Метод ветвей и границ. Задача коммивояжера
Общий алгоритмический метод для нахождения оптимальных решений задач дискретной и комбинаторной оптимизации. Алгоритм действия метода ветвей и границ. Математическая модель задач коммивояжера. Перебор признаков перспективных вариантов решений задачи.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.05.2022 |
Размер файла | 328,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.Ru/
Министерство по развитию информационных технологий и коммуникаций Республики Узбекистан
Каршинский филиал ташкентского университета информационных технологий имени Мухаммада Аль-Хоразми
Факультет “ТТ и ПО”
САМОСТОЯТЕЛЬНАЯ РАБОТА
На тему:
Метод ветвей и границ. Задача коммивояжера
Выполнил: Исакжанова С.
Студент 2 курса гр 12-20
План
1. Метод ветвей и границ
2. Алгоритм действия метода ветвей и границ
3. Задача коммивояжера: сущность и применение на практике
1. Метод ветвей и границ
Описание метода ветвей и границ
Метод ветвей и границ -- один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.
Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.
2. Алгоритм действия метода ветвей и границ
Первоначально находим, к примеру, симплекс-методом оптимальный план задачи без учета целочисленности переменных. Пусть им является план X0. Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и Fmax = F(X0).
Если же среди компонент плана X0 имеются дробные числа, то X0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X0) F(X) для всякого последующего плана X в связи с увеличением количества ограничений.
Предполагая, что найденный оптимальный план X0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу . Определяя эти числа, находим симплекс-методом решение двух задач линейного программирования:
ветвь граница дискретный комбинаторный коммивояжер
Найдем решение задач линейного программирования (5) и (6). Очевидно, здесь возможен один из следующих четырех случаев:
1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.
2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (5) и (6).
3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой.
3.1 Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи, и он вместе со значением целевой функции на нем дает искомое решение.
3.2 Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (5) и (6).
4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (5) и (6).
Общий алгоритм решения задач с помощью метода границ и ветвей, его суть.
Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (5) и (6). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.
Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:
1. Находят решение задачи линейного программирования (1)-(3).
2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.
3. Находят решение задач (5) и (6), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.
4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (5) и (6), и находят их решение.
Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(4) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.
Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.
Задача о гамильтоновых циклах в графе получила различные обобщения. Одно из этих обобщений - задача коммивояжера, имеющая ряд применений в исследовании операций, в частности при решении некоторых транспортных проблем.
Задача коммивояжера, известная также как задача о сверлильном станке или алгоритм коммивояжера была поставлена в 1934 году. Эта задача является одной из знаменитых задач теории комбинаторики и широко применяется при разработке программного обеспечения.
3. Задача коммивояжера: сущность и применение на практике
Задача коммивояжера - задача математического программирования по определению оптимального маршрута движения коммивояжера, цель которого состоит в том, чтобы посетить все объекты, записанные в задании, за кратчайший срок и с наименьшими затратами. В теории графов - это поиск пути, связывающего два или более узла, с использованием критерия оптимальности.
Задача коммивояжера является типичной задачей оптимизации, которая широко применяется при разработке программного обеспечения. Задача о коммивояжере является упрощенной моделью для многих других задач дискретной оптимизации, а также часто является подзадачей. В своей области (оптимизации дискретных задач) она служит своеобразным катализатором, стимулирующим разработку наиболее эффективных методов, алгоритмов и способов их машинной реализации.
Задача коммивояжера формулируется очень просто: на плоскости (в пространстве) расположены N городов, заданы расстояния между каждой парой городов. Требуется найти маршрут минимальной длины с посещением каждого города ровно один раз и с возвращением в исходную точку.
В задаче коммивояжера целевой функцией, которую надо минимизировать, является стоимость обхода.
Особенностью задачи о коммивояжере является необходимость дополнительно учитывать расстояния от города до города, которые предполагаются известными. Эти «расстояния» можно заменить на количество затраченного времени, стоимость проезда или предполагать другие произвольные значения. В общем случае мы даже не предполагаем, что стоимость проезда из I в J обязательно совпадает со стоимостью обратного проезда из I в J. Данная задача соединяет в себе простоту условия и сложность решения, обусловленную большими размерами поискового пространства.
На графах задача формулируется следующим образом: требуется найти гамильтонов цикл наименьшей стоимости во взвешенном полном графе. Т.е. выйдя из стартовой вершины, посетить каждую вершину графа ровно один раз и вернуться в начальную по кратчайшему пути.
Размещено на allbest.ru
...Подобные документы
Описание задачи линейного целочисленного программирования. Общий алгоритм решения задач с помощью метода границ и ветвей, его сущность и применение для задач календарного планирования. Пример использования метода при решении задачи трех станков.
курсовая работа [728,8 K], добавлен 11.05.2011Понятие математического программирования как отрасли математики, являющейся теоретической основой решения задач о нахождении оптимальных решений. Основные этапы нахождения оптимальных решений экономических задач. Примеры задач линейного программирования.
учебное пособие [2,0 M], добавлен 15.06.2015Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.
контрольная работа [182,8 K], добавлен 18.01.2015Аналитические и численные методы безусловной оптимизации. Метод исключения и метод множителей Лагранжа (ММЛ). Метод Эйлера – классический метод решения задач безусловной оптимизации. Классическая задача условной оптимизации. О практическом смысле ММЛ.
реферат [387,0 K], добавлен 17.11.2010Виды задач линейного программирования и формулировка задачи. Сущность оптимизации как раздела математики и характеристика основных методов решения задач. Понятие симплекс-метода, реальные прикладные задачи. Алгоритм и этапы решения транспортной задачи.
курсовая работа [268,0 K], добавлен 17.02.2010Математическая теория оптимального принятия решений. Табличный симплекс-метод. Составление и решение двойственной задачи линейного программирования. Математическая модель транспортной задачи. Анализ целесообразности производства продукции на предприятии.
контрольная работа [467,8 K], добавлен 13.06.2012Математическая постановка и алгоритм решения транспортной задачи. Сбалансированность и опорное решение задачи. Методы потенциалов и северо-западного угла. Блок-схема. Формы входной и выходной информации. Инструкция для пользователя и программиста.
курсовая работа [113,8 K], добавлен 10.11.2008Типы транспортных задач и методы их решения. Поиск оптимального плана перевозок методом потенциалов. Решение задачи с использованием средств MS Excel. Распределительный метод поиска оптимального плана перевозок. Математическая модель, описание программы.
курсовая работа [808,7 K], добавлен 27.01.2011Построение базовой аналитической модели. Описание вычислительной процедуры. Решение задачи оптимизации на основе симплекс-таблиц. Анализ на чувствительность к изменению. Примеры постановок и решений перспективных оптимизационных управленческих задач.
курсовая работа [621,6 K], добавлен 16.02.2015Постановка, анализ, графическое решение задач линейной оптимизации, симплекс-метод, двойственность в линейной оптимизации. Постановка транспортной задачи, свойства и нахождение опорного решения. Условная оптимизация при ограничениях–равенствах.
методичка [2,5 M], добавлен 11.07.2010Изучение интуитивных и рациональных методов подхода к решению творческих задач. Темпы технического прогресса напрямую зависят от изобретателей, а экономические успехи зависят от темпов технического прогресса. Методы решения изобретательских задач.
реферат [22,4 K], добавлен 17.07.2008Транспортная задача линейного программирования, закрытая модель. Создание матрицы перевозок. Вычисление значения целевой функции. Ввод зависимостей из математической модели. Установление параметров задачи. Отчет по результатам транспортной задачи.
контрольная работа [202,1 K], добавлен 17.02.2010Геометрический способ решения стандартных задач линейного программирования с двумя переменными. Универсальный метод решения канонической задачи. Основная идея симплекс-метода, реализация на примере. Табличная реализация простого симплекс-метода.
реферат [583,3 K], добавлен 15.06.2010Предмет динамического программирования. Анализ модели расчета производственной программы по разным экономическим критериям. Расчет целочисленной закупки станков методом ветвей и границ. Анализ управленческих решений методами нелинейного программирования.
курсовая работа [1,3 M], добавлен 25.12.2014Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной. Гладкая и выпуклая оптимизации. Условие выпуклости. Экономико-математическая модель реструктуризации угольной промышленности. Критерий оптимизационной задачи.
реферат [159,8 K], добавлен 17.03.2009Построение экономических и математических моделей принятия решений в условиях неопределенности. Общая методология оптимизационных задач, оценка преимуществ выбранного варианта. Двойственность и симплексный метод решения задач линейного программирования.
курс лекций [496,2 K], добавлен 17.11.2011Экономико-математическая модель оптимального плана выпуска продукции. Оптимальная организация рекламной компании. Решение транспортной задачи: нахождение суммарных затрат на перевозку. Задача об оптимальном назначении (линейного программирования).
контрольная работа [812,0 K], добавлен 29.09.2010Общие свойства бильярдных систем, методы их исследования. Математическая модель бильярда, решение математической проблемы бильярда, или проблемы траектории. Типичные задачи на переливание, условие разрешимости задач, алгоритм и примеры их решения.
реферат [687,4 K], добавлен 07.09.2009Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.
контрольная работа [1,2 M], добавлен 11.06.2011Основные методы решения задач линейного программирования. Графический метод, симплекс-метод. Двойственная задача, метод потенциалов. Моделирование и особенности решения транспортной задачи методом потенциалов с использованием возможностей Мicrosoft Excel.
контрольная работа [1,1 M], добавлен 14.03.2014