Проблемы атомной энергетики
Особенности атомной энергетики, ее опасность и влияние на экологию. Ресурсы, применяемые для работы атомных электростанций. Современные проблемы и перспективы развития атомной энергетики. Причины, по которым следует отказаться от атомной энергетики.
Рубрика | География и экономическая география |
Вид | реферат |
Язык | русский |
Дата добавления | 31.05.2014 |
Размер файла | 45,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
СОДЕРЖАНИЕ
- ВВЕДЕНИЕ
- 1. ОБЩИЕ СВЕДЕНИЯ ОБ АТОМНОЙ ЭНЕРГЕТИКЕ
- 1.1 Особенности атомной энергетики
- 1.2 Ресурсы атомной энергетики
- 2. ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ
- 2.1 Развитие атомной промышленности
- 2.2 Проблемы развития энергетики
- 2.3 Проблемы безопасности
- 2.4 Перспективы развития атомной энергетики
- 2.5 Экономика атомной энергетики
- 2.6 Будущее атомной энергетики
- 3. ЭКОЛОГИЯ И АТОМНАЯ ЭНЕРГЕТИКА
- ЗАКЛЮЧЕНИЕ
- СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
- ВВЕДЕНИЕ
- В начале нового тысячелетия, когда общество все дальше продвигается по пути техногенного развития, развиваются уже существующие и зарождаются новые производственные отрасли, когда «высокие технологии» вошли практически в каждый современный дом и многие люди не могут представить жизнь без них, мы более отчетливо видим неограниченность человеческих потребностей. Чем больше человечество создает, тем больше оно потребляет, в том числе такой важный ресурс, как энергия.
- Люди с древних времен искали новые источники энергии. К середине XX столетия были освоены почти все ее природные источники. Их использование в промышленных масштабах привело к значительному загрязнению отходами производства окружающей среды, особенно в крупных, промышленно развитых городах.
- Опыт прошлого свидетельствует, что проходит не менее 80 лет, прежде чем одни основные источники энергии заменяются другими - дерево заменил уголь, уголь - нефть, нефть - газ, химические виды топлива заменила атомная энергетика. История овладения атомной энергией - от первых опытных экспериментов - насчитывает около 60 лет, когда в 1939г. была открыта реакция деления урана.
- Овладение ядерной энергией - величайшее, ни с чем не сравнимое достижение науки и техники XX в. Высвобождение внутриядерной энергии атома, проникновение в природные кладовые тайн вещества, атома превосходит все, что когда-либо ранее удавалось сделать людям. Новый источник энергии огромной мощности сулил неоценимые богатейшие возможности. Для открытия внутренней энергия атома, понадобились долгие годы упорной работы ученых многих поколений и разных стран.
- Высвобождение внутриядерной энергии атома потребовало такого уровня развития науки, такого научно-технического оборудования, такой аппаратуры, химических материалов, такой высокой культуры и техники производства, которые смогли сложиться в мире только к середине XX столетия
- В настоящее время антропогенное воздействие на окружающую среду становится все более значительным и представляет угрозу благополучному существованию всего человечества. В этой связи одной из основных задач является подготовка высококвалифицированных специалистов с целью обеспечения безопасности индустрии и энергетики в частности, а также предотвращения серьезных аварий и разрушительных экологических катастроф.
- Итак, в данном реферате мы рассмотрим проблемы атомной энергетики, а также её взаимосвязь с экологий. Это и будет являться целью данной работы. Поставленная цель определяет следующие задачи: 1) сделать общую характеристику атомной энергетики; 2) рассмотреть проблемы и перспективы атомной энергетики; 3) проанализировать взаимосвязь атомной энергетики и экологии.
1. ОБЩИЕ СВЕДЕНИЯ ОБ АТОМНОЙ ЭНЕРГЕТИКЕ
1.1 Особенности атомной энергетики
Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от самых простых до самых сложных - требуют расхода энергии. И чем дальше, тем больше.
В наше время энергия атома широко используется во многих отраслях экономики. При строительстве мощных подводных лодок и наводных кораблей с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы. Значение атомных электростанций в энергобалансе любой страны трудно переоценить.
Гидроэнергетика требует создания крупных водохранилищ, под которые затапливаются большие площади плодородных земель. В таких водоёмах вода застаивается и теряет своё качество, что, в свою очередь, обостряет проблемы водоснабжения, рыбного хозяйства и индустрии досуга.
Теплоэнергетические станции в наибольшей степени отрицательно влияют на биосферу и природную среду Земли разрушая их. Они уже израсходовали десятки тонн органического топлива (угля). Для добычи данного топлива во многих экономических сферах изымаются огромные земельные площади. На участках открытой добычи угля образуются «лунные ландшафты». Высокий уровень содержания золы в топливе является причиной выбросов огромного количества SO2 (оксида серы). Тепловые энергетические установки во всем мире выбрасывают в атмосферу за год до 250 млн тонн золы [4, с. 405].
Атомные электростанции (АЭС) - это третий «кит» в системе современной мировой энергетики. Техническая обеспеченность АЭС, бесспорно, являются крупнейшим достижением научно-технического прогресса (НТП). В случае их безаварийной работы не производится практически никакого загрязнения окружающей среды, кроме теплового. А так же в результате работы АЭС (и предприятий атомного топливного цикла) образуются радиоактивные отходы, которые несут потенциальную опасность для всего живого. Но количество образующихся отходов довольно мало, они весьма компактны, и пригодны для хранения в безлопастных условиях, предотвращающих утечки. АЭС в разы экономичнее тепловых электростанций. При правильной эксплуатации АЭС является чистым источником энергии.
В 1990 году в мире АЭС работали в 31 стране и производили 16% всей электроэнергии, а также ещё АЭС строили ещё в 6 странах [2, с. 54]. Ядерный сектор энергетики наиболее значителен во Франции, Бельгии, Финляндии, Швеции, Болгарии и Швейцарии, т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС. В США по средствам АЭС производится только восьмая часть своей электроэнергии, но это составляет около одной пятой ее мирового производства [2, c. 57].
В ходе развития ядерной энергетики в интересах экономики, не следует забывать о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям. Всего с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Наиболее характерные из них: в 1957 г. - в Уиндскейле (Англия), в 1959 г. - в Санта-Сюзанне (США), в 1961 г. - в Айдахо-Фолсе (США), в 1979 г. - на АЭС Три-Майл-Айленд (США), в 1986 г. - на Чернобыльской АЭС (бывший СССР, сейчас Украина) [4, с. 15].
По-прежнему ведутся острые дебаты, предметом которых является атомная энергетика. Сторонники и противники атомной энергетики резко расходятся в оценках ее безопасности, надежности и экономической эффективности. Ко всему прочему, распространено мнение о возможной утечке из сферы выработки электроэнергии ядерного топлива и его применения в создании ядерного оружия.
1.2 Ресурсы атомной энергетики
Естественным и немаловажным представляется вопрос о ресурсах самого ядерного топлива. Достаточны ли его запасы, чтобы обеспечить широкое развитие ядерной энергетики? По оценочным данным, на всем земном шаре в месторождениях, пригодных для разработки, имеется несколько миллионов тонн урана. Это довольно много, но необходимо также учитывать, что в получивших в настоящее время широкое распространение АЭС с реакторами на тепловых нейтронах лишь очень небольшая часть урана (около 1%) используется для выработки энергии. Поэтому при специализации только на реакторах с тепловыми нейтронами, ядерная энергетика по соотношению ресурсов не так уж много может добавить к обычной энергетике - всего лишь около 10% [3, с. 88]. Глобального решения надвигающейся проблемы энергетического голода не получается.
Совсем иные перспективы появляются в случае применения АЭС с реакторами на быстрых нейтронах, в которых используются практически весь добываемый уран. Это означает, что объем потенциальных ресурсов ядерной энергетики с реакторами на быстрых нейтронах примерно в 10 раз больше чем в традиционной (на органическом топливе) [3, c. 69]. Более того, при полном использовании урана становится рентабельной его добыча в месторождениях с малой его концентрацией. А это в конечном счете означает практически неограниченное (по современным масштабам) расширение потенциальных сырьевых ресурсов ядерной энергетики.
Итак, применение реакторов на быстрых нейтронах значительно расширяет топливную базу ядерной энергетики. Однако может возникнуть вопрос: если реакторы на быстрых нейтронах так хороши, и существенно превосходят реакторы на тепловых нейтронах по эффективности использования урана, то почему последние вообще строятся? Почему бы с самого начала не развивать ядерную энергетику на основе реакторов на быстрых нейтронах? Прежде всего, следует сказать, что на первом этапе развития ядерной энергетики, когда суммарная мощность АЭС была мала и ресурсов было достаточно, вопрос об их воспроизводстве не стоял так остро. Поэтому основное преимущество реакторов на быстрых нейтронах - большой коэффициент воспроизводства - еще не являлся решающим.
В то же время вначале реакторы на быстрых нейтронах оказались не готовыми к внедрению. Дело в том, что при своей кажущейся относительной простоте (отсутствие замедлителя) они технически более сложны, чем реакторы на тепловых нейтронах. Для их создания необходимо было решить ряд серьезных проблем, что потребовало продолжительного времени. Эти проблемы связаны в основном с особенностями использования ядерного топлива, которые, как и способность к воспроизводству, по-разному проявляются в реакторах различного типа. Однако в отличие от последней эти особенности сказываются более благоприятно в реакторах на тепловых нейтронах.
Первая из этих особенностей заключается в том, что ядерное топливо не может быть израсходовано в реакторе полностью, как расходуется обычное химическое топливо. Последнее, как правило, сжигается в топке до конца. Возможность протекания химической реакции практически не зависит от количества вступающего в реакцию вещества. Цепной ядерной реакцией не происходит, если количество топлива в реакторе меньше определенного значения, называемого критической массой.
Уран (плутоний) в количестве, составляющем критическую массу, не является топливом в собственном смысле этого слова. Он на время как бы превращается в некоторое инертное вещество наподобие железа или других конструкционных материалов, находящихся в реакторе. Выгорать может лишь та часть топлива, которая загружается в реактор сверх критической массы. Таким образом, ядерное топливо в количестве, равном критической массе, служит своеобразным катализатором процесса, обеспечивает возможность протекания реакции, не участвуя в ней.
Естественно, что топливо в количестве, составляющем критическую массу, физически неотделимо в реакторе от выгорающего топлива. В тепловыделяющихся элементах, загружаемых в реактор, с самого начала помещается топливо, как для создания критической массы, так и для выгорания. Значение критической массы неодинаково для различных реакторов и в общем случае относительно велико.
Так, для серийного отечественного энергетического блока с реактором на тепловых нейтронах ВВЭР-440 (водо-водяной энергетический реактор мощностью 440 МВт) критическая масса уран-235 составляет 700 кг. Это соответствует 2 млн тонн угля [3, с. 24]. Иными словами, применительно к электростанции на угле той же мощности это означает обязательное наличие при ней такого довольно значительного количества неприкосновенного запаса угля. Ни один килограмм из этого запаса не расходуется и не может быть израсходован, однако без него электростанция работать не может.
Наличие такого крупного количества "замороженного" топлива, хотя и сказывается отрицательно на экономических показателях, но в силу реально сложившегося соотношения затрат для реакторов на тепловых нейтронах оказывается не слишком обременительным. В случае же реакторов на быстрых нейтронах с этим приходится считаться более серьезно.
Реакторы на быстрых нейтронах обладают существенно большей критической массой по сравнению с реакторами на тепловых нейтронах (при заданных размерах реактора). Это объясняется тем, что быстрые нейтроны при взаимодействии со средой оказываются более "инертными", чем тепловые. В частности, вероятность вызвать деление атома топлива (на единицы длины пути) для них в сотни раз меньше, чем для тепловых. Для того, чтобы быстрые нейтроны не вылетали без взаимодействия за пределы реактора и не терялись, их "инертность" необходимо компенсировать увеличением количества закладываемого топлива с соответствующим возрастанием критической массы [5, с. 96].
Чтобы реакторы на быстрых нейтронах не проигрывали по сравнению с реакторами на тепловых нейтронах, необходимо повышать мощность, развиваемую при заданных размерах реактора. В таком случае количество "замороженного" топлива на единицу мощности будет уменьшаться. Достижение высокой плотности тепловыделения в реакторе на быстрых нейтронах и явилось главной задачей новых электростанций.
Следует заметить, что сама по себе мощность непосредственно не связана с количеством топлива, находящегося в реакторе. Если это количество превышает критическую массу, то в нем за счёт созданной нестационарности цепной реакции можно развить любую требуемую мощность. Вопрос заключается в том, чтобы обеспечить достаточно интенсивный теплоотвод из реактора. Речь идет именно о повышении плотности тепловыделения, ибо увеличение, например, размеров реактора, способствующее увеличению теплоотвода, неизбежно влечет за собой и увеличение критической массы, т.е. не решает задачи.
Положение осложняется еще и тем, что для теплоотвода из реактора на быстрых нейтронах такой привычный и хорошо освоенный теплоноситель, как обычная вода, не подходит в силу своих ядерных свойств. Она, как известно, замедляет нейтроны и, следовательно, понижает коэффициент воспроизводства. Газовые теплоносители (гелий и другие) обладают в данном случае приемлемыми ядерными параметрами. Однако требования интенсивного теплоотвода приводят к необходимости использовать газ при высоких давлениях, что вызывает соответствующие технические трудности.
В качестве теплоносителя для теплоотвода из реакторов на быстрых нейтронах был выбран обладающий прекрасными теплофизическими и ядерно-физическими свойствами расплавленный натрий. Он позволил решить поставленную задачу достижения высокой плотности тепловыделения [5, с. 167].
Следует указать, что в свое время выбор "экзотического" натрия казался очень смелым решением. Не было никакого не только промышленного, но и лабораторного опыта его использования в качестве теплоносителя. Вызывала серьёзные опасения высокая химическая активность натрия при взаимодействии с водой, а также с кислородом воздуха, которая, как представлялось, могла весьма неблагоприятно проявиться в аварийных ситуациях.
Потребовалось проведение большого комплекса научно-технических исследований и разработок, сооружение стендов и специальных экспериментальных реакторов на быстрых нейтронах, для того, чтобы убедиться в хороших технологических и эксплуатационных свойствах натриевого теплоносителя. Как было при этом показано, необходимая высокая степень безопасности обеспечивается следующими мерами: во-первых, тщательностью изготовления и контроля качества всего оборудования, соприкасающегося с натрием; во-вторых, созданием дополнительных страховочных кожухов на случай аварийной протечки натрия; в-третьих, использованием чувствительных индикаторов течи, позволяющих достаточно быстро регистрировать начало аварии и принимать меры к ее ограничению и ликвидации [3, c. 74].
Кроме обязательного существования критической массы есть еще одна характерная особенность использования ядерного топлива, связанная с теми физическими условиями, в которых оно находится в реакторе. Под действием интенсивного ядерного излучения, высокой температуры и, в особенности, в результате накопления продуктов деления происходит постепенное ухудшение физико-математических, а также ядерно-физических свойств топливной композиции (смеси топлива и сырья). Топливо, образующее критическую массу, становится непригодным для дальнейшего использования. Его приходится периодически извлекать из реактора и заменять свежим. Извлеченное топливо для восстановления первоначальных свойств должно подвергаться регенерации. В общем случае - это трудоемкий, длительный и дорогостоящий процесс.
Для реакторов на тепловых нейтронах содержание топлива в топливной композиции относительно небольшое - всего несколько процентов. Для реакторов на быстрых нейтронах соответствующая концентрация топлива значительно выше. Частично это связано с уже отмеченной необходимостью увеличения количество топлива вообще в реакторе на быстрых нейтронах для создания критической массы в заданном объеме. Главное же заключается в том, что отношение вероятностей вызвать деление атома топлива или быть захваченным в атоме сырья различно для разных нейтронов. Для быстрых нейтронов оно в несколько раз меньше, чем для тепловых, и, следовательно, содержание топлива в топливной композиции реакторов на быстрых нейтронах должно быть больше. Иначе слишком много нейтронов будет поглощаться атомами сырья, и стационарная цепная реакция деления в топливе окажется невозможной. Причем при одинаковом накоплении продуктов деления в реакторе на быстрых нейтронах выгорает в несколько раз меньшая доля заложенного топлива, чем в реакторах на тепловых нейтронах. Это приводит к необходимости увеличить регенерацию ядерного топлива в реакторах на быстрых нейтронах. В экономическом отношении это даст заметный проигрыш [5, с. 107].
Но кроме совершенствования самого реактора перед учеными все время встают вопросы об улучшении системы безопасности на АЭС, а также изучении возможных способов переработки радиоактивных отходов, преобразовании их в безопасные вещества. Речь идет о методах превращения стронция и цезия, имеющих большой период полураспада, в безвредные элементы путем бомбардировки их нейтронами или химическими способами. Теоретически это возможно, но при современном уровне развития технологии -- это экономически нецелесообразно. Хотя, возможно, уже в ближайшем будущем будут получены реальные результаты этих исследований, в результате которых атомная энергия станет не только самым дешевым видом энергии, но и действительно экологически чистым [6, с. 60-75].
Таким образом, можно сказать, что важной особенностью ядерного реактора является его работоспособность, только при наличии в нём критической массы топлива. Если учесть, что в процессе работы топливо выгорает, то для поддержания критической массы необходимо либо непрерывно заменять выгоревшее топливо свежим, либо загружать топливо с избытком, а действие избытка компенсировать регулирующими органами. Реально непрерывная перегрузка практически невозможна, поэтому критическая масса поддерживается сочетанием режимов перегрузки с положением регулирующих органов.
2. ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ
2.1 Развитие атомной промышленности
После второй мировой войны мировая электроэнергетика стала набирать большие темпы в развитии. Это было вызвано быстрым ростом спроса на электроэнергию, по темпам значительно превосходившим рост населения и национального дохода. Основной упор делался на тепловые электростанции (ТЭС), работающие на угле и, в меньшей степени, на нефти и газе, а также на гидроэлектростанции. До 1969 года АЭС промышленного типа не существовало. К 1973 г. практически во всех промышленно развитых странах оказались исчерпанными ресурсы крупномасштабной гидроэнергетики [2, с. 23]. Скачок цен на энергоносители после 1973 г., быстрый рост потребности в электроэнергии, а также растущая озабоченность возможностью утраты независимости национальной энергетики - все это способствовало утверждению взгляда на атомную энергетику как на единственный реальный альтернативный источник энергии. Эмбарго на арабскую нефть 1973-1974 гг. породило дополнительную волну заказов и оптимистических прогнозов развития атомной энергетики [2, с. 26].
Но каждый следующий год вносил свои коррективы в эти прогнозы. С одной стороны, атомная энергетика имела своих сторонников в правительствах, в урановой промышленности, исследовательских лабораториях и среди влиятельных энергетических компаний. С другой стороны, возникла сильная оппозиция, в которой объединились группы, защищающие интересы населения, чистоту окружающей среды и права потребителей. Споры, которые продолжаются и по сей день, сосредоточились главным образом вокруг вопросов вредного влияния различных этапов топливного цикла на окружающую среду, вероятности аварий реакторов и их возможных последствий, организации строительства и эксплуатации реакторов, приемлемых вариантов захоронения ядерных отходов, потенциальной возможности саботажа и нападения террористов на АЭС, а также вопросов увеличения национальных и международных усилий в области нераспространения ядерного оружия [2, с.178-182].
2.2 Проблемы развития энергетики
Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. В основе производства тепловой и электрической энергий лежит процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов. Для производства необходимого человечеству количества энергии добываются и расходуются огромные масштабы энергоресурсов, металлов, воды и воздуха, а запасы этих ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.
Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,521017 ккал = 36109 тонн условного топлива (т.у.т.), топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,81012 т.у.т [2, c. 103]. Из этого количества примерно одна треть (что составляет ~ 4,31012 т.у.т.) может быть извлечена с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны, современные потребности в энергоносителях составляют 1,11010 т.у.т./год и растут со скоростью 3-4% в год, то есть удваиваются каждые 20 лет [2, c. 104].
Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем. Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год [7, с. 58].
Использование энергии атомного ядра и развитие атомной энергетики частично снимает остроту этой проблемы. Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее XX век атомным, стало существенным складом к запасам энергетического ископаемого топлива. Запасы урана в земной коре оцениваются огромной цифрой - 1014 тонн [7, с. 84]. Однако основная масса этого богатства находится в рассеянном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4109 тонн [7, с. 84]. В тоже время богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана [7, с. 85]. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время" [2, с.216].
Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха. Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации, что позволяет устранить возможность возникновения парникового эффекта с тяжелыми экологическими последствиями глобального потепления. Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АЭС, атомная энергетика не создаст особых транспортных проблем, поскольку требует минимальных транспортных расходов, что освобождает общество от бремени постоянных перевозок огромных количеств органического топлива [8, с. 248-253].
2.3 Проблемы безопасности
Аварии ядерных реакторов, произошедшие в 1970-1980 гг., помимо прочего, ясно показали, что такие аварии часто непредсказуемы. Например, в Чернобыле реактор 4-го энергоблока был серьёзно повреждён в результате резкого скачка мощности, возникшего во время планового его выключения. Реактор находился в бетонной оболочке и был оборудован системой аварийного расхолаживания и другими современными системами безопасности, и трудно было предположить, что при выключении реактора может произойти резкий скачок мощности и газообразный водород, образовавшийся в реакторе после такого скачка, смешавшись с воздухом, взорвётся так, что разрушит здание реактора. В результате аварии погибло более 30 человек, более 200000 человек в Киевской и соседних областях получили большие дозы радиации, был заражён источник водоснабжения Киева [1]. На севере от места катастрофы - прямо на пути облака радиации - находились обширные Пpипятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России. В Соединенных Штатах предприятия, занимающиеся строительством и эксплуатацией ядерных реакторов, тоже столкнулись с множеством проблем безопасности, что замедляло строительство, заставляя вносить многочисленные изменения в проектные показатели и эксплуатационные нормативы, и приводило к увеличению затрат и себестоимости электроэнергии. По-видимому, было два основных источника этих трудностей. Один из них - недостаток знаний и опыта в этой новой отрасли энергетики. Другой - развитие технологии ядерных реакторов, в ходе которого возникали новые проблемы. Но остаются и старые, такие, как коррозия труб парогенераторов и растрескивание трубопроводов кипящих реакторов. Не решены до конца и другие пpоблемы безопасности, например, повреждения, вызываемые резкими изменениями расхода теплоносителя [3, с. 218-225].
2.4 Перспективы развития атомной энергетики
атомный энергетика электростанция
Среди тех, кто настаивает на необходимости продолжения поиска безопасных и экономичных путей развития атомной энергетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недоверия общества к безопасности ядерных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа реакторов: «технологически предельно безопасный» реактор и «модульный» высокотемпературный газоохлаждаемый реактор.
Прототип модульного газоохлаждаемого реактора разрабатывался в Германии, а также в США и Японии. В отличие от легководного реактора, конструкция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно - без прямых действий операторов или электрической либо механической системы защиты. В технологически предельно безопасных реакторах тоже применяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, не продвинулся далее стадии проектирования. В тоже время он получил широкую поддержку в США среди тех, кто видит в нем потенциальные преимущества перед модульным газоохлаждаемым реактором. В любом случае, будущее обоих вариантов туманно из-за их неопределённой стоимости, трудностей разработки, а также спорного будущего самой атомной энергетики. Сторонники другого направления полагают, что до того момента, когда развитым странам потребуются новые электростанции, осталось мало времени для разработки новых реакторных технологий. По их мнению, первоочередная задача состоит в том, чтобы стимулировать вложение средств в атомную энергетику.
Помимо этих двух перспектив развития атомной энергетики сформировалась и совсем иная точка зрения. Она возлагает надежды на более полную утилизацию подведенной энергии, возобновляемые энергоресурсы и на энергосбережение. По мнению сторонников этой точки зрения, если передовые страны переключатся на разработку более экономичных источников света, бытовых электроприборов, отопительного оборудования и кондиционеров, то сэкономленной электроэнергии будет достаточно, чтобы обойтись безо всех существующих АЭС. Наблюдающееся значительное уменьшение потребления электроэнергии показывает, что экономичность может быть важным фактором ограничения спроса на электроэнергию [8, с. 45-51].
Таким образом, атомная энергетика пока не выдержала испытаний на экономичность, безопасность и расположение общественности. Ее будущее теперь зависит от того, насколько эффективно и надежно будет осуществляться контроль за строительством и эксплуатацией АЭС, а также насколько успешно будет решен ряд других проблем, таких, как удаление радиоактивных отходов. Будущее атомной энергетики зависит также от жизнеспособности и экспансии ее сильных конкурентов - ТЭС, работающих на угле, новых энергосберегающих технологий и возобновляемых энергоресурсов.
А теперь обратим внимание на информацию, которую предлагают нам ученые.
1. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет, угля на 350 лет [8, с. 96-98].
2. Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года. Допустим далее, что мы располагаем запасами горючего, скажем, на миллион лет. Если мы станем увеличивать размеры его потребления всего на 2% в год (а это - приблизительный темп роста мирового народонаселения), то запасов хватит на 501 год [8, с. 101-106].
3. При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет - полное излучение всей нашей галактики [8, с. 111-115].
2.5 Экономика атомной энергетики
Инвестиции в атомную энергетику, подобно инвестициям в другие области производства электроэнергии, экономически оправданы, если выполняются два условия: стоимость киловатт-часа не больше, чем при самом дешевом альтернативном способе производства, и ожидаемая потребность в электроэнергии, достаточно высокая, чтобы произведённая энергия могла продаваться по цене, превышающей ее себестоимость. В начале 1970-х годов мировые экономические перспективы для развития атомной энергетики были очень благоприятными: быстро рос спрос на электроэнергию, так и росли цены на основные виды топлива - уголь и нефть. Что же касается стоимости строительства АЭС, то почти все специалисты были убеждены, что она будет стабильной или даже станет снижаться. Но прогнозы специалистов не оправдались. В начале 1980-х годов рост спроса на электроэнергию прекратился, цены на природное топливо стали понижаться, а строительство АЭС обходилось значительно дороже, чем предполагалось [8, с. 157]. В последствии атомная энергетика повсюду вступила в полосу экономических трудностей, причем наиболее серьезными они оказались США, где она возникла и развивалась наиболее интенсивно
Если провести детальный анализ атомной энергетики США, то становится понятным, почему эта отрасль промышленности потеряла конкурентоспособность. С начала 1970-х годов резко выросли затраты на АЭС. Затраты на обычную ТЭС складываются из прямых и косвенных капиталовложений, затрат на топливо, эксплуатационных расходов и расходов на техническое обслуживание [2, с. 123].
За срок службы ТЭС, работающей на угле, затраты на топливо составляют в среднем 50-60% всех затрат. В случае же АЭС доминируют капиталовложения, составляя около 70% всех затрат [2, с. 124]. Капитальные затраты на новые ядерные реакторы в среднем значительно превышают расходы на топливо угольных ТЭС за весь срок их службы, чем сводится на нет преимущество экономии на топливе в случае АЭС [2, с. 127].
2.6 Будущее атомной энергетики
Существует 4 причины, по которым человечеству следует отказаться от атомной энергетики.
1. Каждая атомная электростанция, независимо от степени надежности, является по сути стационарной атомной бомбой, которая может быть в любой момент взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами, играющими в данном случае роль детонатора. В сегодняшнем мире, где террористы и фанатики бьют из ракетных установок по больницам и детским садам и не задумываются, снести ли с лица земли город противника, если на то появится хоть малейшая возможность, это реальная, а не теоретическая опасность.
2. На примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти и просто по чьей-то небрежности. К примеру, по материалам доклада сенатора Гленна (США), опубликованного в мае 1986 года, с 1971 г. по 1984 г. на АЭС мира произошла 151 серьезная авария, при каждой из которых имел место “значительный выброс радиоактивных материалов с опасным воздействием на людей” [6, с. 77]. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС.
3. Реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Оба способа не являются безопасными: с течением времени защитные оболочки разрушаются и радиоактивные элементы попадают в воду и почву, а значит и в организм человека.
4. Не стоит забывать, что атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН не зря пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Одно это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса [6, с. 79-80].
Но не смотря не все эти причины оказалось, что атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что если к началу 90-х годов в СССР все атомные электростанции заменили бы на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистическими прогнозами последствий чернобыльской катастрофы [7, с. 130-135].
Таким образом, можно сказать, что без атомных электростанций не обойтись. Атомная энергетика решает многие мировые проблемы, но всё же она представляет реальную опасность для человечества. Так что вопрос о повсеместном строительстве АЭС и их использовании широком использовании остается открытым и по сей день.
3. ЭКОЛОГИЯ И АТОМНАЯ ЭНЕРГЕТИКА
Атомная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0.5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 тонн каменного угля [5, с. 38].
До середины 80-х годов человечество в ядерной энергетике видело один из выходов из энергетического тупика. Только за 20 лет (с середины 60-х до середины 80-х годов) мировая доля энергетики, получаемой на АЭС, возросла практически с нулевых значений до 15-17%, а в ряде стран она стала превалирующей. Ни один другой вид энергетики не имел таких темпов роста [5, c. 45].
До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС [7, с. 23-29].
При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности. К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 14% электроэнергии, увеличили природный фон радиоактивности не более чем на 0,02% [7, с. 53].
До Чернобыльской катастрофы не только в мире, но и в России никакая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, погибло 17 человек (не по радиационным причинам) [8, с. 27]. После 1986 г. Главную экологическую опасность АЭС стали связывать с возможностью аварий. Хотя вероятность их на современных АЭС и невелика, но и она не исключается. К наиболее крупным авариям такого плана относится вышеупомянутая авария, случившаяся на четвертом блоке Чернобыльской АЭС.
По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе составил от 3,5% (63 кг) до 28% (50 т). Для сравнения отметим, что бомба, сброшенная на Хиросиму, дала только 740 г радиоактивного вещества [1].
В результате аварии на Чернобыльской АЭС радиоактивному загрязнению подверглась территория в радиусе более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживает 17 млн. человек. Общая площадь загрязненных территорий превышает 80000 км2 [1].
После аварии на Чернобыльской АЭС отдельные страны приняли решение о полном запрете на строительство АЭС. В их числе Швеция, Италия, Бразилия, Мексика. Швеция, кроме того, объявила о намерении демонтировать все действующие реакторы (их 12), хотя они и давали около 45% всей электроэнергии страны [8, с. 29]. Резко замедлились темпы развития, данного вида энергетики в других странах. Приняты меры по усилению защиты от аварий существующих, строящихся и планируемых к строительству АЭС. Вместе с тем человечество осознает, что без атомной энергетики на современном этапе развития не обойтись. Строительство и ввод в строй новых АЭС постепенно увеличивается.
В настоящее время в мире действует 436 атомных реакторов[9]. В процессе ядерных реакций выгорает лишь 0,5-1,5% ядерного топлива [4, с. 296]. Ядерный реактор мощностью 1000 МВт за год работы выделяет около 60т радиоактивных отходов [4, c. 302]. Часть их подвергается переработке, а основная масса требует захоронения.
Технология захоронения довольно сложна и дорогостояща. Отработанное топливо обычно перегружается в бассейны выдержки, где за несколько лет существенно снижается радиоактивность и тепловыделение. Захоронение обычно проводится на глубинах не менее 500-600 шурфах [4, c. 127]. Последние располагаются друг от друга на таком расстоянии, чтобы исключалась возможность атомных реакций.
Неизбежный результат работы АЭС - тепловое загрязнение. На единицу получаемой энергии здесь оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу [6, с. 101]. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км3 подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км3 [6, с. 102]. Следствием больших потерь тепла на АЭС является их более низкий коэффициент полезного действия по сравнению с ТЭС. На последних он равен 35%, а на АЭС - только 30-31 % [6, с. 102].
Таким образом можно выделить следующие воздействия АЭС на среду:
- разрушение экосистем и их элементов (почв, грунтов, водоносных структур т. п.) в местах добычи руд (особенно при открытом способе);
- изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию [4, c. 215-219];
- изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов;
- не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.
ЗАКЛЮЧЕНИЕ
Энергия - это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества. Однако в настоящее время при огромной численности населения и производство, и потребление энергии становится потенциально опасным. Наряду с локальными экологическими последствиями, сопровождающимися загрязнением воздуха и воды, эрозией почвы, существует опасность изменения мирового климата в результате действия парникового эффекта.
Человечество стоит перед дилеммой: с одной стороны, без энергии нельзя обеспечить благополучия людей, а с другой - сохранение существующих темпов ее производства и потребления может привести к разрушению окружающей среды, серьезному ущербу здоровья человека.
Атомная энергия играет исключительную роль в современном мире: ядерное оружие оказывает влияние на политику, оно нависло угрозой над всем, живущим на Земле. А пока человечество стремится утолить свои непрерывно растущие потребности в энергии путем беспредельного развития атомной энергетики, радиоактивные отходы загрязняют нашу планету. В действительности жизнь на Земле всегда зависела от атомной энергии: ядерный синтез питает энергией Солнце, радиоактивные процессы в недрах Земли нагревают ее жидкое ядро, влияют на подвижность материковых плит.
Первая половина 20 века ознаменовалась крупнейшей победой науки - техническим решением задачи использования громадных запасов энергии тяжелых атомных ядер - урана и тория. Этого вида топлива, сжигаемого в атомных котлах, не так уж много в земной коре. Если всю энергетику земного шара перевести на него, то при современных темпах роста потребления энергии урана и тория хватит лишь на 100 - 200 лет. За этот же срок исчерпаются запасы угля и нефти.
Вторая половина 20 века стала веком термоядерной энергии. В термоядерных реакциях происходит выделение энергии в процессе превращения водорода в гелий. Быстро протекающие термоядерные реакции осуществляются в водородных бомбах.
В термоядерных реакторах, безусловно, будет использоваться не обычный, а тяжелый водород. В результате использования водорода с атомным весом, отличным от наиболее часто встречающегося в природе, удастся получить ситуацию, при которой литр обычной воды по энергии окажется равноценен примерно 400 литрам нефти. Элементарные расчеты показывают, что дейтерия (разновидность водорода, которая будет использоваться в подобных реакциях) хватит на земле на сотни лет при самом бурном развитии энергетики, в результате чего проблема заботы о топливе отпадет практически навсегда.
На данном этапе развития энергетики, остро стоит вопрос о том, из какого материала и какими методами в будущем человечество должно получать энергию? На сегодня существует несколько основных концепций решения проблемы:
- Расширение сети станций на урановом топливе;
- Переход к использованию в качестве ядерного топлива тория-232, который в природе более распространен, нежели уран;
- Переход к атомным реакторам на быстрых нейтронах, которые могли бы обеспечить производство ядерного топлива более чем на 3000 лет, в настоящее время является сложной инженерной проблемой и несет в себе огромную экологическую опасность, в связи с чем испытывает серьезное противодействие со стороны мировой экологической общественности и является малоперспективным;
- Освоение термоядерных реакций, во время которых происходит выделение энергии в процессе превращения водорода в гелий.
В настоящее время наиболее разумным представляется развитие энергетики в расширении сети урановых и уран-ториевых атомных станций в период решения проблемы управления термоядерной реакцией.
Однако, главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка: еще задолго до того, как будут использованы все мыслимые ресурсы, разразиться экологическая катастрофа, которая превратит Землю в планету, совершенно не приспособленную для жизни человека.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Самые крупные радиационные и ядерные аварии в мире. - [Электронный ресурс]. - Режим доступа // http://climatgate.wordpress.com/2011/06/02/%D1%81%D0%B0%D0%BC%D1%8B%D0%B5-%D0%BA%D1%80%D1%83%D0%BF%D0%BD%D1%8B%D0%B5-%D1%80%D0%B0%D0%B4%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B5-%D0%B8-%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B5/ - Дата доступа: 19.05.2014.
2. Родионова И.А., Бунакова Т.М. Учебно-справочное пособие. Экономическая география. 5-е издание. Московский Лицей, 2001. - 671 с.
3. Дементьев Б.А. Ядерные энергетические реакторы. М., 1984. - 280c.
4. Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985. - 648 c.
5. Синев Н.М. Экономика ядерной энергетики: Основы технологии экономики ядерного топлива. Экономика АЭС. М., 1987. - 480 c.
6. Самойлов О.Б., Усынин Г.Б., Бахметьев А.М. Безопасность ядерных энергетических установок. М., 1989. - 280 c.
7. Акимова Т.А., Хаскин В.В. Экология: Учебник. - М.: Изд-во ЮНИТИ, 1998. - 340 c.
8. Киселев Г.В. Проблема развития ядерной энергетики. М.: Знание, 1990. - 320 c.
9. Атомная энергетика по странам. - [Электронный ресурс] - Режим доступа // http://ru.wikipedia.org/wiki/Атомная_энергетика_по_странам - Дата доступа: 19.05.2014.
Размещено на Allbest.ru
...Подобные документы
Этапы развития, современное состояние и структура атомной энергетики. Общее потребление первичных энергоносителей, их доля в производстве электроэнергии на АЭС в регионах мира. Оценка потенциальных возможностей атомной энергетики, долгосрочные прогнозы.
контрольная работа [110,4 K], добавлен 07.10.2013Атомная энергетика как подотрасль мировой энергетики, ее сырьевая база, основные этапы и перспективы развития. Политика разных стран по отношению к ней. Структура топливно-энергетического баланса мира. География крупнейших атомных электростанций мира.
курсовая работа [789,3 K], добавлен 24.03.2015Превращение мировой атомной энергетики в крупную отрасль, важную составную часть мирового хозяйства. Последствия катастрофы на Чернобыльской АЭС, политики энергосбережения и постепенного удешевления нефти на снижение темпов роста атомной энергетики.
реферат [100,6 K], добавлен 23.11.2009Структура и динамика топливно-энергетического баланса мира. Структура и динамика мирового потребления. История развития атомной энергетики мира, география сырьевой базы. Запасы урана в мире. Ядерные реакторы по странам. Страны лидеры по добыче урана.
курсовая работа [377,5 K], добавлен 30.03.2014Природно-географические и экономические особенности, состояние, проблемы и перспективы развития энергетики России. Современные способы производства и передачи электроэнергии. История развития и размещения энергетики РФ, ее сравнение с другими отраслями.
курсовая работа [33,9 K], добавлен 03.01.2010Стратегические цели развития энергетики в Республике Татарстан. Основные принципы модернизации энергосистемы. Мероприятия по повышению эффективности функционирования энергосистемы. Особенности формирования правовой системы по развитию энергетики.
курсовая работа [77,9 K], добавлен 19.02.2010Основа топливно-энергетической базы Китая, экономически рентабельные для добычи запасы нефти. Динамика производства топлива и энергии в Китае, использование нетрадиционных видов топлива. Развитие атомной энергетики в Китае, импорт энергоносителей.
реферат [367,0 K], добавлен 30.11.2009Экономическая характеристика мировой энергетики. Производство и потребление энергии по регионам. Основные экспортно-импортные потоки топливно-энергетической промышленности. Альтернативные источники энергии. Топливно-энергетический комплекса Беларуси.
курсовая работа [1,4 M], добавлен 03.08.2010История образования, состав территории и экономико-географическое положение Китая. Население и трудовые ресурсы страны. Географическое развитие и размещение промышленности, энергетики, сельского хозяйства и транспорта. Внешнеэкономические связи Китая.
курсовая работа [354,1 K], добавлен 12.05.2014Экономико-географическое расположение Индии. Достижения в науке и технологиях. Современное состояние экономики страны, проблемы. Достижения в атомной энергетике. Экспортно-импортная политика в 2002-2007 годах. Национальный доход на душу населения.
контрольная работа [29,6 K], добавлен 23.01.2015Географическое положение, реки, растительный мир, разнообразная фауна и природные ресурсы Грузии. Уровень развития сельского хозяйства, энергетики и промышленности страны. Изучение истории государства. Принятие христианства в Картле при царе Мириане III.
презентация [773,1 K], добавлен 08.03.2012Оценка проблемы энергосбережения в современном мире. Основные инструменты и методы осуществления государственной политики ФРГ в области энергосбережения. Освоение альтернативных видов энергетики и использование возобновляемых источников энергии.
курсовая работа [38,1 K], добавлен 23.09.2014Уровень развития и структура бразильской промышленности, ее основные отрасли. Причины низкого развития энергетики в стране. Развитие отрасли машиностроения, судостроения, авиастроения. Специфика пищевкусовой и текстильной промышленности Бразилии.
презентация [1010,3 K], добавлен 17.05.2012Географическое положение и природные ресурсы стран Восточной Европы. Уровень развития сельского хозяйства, энергетики, промышленности и транспорта стран данной группы. Численность населения региона. Внутрирегиональные различия стран Восточной Европы.
презентация [1015,6 K], добавлен 27.12.2011Территориально-географическое положение Греции. Особенности развития промышленности, сельского хозяйства, туризма, энергетики, проектов инфраструктуры. Специфика рыночно-ориентированной экономики страны с ограниченным государственным вмешательством.
контрольная работа [19,1 K], добавлен 05.12.2010Особенности промышленного развития Красноярского края как наиболее обеспеченной природными ресурсами территории России. Экономика региона в 1950-80-х, 90-х гг.; современное состояние металлургии, энергетики, химической и нефтедобывающей промышленности.
реферат [478,5 K], добавлен 19.10.2012Ознакомление с состоянием и динамикой развития сфер финансов и кредитов, сельского хозяйства, промышленности, энергетики, транспортной инфраструктуры, внешней торговли, индустрии туризма, областей образования, здравоохранения и религии Ботсваны.
реферат [20,3 K], добавлен 01.05.2010Исследование географического положения, религии, уровня развития экономика, сельского хозяйства и энергетики Таиланда. Изучение государственного устройства Монголии, истории создания империи Чингисхана. Туризм и достопримечательности Ирана и Турции.
презентация [4,2 M], добавлен 09.12.2012Анализ экономического развития Алжирской Народной Демократической Республики в сфере сельского и лесного хозяйств, промышленности, энергетики, транспорта, торговли, денежной системы и туризма. Оценка состояния здравоохранения и образования в Алжире.
реферат [831,7 K], добавлен 07.05.2010Состав отраслей промышленности мирового хозяйства, характеристика топливной энергетики, горнодобывающей, металлургической промышленности, машиностроения и др. отраслей. География сельского хозяйства, рыболовства, транспорта. Трудовые ресурсы и занятость.
реферат [47,3 K], добавлен 10.06.2010