо видно из рисунка 5б, где приведена разность между модельным рейтингом типа (9) и рейтингом при равновероятном распределении ресурсов. Теперь победители получили значительно меньшие ресурсы, а проигравшие - значительно большие. Рейтинг подобного вида показан на рисунке 4б (уровень доходов населения по России и по субъектам Российской федерации).

Таким образом, гипотеза о том, что субъекты учебных организаций предпринимали действия, приводящие к увеличению их ресурса, если он оказывался малым, не подтверждается численным моделированием. Численное моделирование в этом случае приводит к результатам, качественно отличающимся от наблюдаемых экспериментально. Гипотеза о хаотическом распределении баллов приводит к гораздо более точному совпадению с экспериментом.

Обратимся теперь к попыткам объяснить некоторое небольшое различие между экспериментом и моделью хаотического распределения ресурсов, которое все же наблюдается и не имеет случайной статистической природы. Это различие прослеживается на рисунке 5а, и имеет качественно другое поведение по сравнению с аналогичным графиком 5б. В реальном рейтинге профессорско-преподавательского состава АлтГУ победители обладают большим ресурсом, а проигравшие - меньшим по сравнению с хаотической моделью.

Рис. 5. Разности рейтингов: а - профессорско-преподавательского состава АлтГУ и теоретического (типа Больцмана); б - модельного рейтинга типа (9) и рейтингом при равновероятном распределении ресурсов

Для объяснения подобного поведения рейтинговой кривой сделаем предположение, что совокупность субъектов состоит на самом деле из двух различных множеств, в каждом из которых работает хаотическая модель распределения, но которые отличаются средним значением ресурса (в своем множестве). В статистической физике это соответствует системе, состоящей из двух подсистем с разными температурами. Предположим, что эти два множества не обмениваются ресурсами, хоть и находятся в одной совокупности. Есть много причин появления таких множеств с разным доступом к ресурсам, например, начальники - подчиненные, национальность один - национальность два, мужчины - женщины, старослужащие - призывники и т.д. Тогда для хаотической модели плотность статистического распределения по ресурсу S есть линейная комбинация нормированных распределений Больцмана.

(10)

причем из условия нормировки .

Неизвестные параметры в распределении (10) можно найти из наблюдаемой зависимости ресурса от рейтинга. Действительно, нормированный рейтинг зависит от ресурса :

Неизвестные параметры в распределении (10) можно найти из наблюдаемой зависимости ресурса от рейтинга. Действительно, нормированный рейтинг r зависит от ресурса S:

(11)

и, фитируя экспериментальную зависимость соотношением (11), можно определить неизвестные параметры . Однако, прямое применение процедуры фитирования к экспериментальным данным приводит к большой погрешности из-за малого количества точек в области больших ресурсов S. Поэтому оценим эти параметры другим способом.

Предположим, что рейтинги с малым ресурсом формируются в основном одним множеством, а рейтинги с большим ресурсом другим множеством. Математически это означает, что в соотношении (11) при малых значениях рейтинга () основным будет (например) первое слагаемое, а при - второе слагаемое. В этом случае график зависимости от Sдолжен (как видно из 11)) иметь характерный излом. Именно это мы и наблюдаем на рисунке 6.

Рис. 6. Зависимость логарифма рейтинга от ресурса

Следовательно, гипотеза о том, что рассматриваемое множество на самом деле состоит из двух подмножеств с разным доступом к ресурсам (или с разными возможностями генерации ресурса), неплохо согласуется с наблюдаемыми результатами. Из приведённых данных можно оценить и параметры этих подмножеств. Простые вычисления дают .

Следовательно, первое подмножество состоит из (примерно) 650 человек, среднее значение ресурса у которых равно 70. Второе подмножество содержит примерно 50 человек, среднее значение ресурса у этого подмножества равно 290.

Второе подмножество, составляя всего лишь 7% численности, владеет (в рассматриваемом примере генерирует) 32% общего ресурса.

Итак, вид рейтинга учебных заведений определяется, в основном, принципом максимума энтропии. При этом нормированная рейтинговая кривая описывается экспоненциальной функцией типа распределения Больцмана. Отклонение рейтинговой кривой от распределения Больцмана количественно характеризует управляющие воздействия на элементы системы. Анализ рейтинговой кривой в полулогарифмическом масштабе позволяет обнаружить скрытую структуру системы состоящей из большого количества элементов и определить статистические характеристики подсистем.

математический моделирование социальный полулогарифмический

Литература

1. Хацкевич В.Л. Об экстремальных свойствах средних характеристик вариационных рядов / Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2014. № 3. С. 17-24.

2. Рудько И.М. Статистические свойства суммы членов усеченного вариационного ряда / Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 1 (22). С. 124_130.

3. Якымив А.Л. Предельная теорема для средних членов вариационного ряда длин циклов случайной подстановки / Теория вероятностей и ее применения. 2009. Т. 54. № 1. С. 63_79.

4. Шайдук А.М., Останин С.А. Влияние фрактальной размерности сигнала на распределение энергии в его спектре // Журнал радиоэлектроники: электронный журнал. №2. URL: http://jre.cplire.ru/jre/feb16/5/text.pdf

5. Абламейко С.В., Журавков М.А., Самохвал В.В., Хухлындина Л.М. Новые рейтинги вузов стран-участниц СНГ: корреляция с итогами вебометрического рейтинга / Высшее образование в России. 2014. № 7. С. 11_22.

6. Мелешкин М.И. О перспективах вхождения российских университетов в первую сотню ведущих университетов мира по рейтингу Times Higher Education / Экономический анализ: теория и практика. 2014. № 19 (368). С. 56_62.

7. Ефремова В.Н. Экспертные рейтинги как инструменты оценки деятельности глав регионов (на примере рейтингов эффективности губернаторов) / Политическая наука. 2015. № 3. С. 112_124.

8. Кислицына О.А. Новый подход к измерению качества жизни - индекс социального прогресса: место России в мировом рейтинге / Проблемы современной экономики. 2015. № 3 (55). С. 126_129.

9. Румер Ю.Б, Рывкин М.Ш. Термодинамика, статистическая физика и кинетика / М.: Наука. 1972. 400 с.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ содержания категории "свобода" в терминах теории систем. Определения свободы как системной категории. Определение количественной меры свободы. Значение свободы для адаптивных систем. Отношение энтропии управляющей подсистемы к полной энтропии.

    презентация [303,3 K], добавлен 19.12.2013

  • Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.

    контрольная работа [22,4 K], добавлен 10.06.2009

  • Понятие энтропии. Энтропия как мера степени неопределенности. Понятие об информации. Измерение информации. Теорема Шеннона о кодировании при наличии помех. Пример использования энтропии в прогнозировании и ее значение для прогнозирования.

    реферат [77,0 K], добавлен 14.12.2008

  • Анализ методов моделирования стохастических систем управления. Определение математического ожидания выходного сигнала неустойчивого апериодического звена в заданный момент времени. Обоснование построения рациональной схемы статистического моделирования.

    курсовая работа [158,0 K], добавлен 11.03.2013

  • Определение максимума целевой функции при различных системах ограничений. Применение экономико-математических методов при нахождении оптимальных планов транспортных задач. Решение линейных неравенств, максимальное и минимальное значения целевой функции.

    методичка [45,2 K], добавлен 06.06.2012

  • Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат [431,4 K], добавлен 11.02.2011

  • Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.

    курсовая работа [3,8 M], добавлен 29.07.2013

  • История развития экономико-математических методов. Математическая статистика – раздел прикладной математики, основанный на выборке изучаемых явлений. Анализ этапов экономико-математического моделирования. Вербально-информационное описание моделирования.

    курс лекций [906,0 K], добавлен 12.01.2009

  • Использование проекционно-сеточных методов математического моделирования. Создание компьютерной программы, которая выполняет автоматическое построение триангуляционной сетки на примере прямоугольного параллелепипеда. Особенности трехмерного пространства.

    курсовая работа [2,4 M], добавлен 28.05.2013

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Определение этапа разработки экономико-математического моделирования и обоснование способа получения результата моделирования. Теория игр и принятие решений в условиях неопределенности. Анализ коммерческой стратегии при неопределенной конъюнктуре.

    контрольная работа [940,6 K], добавлен 09.07.2014

  • Критерий оптимальности и матрица ЭММ распределения и использования удобрений. Расчет технико-экономических коэффициентов и констант. Основные переменные в экономико-математической задаче. Математическая запись системы ограничений и системы переменных.

    контрольная работа [402,9 K], добавлен 18.11.2012

  • Применение математических методов в решении экономических задач. Понятие производственной функции, изокванты, взаимозаменяемость ресурсов. Определение малоэластичных, среднеэластичных и высокоэластичных товаров. Принципы оптимального управления запасами.

    контрольная работа [83,3 K], добавлен 13.03.2010

  • Критерии оптимальности в эколого-математических моделях. Использование максимума относительной скорости роста численности популяций. Принцип минимального воздействия в эколого-математических моделях. Модели случайных стационарных процессов.

    контрольная работа [193,1 K], добавлен 28.09.2007

  • Описание основных характеристик модели трехсекторной экономики. Вывод дифференциальных уравнений для функций удельного капитала. Определение аналитической структуры функций оптимального управления на полученном условии максимума функции Понтрягина.

    курсовая работа [146,2 K], добавлен 22.01.2016

  • Определение характеристик переходного процесса с использованием методик математического моделирования. Расчет степени затухания, времени регулирования и перерегулирования, периода и частоты колебаний. Построение графика, сравнение параметров с расчётными.

    лабораторная работа [35,7 K], добавлен 12.11.2014

  • Применение математического моделирования при решении прикладных инженерных задач. Оптимизация параметров технических систем. Использование программ LVMFlow для имитационного моделирования литейных процессов. Изготовление отливки, численное моделирование.

    курсовая работа [4,0 M], добавлен 22.11.2012

  • Основные подходы к математическому моделированию систем, применение имитационных или эвристических моделей экономической системы. Использование графического метода решения задачи линейного программирования для оптимизации программы выпуска продукции.

    курсовая работа [270,4 K], добавлен 15.12.2014

  • Основы понятия регрессионного анализа и математического моделирования. Численное решение краевых задач математической физики методом конечных разностей. Решение стандартных и оптимизационных задач, систем линейных уравнений. Метод конечных элементов.

    реферат [227,1 K], добавлен 18.04.2015

  • Конфликтные ситуации в управленческой деятельности. Использование математического моделирования для решения управленческих задач. Определение биматричной игры и общий принцип ее решения. Состояние равновесия в смешанных стратегиях в биматричных матрицах.

    реферат [26,9 K], добавлен 21.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.