Разработка методологии построения систем управления сложными техническими комплексами при помощи методов математической теории категорий

Возможности для обеспечения настройки на конкретных программно-технических средствах реализации системы управления сложными техническими комплексами. Концептуальное и инфологическое моделирование. Описание сущности теории математических категорий.

Рубрика Экономико-математическое моделирование
Вид статья
Язык русский
Дата добавления 08.03.2019
Размер файла 406,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

ФГАОУ ВО "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" 197101, Россия, г. Санкт-Петербург, Кронверкский проспект, 49

Разработка методологии построения систем управления сложными техническими комплексами при помощи методов математической теории категорий

Федосовский Михаил Евгеньевич, кандидат технических наук

заведующий кафедрой, 27122009-2@mail.ru

Аннотация

Объектом исследования в данной работе являются системы управления сложными техническими комплексами. Предметом исследования является методология разработки систем управления сложными техническими комплексами. Разработанная методология создания системы управления сложными техническими комплексами базируется на идее генерации последовательности отображений концептуальных моделей в инфологические модели и, далее, в даталогические модели. Ранее автором представлялось концептуальное и инфологическое моделирование и соответствующие этим уровням математические модели, а также отношения между ними, то есть математические категории. Разработанная методология создания системы управления сложными техническими комплексами базируется методах теории математических категорий. Представленные категории при даталогическом представлении имеют два уровня абстракции. Основные выводы проведенного исследования:1. Унифицированное описание семейств неоднородных математических моделей, отражающих различный уровень абстрагирования (обобщения) на этапе даталогического представления предметных задач, делает возможным создание формулировок для общего определения моделей с описанием их структуры.2. Разработанный метод даталогического моделирования предоставляет все возможности для обеспечения настройки на конкретных программно-технических средствах реализации системы управления сложными техническими комплексами.

Ключевые слова: математическая теория категорий, математическая модель, абстрактные уровни, концептуальное моделирование, инфологическое моделирование, даталогическое моделирование, системы управления, автоматизированное проектирование, отображение, технический комплекс. математический управление инфологический

Abstract

Fedosovsky Michail Evgen'evich

PhD in Technical Science

Head of the Systems and Technologies of Technogenic Safety Department of the St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, Russia, g. Saint Petersburg, ul. Kronverkskii Prospekt, 49

The object of research in this work are the control systems of complex technical complexes. The subject of research is the methodology for developing control systems for complex technical complexes. The developed methodology for creating a control system for complex technical complexes is based on the idea of generating a sequence of mappings of conceptual models into infological models and, further, into datalogical models. Previously, the author presented conceptual and infological modeling and the mathematical models corresponding to these levels, as well as the relations between them, that is, mathematical categories. The developed methodology for creating a control system for complex technical complexes is based on the methods of the theory of mathematical categories. The categories presented in the datalogical representation have two levels of abstraction. The main findings of the study:

1. A unified description of families of inhomogeneous mathematical models reflecting a different level of abstraction (generalization) at the stage of the datalogical presentation of subject problems makes it possible to create formulations for the general definition of models with a description of their structure.

2. The developed method of datalogical modeling provides all the possibilities for providing customization on specific software and hardware tools for implementing a control system for complex technical complexes.

Keywords: computer-aided design, control systems, datalogical modeling, infological modeling, conceptual modeling, abstract levels, mathematical model, mathematical category theory, display, technical complex

Введение

Современные информационные технологии являются базой в процессе многочисленных научных исследований по разработкам и реализациям различных методов для решения задач проектирования систем управления (СУ) сложными техническими комплексами (СТК). Разработанная методология создания СУ СТК базируется на идее генерации последовательности отображений концептуальных моделей в инфологические модели и, далее в даталогические модели. Концептуальные модели имеют три уровня абстракции - абстрактный, объектный и конкретный. В [1-6]представлено концептуальное и инфологическое моделирование и соответствующие этим уровням математические модели и отношения между ними, то есть математические категории. В этом случае математические категории могут служить основой при создании единой семантической базы [7]. В данной работе рассматривается этап даталогического моделирования.

1. Разработка моделей для этапа даталогического моделирования

Обнаруженные в процессе исследований закономерности, научная основа которых базируется на фундаментальных теоретических положениях, появляются в процессах создания математических моделей при даталогическом представлении. Кроме того, при формулировке методологических способов объективирования систем знаний, а также при формально-языковом моделировании проектно-конструкторских задач, данные законы обладают свойством отображения регулярности при создании знаковых конструкций и баз знаний [8,9].

Проведенные исследования по даталогическому моделированию, ориентированное на конкретные программно-технические средства, являющееся основой при представлении проктно-конструкторских задач, позволили характеризовать множество современных технологий разработки СУ СТК на базе трех важнейших условий:

- организация модельного представления (логическая, физическая);

- организация систем автоматизированного проектирования СУ СТК (распределенная, централизованная);

- компоненты программного продукта (доступ, обработка, информационные).

Формально даталогическое представление для n - ой предметной задачи можно записать так:

Д (n ) = (Д2 (n ), {Д3 (n )}),

где Д2 (n ) - даталогическа модель n - ой предметной задачи на объектном уровне;

{Д3 (n )} = (Д31 (n ), Д32 (n ), …, Д3 t (n ))

- даталогическая модель для t - ой реализации n - ой предметной задачи на конкретном уровне.

Даталогическую модель на i - том уровне абстрагирования формально можно представить следующим образом:

Д i = (Ob_ Д i , Mor_ Д i ),

где Ob_Д2 ={md 2,l (p, j )} -

представляет из себя множество структурных элементов;

Ob_Д3 ={md 2,i (p, j, s )} -

представляет из себя множество представителей структурных элементов;

Mor_Д i = (S_Д i ?D_Д i ?F_Д i ?V_Д i )-

множество отношений на объектах;

S_Д i = (B _Di , P _Di , BP _Di ) -

статические отношения на структурных элементах;

B _Di Ob_Д i ЧOb_Д i - бинарные отношения на Ob_Д i ;

B _D2 = {md 2,i (p,l ), md 2,j (q,s )}; B _D3 = {md 3,i (p,l,s ), md 3,j (q,r,t )};

P _Д i - схемы на Ob_Д i ;

P _D2 = {pd 2(i ,j ,p ,q )}=({md 2,i (v,i ), md 2,j (w,s )},{md 2,p (r,t ), md 2,q (u,g )});

P _D3 = {pd 3(i ,j ,p ,q,r,s )}=({md 3,i (v,i,h ), md 3,j (w,s,a )},{md 3,p (r,t,b ), md 3,q (u,g,c )});

BP _Di P_Д i ЧP_Д i - бинарные отношения на P_Д i ;

BP _D2 = {pd 2(i,j ,p,l ), md 2(v,u,s,r )}; BP _D3 = {md 3(i,,j,p,q,r,s ), md 3(a,b,c,d,g,h )};

D_Д i = (L_Д i ,BL_Д i ) -

динамических отношения на структурных элементах;

L_Д i - доступы к структурным элементам;

L_Д2 = {ld 2,i (p, l )} -

множество типов доступов;

L_Д3 = {ld 3,i (p, l, g )} -

множество представителей типов доступов;

B _Li L_Д i ЧL_Д i - бинарные отношения на L_Д i ;

BL_Д 2 = {ld 2,i (p,l ), ld 2,i (r,s )}; BL_ Д 3 = {ld 3,i (p,l,g ), ld 3,j (r,s,h )};

F_Д i = (W_Д i ,BW_Д i ) -

функциональные отношения на структурных элементах;

W_Д i - манипуляции;

W_Д2 = {wd 2,i (p, l )} -

типы манипуляций;

W_Д3 = {wd 3,i (p, l, g )} -

представители типов манипуляций;

BW _Di W_Д i ЧW_Д i - бинарные отношения на W_Д i ;

BW_Д 2 = {wd 2,i (p,l ), wd 2,j (r,s )}; BW_ Д 3 = {wd 3,i (p,l,g ), wd 3,j (r,s,h )};

V_Д i = (G_Д i ,BG_Д i )

- виртуальные отношения;

G_Д i - вариации визуализации доступов к данным, представленные как форм-отчеты и визуализации процесса обработки данных представленная как форм-меню;

G_Д2 = {gd 2,i( p )} -

множество вариаций визуализации;

G_Д3 = {gd 3,i (p, q )} -

множество представителей вариантов визуализации;

BG _Di G_Д i ЧG_Д i - бинарные отношения на G_Д i ;

BG_Д 2 = { gd 2,i (p ), gd 2,j (q )}; BG_ Д 3 = {gd 3,i (p,g ), gd 3,j (r,s )}.

При помощи состава и структуры при даталогическом представлении предметных задач происходит отражение логической организации автоматизируемых задач на различных уровнях абстрагирования. Следует отметить необходимость учета составляющих даталогических моделей - статической, динамической, функциональной и виртуальной. Это позволит достичь (с заданной точностью) сопряженность инфологического представления предметных задач с даталогическим представлением предметных задач [3]. Закономерности отображений инфологических моделей в даталогические учитывают идентичность применения абстракций в процессе создания связей у моделей на одинаковых уровнях абстракции. При наличии формального описания инфологических и даталогических представлений становится возможным учет и систематизация всевозможных соотношений и связей между компонентами и элементами, существующими у конкретной математической модели, так и всевозможных соотношений и связей, существующими у математических моделей на разных уровнях абстрагирования для всех представлений. Кроме того, в процессе моделирования проектно-конструкторских задач, это формальное описание служит базой для дальнейшего методического выявления и описания требуемых соотношений и связей.

Существование формальных взаимосвязей между инфологическими и даталогическими моделями предоставило следующие возможности:

- в случае наличия вербального знакового представления создавать ограничения для множеств всевозможных зависимостей и связей;

- сделать формализованное знаковое представление предметной задачи полным при помощи применения к нему семантического дополнения.

Создание для автоматизируемых проектно-конструкторских задач в процессе разработки СУ СТК метода отображения инфологических моделей в даталогические происходило в направлениях:

- вскрытия оснований;

- обнаружения структуры отображений;

- доказательство закономерностей отображений.

Формулирование закономерностей отображений моделей имеет следующую базу:

- унифицированный математический аппарат создания математических моделей;

- унифицированная структура закономерностей при формировании математических моделей;

- наличие законов цикличности.

Вычислительные эксперименты проводились при помощи системы MATLAB [10-13].

Применение разработанной методологии для проектирования систем управления транспортно-технологическими комплексами перегрузки ядерного топлива c учетом требований по безопасности

Актуальность разработки новых СУ транспортно-технологическими комплексами перегрузки ядерного топлива вызвана требованием модернизации оборудования на всех Российских АЭС [14-19] Это связано с тем, что ранее разработанные СУ перегрузкой ядерного топлива имеют объем защит и блокировок, рассчитанный на ручной режим работы. При этом, ответственность за безопасность перегрузки несет, в основном, оператор перегрузочного комплекса [20]. Поэтому разработка теоретических и практических положений, связанных с повышением безопасности технологических процессов перегрузки ядерного топлива очень востребованы.

Одним из основных требований к модернизированной СУ перегрузки ядерного топлива является требование возложения главенствующей роли в обеспечении ядерной и радиационной безопасности процесса перегрузки в автоматическом режиме работы на саму СУ.

Согласно разработанной методологии, на этапе ОКП [1,2,4] был проведен анализ традиционных процессов решения задач проектирования СУ технологического процесса перегрузки ядерного топлива с учетом требований по безопасности СУ и всего процесса в целом согласно регламентирующим документам в части, касающейся технологического процесса перегрузки [20].

Исходной информацией на данном этапе являются сведения, полученные из и документальных источников и экспертов в данной предметной области.

Процесс моделирования технологического процесса перегрузки активной зоны основан на использовании библиотеки типовых моделей технологических циклов, операций, интервалов безопасности, комплектов оборудования, отдельных нарушений, защит и блокировок.

Основные разделы библиотеки типовых моделей следующие:

- превышение допустимых воздействий (ПДВ) на кампании перегрузки;

- ПДВ на технологических циклах;

- ПДВ на технологических операциях;

- ПДВ на интервалах безопасности;

- нарушения технологического процесса (НТП) на интервалах безопасности;

- Модели распространения НТП;

- Модели преобразования НТП;

- Модели инициирующих НТП;

- Модели отказов защит;

- Модели отказов блокировок;

- Прочие модели.

Это соответствует моделям ОИПi , i =1,2,3 [3].

Некоторые результаты, ролученные на данном этапе, представлены в Таблице 1( критерии безопасности).

Таблица 1 Критерии безопасности

Вид воздействия

Критерий безопасности - превышение допустимых воздействий (ПДВ)

Нормативный документ

Усилие растяжения

Максимальное усилие извлечения тепловыделяющей сборки (ТВС) из гнезда реактора - 39 200 Н

0401.22.00.000РЭ,

пункт 8.2.5

Предельное верхнее положение ТВС

Подъем отработавшей штанги ТВС выше отметки, обеспечивающей слой воды из условий безопасности, не допускается

ПНАЭ Г-14-029-91,

пункт 6.5.11

Саморазрушение ТВС

Перегрузка ТВС с механическими повреждениями не допускается

0401.22.00.000РЭ,

пункт 10.6

Перегрев ТВС

Перегрузка ТВС при снижении уровня воды в зоне обслуживания МП не допускается

ПНАЭ Г-14-029-91,

пункт 4.2.11

Далее, согласно разработанной методологии решалась задача адаптации полученных на предыдущих этапах моделей к техническим характеристикам имеющихся в наличии программно-технических средств для организации вычислительных сред и информационно-вычислительных процессов. Это соответствует моделям Д (n ) = (Д2 (n ), {Д3(n )}). Кроме того, в даталогические модели были занесены знания о причинах возникновения НТП на разных уровнях.

Далее в даталогические модели были занесены знания (правила, ограничения) распространения нарушений.

- Действие НТП завершается с началом штатного перемещения механизма.

- Вероятность распространения НТП исключается.

- Действие НТП прекращается при безусловном переходе НТП в ПДВ.

- Действие НТП не рассматривается, если оно не является нарушением технологического процесса для данного интервала безопасности.

- Действие НТП не рассматривается, если оно не позволяет выполнить штатную технологическую операцию, но при этом не создает ПДВ.

- НТП, связанные с нарушениями нормальной эксплуатации (посторонние предметы, отклонения геометрических размеров зоны обслуживания, перегружаемых изделий и т.п.) считаются возникшими, когда они начинают оказывать влияние на безопасность технологического процесса.

- Действие НТП прекращается при переходе рассматриваемого НТП в другое НТП.

- Действие НТП не рассматривается в связи с невозможностью его существования на рассматриваемом интервале безопасности.

- Действие НТП прекращается в основном сценарии при переходе рассматриваемого НТП в сценарнообразующее НТП.

Ниже приведены результаты применения разработанной методики для проектирования СУ СТК перегрузки ядерного топлива на энергоблоке № 3 Калининской АЭС. В качестве исходных данных были использованы:

- Типовая программа перегрузки ядерного топлива;

- Схема зоны обслуживания энергоблока № 3 Калининской АЭС;

- Эксплуатационная документация на перегружаемые изделия;

- Эксплуатационная документация на оборудование перегрузочных машин и СУ;

- Данные по расчету надежности отдельных компонентов перегрузочных машин и СУ;

- Экспертная оценка частоты технологических нарушений;

- Типовой регламент проведения технологических операций по перегрузке ядерного топлива.

По методике [18] была рассчитана вероятность возникновения превышения допустимых воздействий для различных событий для тепловыделяющей сборки (ТВС), Таблица 2.

Таблица 2 Результаты расчетов для ТВС

ПДВ

Описание ПДВ

Вероятность возникновения ПДВ

D01

Падение ТВС

1,964*10-2

D02

Превышение допустимого крутящего момента

2,842*10-5

D03

Боковой удар ТВС

1,463*10-6

D04

Превышение допустимого усилия при извлечении/установке ТВС

2,178*10-3

D05

Превышение допустимого усилия сжатия ТВС

4,132*10-5

D06

Превышение предельного верхнего положения

8,750*10-7

D07

Превышение допустимого усилия изгиба ТВС

1,713*10-1

D10

Превышение допустимого нагрева ТВС

1,417*10-6

Комплексный показатель вероятности безопасного функционирования

1,893*10-1

Затем были проделаны следующие шаги:

- Определение видов ПДВ, имеющих наибольшую вероятность.

- Анализ каждого из выбранных видов ПДВ с целью определения событий, в наибольшей степени влияющих на вероятность ПДВ. Результаты для двух нарушений технологического процесса представлены на Рисунке 1 и Рисунке 2.

- Разработка дополнительных мер безопасности по событиям, имеющим наибольшее влияние.

- Проведение повторного расчета показателей безопасности.

Рисунок 1 Влияние отказов оборудования СУ перегрузочными машинами на вероятность падения ТВС

Рисунок 2 Влияние отказов оборудования СУ МП на вероятность превышения усилия изгиба ТВС.

Далее был проведен анализ результатов расчетов и разработка дополнительных мер безопасности. Полученные результаты представлены в Таблице 3.

Таблица 3 Принятые дополнительные меры безопасности

Нарушения в наибольшей мере влияющие на безопасность

Дополнительные меры безопасности

Изменения структуры схемы системы

Отказ базового оборудования

1. Введение дополнительных контроллеров защиты

Ложное срабатывание приводов (фиксатора, моста/тележки)

2. Введение второго уровня блокировки с независимым исполнительным устройством

Отказ блока управления электроприводом

Введение дополнительных блокировок

Подхват ТВС

1. Блокировка подхвата ТВС

Отказ энкодеров захвата ТВС

2. Блокировка по диагностике энкодеров

Отказ функционального оборудования энкодеров захвата ТВС

Отказ тензодатчика захвата ТВС

3. Блокировка по диагностике тензодатчиков

Отказ функционального оборудования тензодатчика захвата ТВС

Изменение регламента эксплуатационных проверок

Ошибки при внесении параметров условий срабатывания защит и блокировок

1. Независимое внесение параметров

После этого, с учетом принятых мер безопасности, по методике [20] была снова рассчитана вероятность возникновения ПДВ для различных событий (Таблица 4, Рисунок 4). Предварительные расчеты, проведенные для кампании перегрузки 3-го энергоблока Калининской АЭС, показали эффективность предлагаемой методологии для усовершенствования системы управления МП с целью повышения безопасности перегрузки ядерного топлива.

Таблица 4 Результаты расчетов для ТВС после введения дополнительных мер безопасности

ПДВ

Описание ПДВ

Вероятность возникновения ПДВ

D01

Падение ТВС

3,876*10-5

D02

Превышение допустимого крутящего момента

2,749*10-6

D03

Боковой удар ТВС

6,475*10-7

D04

Превышение допустимого усилия при извлечении/установке ТВС

1,083*10-3

D05

Превышение допустимого усилия сжатия ТВС

2,045*10-5

D06

Превышение предельного верхнего положения

5,370*10-10

D07

Превышение допустимого усилия изгиба ТВС

2,059*10-4

D10

Превышение допустимого нагрева ТВС

1,029*10-7

Комплексный показатель вероятности безопасного функционирования

1,092*10-3

Рисунок 4 Сравнение вероятностей повреждений ТВС

Заключение

Формально даталогическое представление предметных задач предоставляет возможность систематизации и описания математических моделей конкретных проектно-конструкторских задач. Кроме того, появляется возможность дальнейшей интеграции этих представлений в единое целое, которая является необходимым элементом множества связанных задач. Необходимо отметить, что в данном представлении имеется множество ограничений, наличие которых обязательно при работе с универсальными представлениями.

Унифицированное описание семейств неоднородных математических моделей, отражающих различный уровень абстрагирования (обобщения) на этапе даталогического представления предметных задач, делает возможным создания формулировок для общего определения моделей с описанием их структуры.

Разработанный метод даталогического моделирования предоставляет все возможности для обеспечения настройки на конкретных программно-технических средствав реализации СУ СТК.

Библиография

1. Федосовский М.Е. Разработка и развитие методологических положений автоматизированного проектирования на базе методов математической теории категорий//Кибернетика и программирование. - 2017. - № 3. - С.10-22.

2. Федосовский М.Е. Разработка методов системного анализа для решения задач управления сложными техническими комплексами // Кибернетика и программирование. - 2018. - № 3. - С.57-62.

3. Коробейников А. Г., Федосовский М. Е., Гришенцев А. Ю., Поляков В. И. Метод инфологического моделирования в инженерии знаний для решения задач автоматизированного проектирования//Изв. вузов. Приборостроение. - 2017. - Т. 60, № 10. - С. 925 - 931.

4. Гурьянов А.В., Коробейников А.Г., Федосовский М.Е., Шукалов А.В., Жаринов И.О. Автоматизация проектирования сложных технических комплексов на основе теории категорий//Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. - 2017. - № 3-4(105-106). - С. 9-16.

5. Korobeynikov A. G., Fedosovsky M. E., Gurjanov A. V., Zharinov I. O., Shukalov A. V. Development of Conceptual Modeling Method to Solve the Tasks of Computer-Aided Design of Difficult Technical Complexes on the Basis of Category Theory//International Journal of Applied Engineering Research ISSN 0973-4562 2017, Volume 12, Number 6, pp. 1114-1122.

6. Korobeynikov A.G., Fedosovsky M.E., Zharinov I.O., Polyakov V.I., Shukalov A.V., Gurjanov A.V., Arustamov S.A. Method for Conceptual Presentation of Subject Tasks in Knowledge Engineering for Computer-Aided Design Systems // Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI'17) - 2017, Vol. 2, pp. 50-56.

7. Маклейн С. Категории для работающего математика/Перевод с англ. под ред. В.А. Артамонова. - М.: Физматлит, 2004. - 352 с.

8. Алексеев, Г.В. Математические методы в инженерии. - СПб.: НИУ ИТМО, 2014. - 68 с.

9. Соммервилл И. Инженерия программного обеспечения. - М.: Вильямс, - 2002. - 624 с.: ил.

10. Коробейников А. Г. Разработка и анализ математических моделей с использованием MATLAB и MAPLE. - СПб: СПбГУ ИТМО. - 2010. - 144 с.

11. Коробейников А. Г. Проектирование и исследование математических моделей в средах MATLAB и Maple. - СПб: СПбГУ ИТМО, - 2012. - 160 с.

12. Коробейников А. Г., Гришенцев А. Ю. Разработка и исследование многомерных математических моделей с использованием систем компьютерной алгебры. - СПб: НИУ ИТМО, - 2014. 100 с.

13. Гришенцев А.Ю., Коробейников А.Г. Понижение размерности пространства при корреляции и свертке цифровых сигналов//Известия высших учебных заведений. Приборостроение. - 2016. - Т. 59. - № 3. - С. 211-218.

14. Кузнецов В.М., Хвостова М.С. Итоги эксплуатации и современное состояние безопасности атомных электростанций, расположенных на территории Российской федерации//Надежность и безопасность энергетики. -2015. - № 2 (29). - С. 2-11.

15. Свидерский А.Г., Биленко В.А., Ананьев А.А. Автоматизация Российской энергетики: новые задачи, новые решения//Теплоэнергетика. -2013. - № 10. - С. 3.

16. Кишкин В.Л., Нариц А.Д. Эволюция программно-технических средств уровня автоматического управления АСУ ТП атомных и тепловых электростанций//Доклады Белорусского государственного университета информатики и радиоэлектроники. 2015. - № 2 (88). - С. 13-15.

17. Рясный С.И. Управление ресурсом оборудования при инженерной поддержке эксплуатации АЭС//Теплоэнергетика. - 2015. - № 5. - С. 39.

18. Терехов Д.В., Дунаев В.И. Модернизация перегрузочной машины энергоблока № 5 Нововоронежской АЭС//Теплоэнергетика. - 2014. - № 2. - С. 71.

19. Стрежкова М.А. Государственная политика РФ в сфере развития атомной электроэнергетики//Энергия: экономика, техника, экология. - 2013. - № 4. - С. 16-26.

20. Общие положения обеспечения безопасности атомных станций. (НП-001-15)//Утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 17 декабря 2015 г. № 522.

References (transliterated)

1. Fedosovskii M.E. Razrabotka i razvitie metodologicheskikh polozhenii avtomatizirovannogo proektirovaniya na baze metodov matematicheskoi teorii kategorii//Kibernetika i programmirovanie. - 2017. - № 3. - S.10-22.

2. Fedosovskii M.E. Razrabotka metodov sistemnogo analiza dlya resheniya zadach upravleniya slozhnymi tekhnicheskimi kompleksami // Kibernetika i programmirovanie. - 2018. - № 3. - S.57-62.

3. Korobeinikov A. G., Fedosovskii M. E., Grishentsev A. Yu., Polyakov V. I. Metod infologicheskogo modelirovaniya v inzhenerii znanii dlya resheniya zadach avtomatizirovannogo proektirovaniya//Izv. vuzov. Priborostroenie. - 2017. - T. 60, № 10. - S. 925 - 931.

4. Gur'yanov A.V., Korobeinikov A.G., Fedosovskii M.E., Shukalov A.V., Zharinov I.O. Avtomatizatsiya proektirovaniya slozhnykh tekhnicheskikh kompleksov na osnove teorii kategorii//Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu. - 2017. - № 3-4(105-106). - S. 9-16.

5. Korobeynikov A. G., Fedosovsky M. E., Gurjanov A. V., Zharinov I. O., Shukalov A. V. Development of Conceptual Modeling Method to Solve the Tasks of Computer-Aided Design of Difficult Technical Complexes on the Basis of Category Theory//International Journal of Applied Engineering Research ISSN 0973-4562 2017, Volume 12, Number 6, pp. 1114-1122.

6. Korobeynikov A.G., Fedosovsky M.E., Zharinov I.O., Polyakov V.I., Shukalov A.V., Gurjanov A.V., Arustamov S.A. Method for Conceptual Presentation of Subject Tasks in Knowledge Engineering for Computer-Aided Design Systems // Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI'17) - 2017, Vol. 2, pp. 50-56.

7. Maklein S. Kategorii dlya rabotayushchego matematika/Perevod s angl. pod red. V.A. Artamonova. - M.: Fizmatlit, 2004. - 352 s.

8. Alekseev, G.V. Matematicheskie metody v inzhenerii. - SPb.: NIU ITMO, 2014. - 68 s.

9. Sommervill I. Inzheneriya programmnogo obespecheniya. - M.: Vil'yams, - 2002. - 624 s.: il.

10. Korobeinikov A. G. Razrabotka i analiz matematicheskikh modelei s ispol'zovaniem MATLAB i MAPLE. - SPb: SPbGU ITMO. - 2010. - 144 s.

11. Korobeinikov A. G. Proektirovanie i issledovanie matematicheskikh modelei v sredakh MATLAB i Maple. - SPb: SPbGU ITMO, - 2012. - 160 s.

12. Korobeinikov A. G., Grishentsev A. Yu. Razrabotka i issledovanie mnogomernykh matematicheskikh modelei s ispol'zovaniem sistem komp'yuternoi algebry. - SPb: NIU ITMO, - 2014. 100 s.

13. Grishentsev A.Yu., Korobeinikov A.G. Ponizhenie razmernosti prostranstva pri korrelyatsii i svertke tsifrovykh signalov//Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie. - 2016. - T. 59. - № 3. - S. 211-218.

14. Kuznetsov V.M., Khvostova M.S. Itogi ekspluatatsii i sovremennoe sostoyanie bezopasnosti atomnykh elektrostantsii, raspolozhennykh na territorii Rossiiskoi federatsii//Nadezhnost' i bezopasnost' energetiki. -2015. - № 2 (29). - S. 2-11.

15. Sviderskii A.G., Bilenko V.A., Anan'ev A.A. Avtomatizatsiya Rossiiskoi energetiki: novye zadachi, novye resheniya//Teploenergetika. -2013. - № 10. - S. 3.

16. Kishkin V.L., Narits A.D. Evolyutsiya programmno-tekhnicheskikh sredstv urovnya avtomaticheskogo upravleniya ASU TP atomnykh i teplovykh elektrostantsii//Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki. 2015. - № 2 (88). - S. 13-15.

17. Ryasnyi S.I. Upravlenie resursom oborudovaniya pri inzhenernoi podderzhke ekspluatatsii AES//Teploenergetika. - 2015. - № 5. - S. 39.

18. Terekhov D.V., Dunaev V.I. Modernizatsiya peregruzochnoi mashiny energobloka № 5 Novovoronezhskoi AES//Teploenergetika. - 2014. - № 2. - S. 71.

19. Strezhkova M.A. Gosudarstvennaya politika RF v sfere razvitiya atomnoi elektroenergetiki//Energiya: ekonomika, tekhnika, ekologiya. - 2013. - № 4. - S. 16-26.

20. Obshchie polozheniya obespecheniya bezopasnosti atomnykh stantsii. (NP-001-15)//Utverzhdeny prikazom Federal'noi sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 17 dekabrya 2015 g. № 522.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение решения задач с помощью методов: динамического программирования, теории игр, сетевого планирования и управления и моделирование систем массового обслуживания. Прикладные задачи маркетинга, менеджмента и других областей управления в экономике.

    реферат [315,8 K], добавлен 15.06.2009

  • Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.

    практическая работа [102,3 K], добавлен 08.01.2011

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Основы методов математического программирования, необходимого для решения теоретических и практических задач экономики. Математический аппарат теории игр. Основные методы сетевого планирования и управления. Моделирование систем массового обслуживания.

    реферат [52,5 K], добавлен 08.01.2011

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.

    курсовая работа [1,3 M], добавлен 09.07.2015

  • Общая характеристика и классификация экономико-математических методов. Стохастическое моделирование и анализ факторных систем хозяйственной деятельности. Балансовые методы и модели в анализе связей внутризаводских подразделений, в расчетах и цен.

    курсовая работа [200,8 K], добавлен 16.06.2014

  • Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа [395,5 K], добавлен 04.05.2011

  • Линеаризация математической модели регулирования. Исследование динамических характеристик объекта управления по математической модели. Исследование устойчивости замкнутой системы управления линейной системы. Определение устойчивости системы управления.

    курсовая работа [1,6 M], добавлен 07.08.2013

  • Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.

    реферат [198,6 K], добавлен 22.04.2009

  • Описание объекта регулирования температуры жидкости на выходе теплообменника. Составление математической логической аналитической модели системы автоматического управления. Исследование типа и рационального значения параметров настройки регулятора.

    курсовая работа [232,3 K], добавлен 22.03.2015

  • Изучение методики математического моделирования технических систем на макроуровне. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрической оптимизации системы, обзор синтеза расчётной структуры.

    курсовая работа [129,6 K], добавлен 05.04.2012

  • Анализ перспектив развития кадрового отдела ОАО "Cухой" и возможности адекватной реакции отдела на изменения во внешней среде. Формирование математических моделей управления предприятием. Количественное моделирование и оптимизация трудовых ресурсов.

    курсовая работа [1,2 M], добавлен 16.04.2015

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Понятие и структура интеллектуальной системы. Математическая теория нечетких множеств. Причины распространения системы Fuzzy-управления. Предпосылки для внедрения нечетких систем управления. Принципы построения системы управления на базе нечеткой логики.

    реферат [68,3 K], добавлен 31.10.2015

  • Понятия теории нечетких систем, фаззификация и дефаззификация. Представление работы нечетких моделей, задача идентификации математической модели нечеткого логического вывода. Построение универсального аппроксиматора на основе контроллера Мамдани-Сугено.

    курсовая работа [897,5 K], добавлен 29.09.2010

  • Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.

    курсовая работа [3,8 M], добавлен 29.07.2013

  • Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.

    контрольная работа [200,4 K], добавлен 03.12.2012

  • Описание линейной системы автоматического управления. Анализ объекта регулирования. Расчет коэффициентов передачи, настройки и параметров настройки типовых регуляторов линейной САР. Определение степени затухания и колебательности переходного процесса.

    контрольная работа [220,9 K], добавлен 12.05.2015

  • Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.

    курсовая работа [349,1 K], добавлен 24.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.