Оценка параметров парной линейной регрессии
Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.04.2021 |
Размер файла | 512,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Построить линейное уравнение парной регрессии y от x
Таблица 1. Аддитивная модель временного ряда
Линейное уравнение имеет вид y=bx+a.
Для этого рассчитаем и занесем в таблицу значение квадрата X, квадрата Y и произведения X и Y.
Для решения будет использоваться графический метод.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a
Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + е, где ei - наблюдаемые значения (оценки) ошибок еi, a и b соответственно оценки параметров б и в регрессионной модели, которые следует найти.
Здесь е - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления - это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения еi для каждого конкретного наблюдения i - случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров б и в
2) Оценками параметров б и в регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Для оценки параметров б и в - используют МНК (метод наименьших квадратов).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (е) и независимой переменной (x).
Формально критерий МНК можно записать так:
S = ?(yi - y*i)2 > min
Система нормальных уравнений.
a·n + b·?x = ?y
a·?x + b·?x2 = ?y·x
Для расчета параметров регрессии построим расчетную таблицу (табл. 2)
Таблица 2
x |
y |
x2 |
y2 |
x*y |
|
78 |
133 |
6084 |
17689 |
10374 |
|
94 |
139 |
8836 |
19321 |
13066 |
|
85 |
141 |
7225 |
19881 |
11985 |
|
73 |
127 |
5329 |
16129 |
9271 |
|
91 |
154 |
8281 |
23716 |
14014 |
|
88 |
142 |
7744 |
20164 |
12496 |
|
73 |
122 |
5329 |
14884 |
8906 |
|
82 |
135 |
6724 |
18225 |
11070 |
|
99 |
142 |
9801 |
20164 |
14058 |
|
113 |
168 |
12769 |
28224 |
18984 |
|
69 |
124 |
4761 |
15376 |
8556 |
|
83 |
130 |
6889 |
16900 |
10790 |
|
1028 |
1657 |
89772 |
230673 |
143570 |
Для наших данных система уравнений имеет вид
12a + 1028·b = 1657
1028·a + 89772·b = 143570
Домножим уравнение (1) системы на (-85.667), получим систему, которую решим методом алгебраического сложения.
-1028a -88065.676 b = -141950.219
1028*a + 89772*b = 143570
Получаем: 1706.324*b = 1619.781
Откуда b = 0.9494
Теперь найдем коэффициент «a» из уравнения (1):
12a + 1028*b = 1657
12a + 1028*0.9494 = 1657
12a = 681.002
a = 56.7502
Получаем эмпирические коэффициенты регрессии: b=0.9494, a = 56.7502
Уравнение регрессии (эмпирическое уравнение регрессии):
y = 0.9494 x + 56.7502
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
1. Параметры уравнения регрессии.
Выборочные средние.
Выборочные дисперсии:
Среднеквадратическое отклонение
Коэффициент корреляции b можно находить по формуле, не решая систему непосредственно:
Коэффициент корреляции.
Ковариация.
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от -1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y и фактором X весьма высокая и прямая.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
Значимость коэффициента корреляции.
Выдвигаем гипотезы:
H0: rxy = 0, нет линейной взаимосвязи между переменными;
H1: rxy ? 0, есть линейная взаимосвязь между переменными;
Для того чтобы при уровне значимости б проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ? 0, надо вычислить наблюдаемое значение критерия (величина случайной ошибки)
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости б и числу степеней свободы k = n-2 найти критическую точку tкрит двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| > tкрит -- нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости б=0.05 и степенями свободы k=10 находим tкрит:
tкрит(n-m-1;б/2) = tкрит(10;0.025) = 2.634
где m = 1 - количество объясняющих переменных.
Если |tнабл| > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку |tнабл| > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
Интервальная оценка для коэффициента корреляции (доверительный интервал).
Доверительный интервал для коэффициента корреляции.
rЃё(0.557;1)
Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 0.949 x + 56.75
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = 0.949 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.949.
Коэффициент a = 56.75 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 - прямая связь, иначе - обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета-коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:
Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.9072 = 0.8231
т.е. в 82.31% случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 17.69% изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 3)
Таблица 3
x |
y |
y(x) |
(yi-ycp)2 |
(y-y(x))2 |
|
78 |
133 |
130.804 |
25.84 |
4.82 |
|
94 |
139 |
145.995 |
0.84 |
48.932 |
|
85 |
141 |
137.45 |
8.507 |
12.6 |
|
73 |
127 |
126.057 |
122.84 |
0.888 |
|
91 |
154 |
143.147 |
253.34 |
117.79 |
|
88 |
142 |
140.299 |
15.34 |
2.895 |
|
73 |
122 |
126.057 |
258.674 |
16.463 |
|
82 |
135 |
134.602 |
9.507 |
0.158 |
|
99 |
142 |
150.742 |
15.34 |
76.426 |
|
113 |
168 |
164.034 |
895.007 |
15.729 |
|
69 |
124 |
122.26 |
198.34 |
3.028 |
|
83 |
130 |
135.552 |
65.34 |
30.82 |
|
1028 |
1657 |
1657 |
1868.917 |
330.549 |
2. Оценка параметров уравнения регрессии
Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S2 = 33.055 - необъясненная дисперсия или дисперсия ошибки регрессии (мера разброса зависимой переменной вокруг линии регрессии).
S = 5.75 - стандартная ошибка оценки.
Стандартная ошибка регрессии рассматривается в качестве меры разброса данных наблюдений от смоделированных значений. Чем меньше значение стандартной ошибки регрессии, тем качество модели выше.
Sa - стандартное отклонение случайной величины a.
Sb - стандартное отклонение случайной величины b.
Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y).
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости б=0.05.
H0: b = 0, то есть между переменными x и y отсутствует линейная взаимосвязь в генеральной совокупности;
H1: b ? 0, то есть между переменными x и y есть линейная взаимосвязь в генеральной совокупности.
В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).
Табличное значение определяется в зависимости от уровня значимости (б) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-б) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости б.
tкрит(n-m-1;б/2) = tкрит(10;0.025) = 2.634
Поскольку 6.82 > 2.634, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 4.71 > 2.634, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - tкрит Sb; b + tкрит Sb)
(0.95 - 2.634*0.139; 0.95 + 2.634*0.139)
(0.583;1.316)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - tкрит Sa; a + tкрит Sa)
(56.75 - 2.634*12.037; 56.75 + 2.634*12.037)
(25.044;88.456)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.
Коэффициент детерминации R2 используется для проверки существенности уравнения линейной регрессии в целом.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m - число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости б.
2. Далее определяют фактическое значение F-критерия:
или по формуле:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fтабл = 4.96
Поскольку фактическое значение F>Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:
Таблица 4 Показатели качества уравнения регрессии.
Показатель |
Значение |
|
Коэффициент детерминации |
0.8231 |
|
Средний коэффициент эластичности |
0.589 |
регрессия корреляция детерминация статистический
Выводы
Изучена зависимость Y от X. На этапе спецификации была выбрана парная линейная регрессия. Оценены её параметры методом наименьших квадратов. Статистическая значимость уравнения проверена с помощью коэффициента детерминации и критерия Фишера. Установлено, что в исследуемой ситуации 82.31% общей вариабельности Y объясняется изменением X. Установлено также, что параметры модели статистически значимы. Возможна экономическая интерпретация параметров модели - увеличение X на 1 ед.изм. приводит к увеличению Y в среднем на 0.949 ед.изм.
Размещено на Allbest.ru
...Подобные документы
Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Построение поля корреляции, расчет уравнений линейной парной регрессии, на основе данных о заработной плате и потребительских расходах в расчете на душу населения. Анализ коэффициента эластичности, имея уравнение регрессии себестоимости единицы продукции.
контрольная работа [817,3 K], добавлен 01.04.2010Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.
контрольная работа [192,2 K], добавлен 23.06.2012Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.
курсовая работа [243,1 K], добавлен 17.01.2016Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.
контрольная работа [79,3 K], добавлен 28.07.2013Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.
контрольная работа [771,6 K], добавлен 28.04.2016Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.
контрольная работа [216,6 K], добавлен 12.05.2010Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.
контрольная работа [4,5 M], добавлен 05.11.2014Экономическое моделирование хозяйственных процессов. Множественная модель уравнения регрессии. Уравнение парной линейной регрессии, поиск необходимых значений. Выбор одного из значимых признаков для построения парной модели, расчет показателей.
контрольная работа [117,6 K], добавлен 17.04.2015