Навигационная метеорология и океанография

Предмет и задачи навигационной гидрометеорологии. Порядок использования и расшифровки информации, полученной при использовании судовых метеорологических приборов. Воздушные массы и атмосферные фронты. Рассмотрение основных характеристик Мирового океана.

Рубрика География и экономическая география
Вид курс лекций
Язык русский
Дата добавления 21.09.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Вступление

Лекция 1 Состав и строение атмосферы. Тепловий режим атмосфери

Лекция 2 Вода в атмосфере. Облака и их международная классификация

Лекция 3 Атмосферное давление и плотность воздуха

Лекция 4 Методы краткосрочного прогноза погоды

Лекция 5 Ветровые течения в атмосфере

Лекция 6 Воздушные массы и атмосферне фронты. Циклоны и антициклоны, погода в них

Лекция 7 Тропические циклоны

Лекция 8 Мировой океан и его основные характеристики

Вступление

мировой океан метеорологический атмосферный

Опорный конспект лекций по дисциплине «Метеорология и океанография» подготовлен согласно требованиям компетентности «Планирование и проведение перехода и определение местоположения (табл. А-II/1). Знание, понимание и профессионализм: Метеорология». Согласно этим требованиям курсанты за время обучения ознакомятся:

- с характеристиками разных систем погоды, порядком передач информации и системы записи;

- с порядком использования и расшифровки информации, полученной при использовании судовых метеорологических приборов;

- с умением использовать полученную метеорологическую информацию;

- научатся понимать и читать синоптическую карту и прогнозировать погоду в районе плавання;

- учитывать местные метеорологические условия и метеорологическую информацию, полученную по факсимильной связи.

Лекция 1 Состав и строение атмосферы. Тепловой режим атмосферы

1. Предмет и задачи навигационной гидрометеорологии

2. Метеорологические елементы и явления

3. Состав и строение атмосферы

4. Солнечная радиация и ее ослабление в атмосфере

5. Теплообмен океана и атмосферы

6. Температурные градиенты и стратификация атмосферы

7. Температурные инверсии

8. Суточные и годовые колебания температуры

9. Карты изотерм Мирового океана

1. Предмет и задачи навигационной гидрометеорологии

Опыт мореплавания показывает, что от погодных условий зависят как безопасность плавания, так и экономическая эффективность рейса. Умение хорошо ориентироваться в любых погодных условиях и в полной мере использовать гидрометеорологическую информацию от метеорологических служб различных стран, а также личные наблюдения за погодой и морем, позволяет значительно сократить время перехода судна из одного порта в другой, осуществлять более эффективное ведение промысла, обезопасить в пути следования и стоянки судна в порту, предотвратить шторм, ураган, туман и потерю перевозимых грузов, создать более комфортные условии плавания для экипажа, пассажиров и т. д. Для этого судоводителю необходимо уметь:

разбираться в физических процессах и явлениях, происходящих в атмосфере, морях и океанах;

правильно оценивать влияние тех пли иных погодных и гидрологических условий на судно;

использовать в навигационной практике факсимильные карты погоды, штормовые предупреждения, прогнозы погоды, передаваемые метеорологическими центрами разных стран:

учитывать местные признаки погоды (наблюдаемые с судна) для уточнения официальных прогнозов погоды;

грамотно оценивать рекомендации по выбору наивыгоднейшего пути плавания в зависимости от гидрометеорологических условий.

Процессы и явления, которые действуют в атмосфере и в океанах, их взаимосвязь и географическое распределение, изучаются в науках - морская метеорология и океанография.

Метеорология (от греческого слова "метеос" - високо в воздухе и "логос" -рассказ или размышление). Этот термин использовал Аристотель в своей "Метеорологии" (384 г. до н.э.), и он означает "изучение природы всех физических явлений в небе, земле или море".

Морская метеорология - наука, которая исследует особенности явлений, которые действуют в атмосфере над океанами, и которая устанавливает причины зависимости между ними.

Основным методом исследования в метеорологии и океанографии являются наблюдения. Для этой цели во многих точках земного шара организованы гидрометеорологические сухопутные и судовые станции, имеются «корабли погоды», автоматические плавающие буйковые и метеорологические станции, обсерватории и институты, на которых ведутся и обрабатываются непрерывные наблюдения за состоянием воздушной и водной оболочек Земли.

2. Метеорологические элементы и явления

Состояние атмосферы у земной поверхности, характеризуемое совокупностью значений метеорологических элементов и явлений, а также последовательным изменением их за определенный промежуток времени, называется погодой.

Метеорологическими элементами называют качественные и количественные характеристики, выражающие физическое состоянии атмосферы и происходящих в ней процессов. К ним относят атмосферное давление, температуру воздуха, влажность воздуха, ветер, облачность, количество и вид осадков, видимость, туман, метель, грозу, солнечную радиацию, продолжительность солнечного сияния и др.

Часто те метеорологические элементы, которые наблюдаются визуально, называют атмосферными явлениями (или просто явлениями), Это - осадки, туманы, метели, грозы, зарницы, полярные сияния, пыльные бури,

Метеорологические элементы и явления оказывают существенное влияние как на безопасность мореплавания, так и на использование технических средств судовождения и экономические показатели морских перевозок.

Погода и состояние моря очень изменчивы во времени и пространстве. Однако для данного географического района или местности можно установить наиболее характерные условия, т. е. многолетний режим метеорологических и гидрологических элементов.

К океанографическим (гидрологическим) элементам и явлениям относятся волнение, уровень, температура воды, течения, соленость, плотность, приливы и др.

Совокупность гидрометеорологических условий, присущих данному району в зависимости от ее географической обстановки, называют климатом.

3. Состав и строение атмосферы

Атмосфера - газообразная (воздушная) оболочка Земли. Масса ее составляет 5·10 15 т, что в миллион раз меньше массы литосферы и в 250 раз меньше массы гидросферы. Плотность воздуха быстро убывает с высотой, поэтому основная часть массы атмосферы сосредоточена в нижних слоях.

Земная атмосфера находится в постоянном движении: во вращательном движении ·Земли. В результате этих движений атмосфера Земли представляет собой хорошо перемешанную механическую смесь газов, состоящую (в %): из азота-78, кислорода -21, аргона -0,9, водорода -0,1, а также гелия, озона, метана и др. В состав атмосферы входят в переменных количествах водяной пар (от 0 до 4%), углекислый газ (до 0,03 %), а также мельчайшие частицы неорганического и органического происхождения (космическая пыль и др.) размером от 1 10 -7 до 5·10 -2 см.

Азот, кислород и другие составляющие атмосферного воздуха находятся в атмосфере всегда в газообразном состоянии, т.к. критические температуры, т.е. температуры, при которых они могут находиться в жидком состоянии, много ниже температур, наблюдаемых у поверхности Земли. Исключение составляет углекислый газ. Однако для перехода в жидкое состояние кроме температуры необходимо еще достижение состояния насыщения. В атмосфере углекислого газа немного (0,03%) и он находится в виде отдельных молекул, равномерно распределенных среди молекул других атмосферных газов.

Постоянство газового состава воздуха обеспечивается интенсивным перемешиванием нижнего слоя воздуха. Это однородная или гомогенная среда.

В атмосферном воздухе есть еще жидкие, твердые и газообразные частицы естественного и антропогенного происхождения (аэрозоли). Естественные примеси в атмосфере - это продукты извержения вулканов, пыльца растений, пыль с поверхности земли, частицы горных пород, соль с морей и океанов, капли и кристаллы воды, из которых состоят облака, туманы, дымка, органические аэрозоли, которых в атмосфере очень много, и др. Из межпланетного пространства атмосфера получает ежегодно от 2 до 5 млн.т космической пыли. В верхних слоях атмосферы сгорает огромное количество метеоритов, оставляя дым и пыль.

Антропогенные примеси в атмосферном воздухе - это выбросы промышленных предприятий и транспорта.

Состояние воздуха над океанами.

Океан занимает почти три четверти поверхности Земли. Он является мощным постоянно действующим поставщиком аэрозольного вещества в атмосферу. Значительная доля аэрозольных частиц возникает в результате испарения капель морской воды и содержит в основном легкорастворимые гигроскопические морские соли.

Над океанами наблюдаются аэрозоли и минерального происхождения. Это наблюдается при выносе пыли из Сахары в Атлантику, из пустынь Центральной Азии в океан, из Аравийских пустынь в северную часть Индийского океана. Пыли бывает так много, что она значительно ухудшает видимость и создает сложные условия плавания. Такие явления наблюдаются у западных берегов Африки в северной части Атлантики и в других местах.

В воздухе над океанами много водяного пара. Относительная влажность в среднем составляет 80%. В приводном слое воздуха содержатся ионы морских солей, что по медицинским наблюдениям, благоприятно влияет на здоровье человека. Мировой океана, занимающий большую часть нашей планеты и покрытый зелеными водорослями, является поставщиком кислорода для всей планеты. Углекислый газ интенсивно поглощается морскими зелеными водорослями. Над океанами в воздухе в два-три раза меньше углекислого газа, чем в среднем для атмосферы.

С высотой вертикальная неоднородность атмосферы наиболее отчетливо проявляется в характере изменения температуры воздуха. По этому признаку атмосферу принято делить на пять основных слоев (сфер) и четыре переходных слоя (паузы): тропосферу, стратосферу, мезосферу, термосферу, экзосферу, тропопаузу, стратопаузу, мезопаузу и термопаузу.

Наиболее характерной особенностью тропосферы является в целом падение температуры воздуха с высотой (на верхней границе тропосферы температура падает до -75, -85 "С), хотя здесь могут встречаться небольшие по вертикальной протяженности слои, где температура не меняется (это слои изотермии) или даже растет с высотой (слои инверсии).

Тропосферный воздух нагревается и охлаждается преимущественно от поверхности Земли. В этом слое содержится почти весь водяной пар, происходит образование туманов и облаков, атмосферных осадков и т. д., т. е. протекают основные процессы погоды.

Тропосфера от стратосферы отделена довольно четко выраженным переходным слоем толщиной 1-2 км - тропопаузой. Высота ее меняется от экватора (до 18 км) к полюсам (до 5-6 км) и от лета (располагается выше) к зиме (высота ее уменьшается). Кроме того, высота тропопаузы испытывает как периодические (сезонные и суточные), так и непериодические колебания, обусловливаемые синоптическими процессами в атмосфере.

Выше тропопаузы располагается стратосфера -50 км слой атмосферы, наиболее характерными свойствами которого являются возрастание общей и относительной концентрации озона (О3), образующегося из молекулярного кислорода под влиянием ультрафиолетовой радиации, и рост температуры воздуха с высотой (до 0 °С). Роль озона в земной атмосфере исключительно велика, хотя его общее количество ничтожно мало (1 Ч 10-6 %). Слой озона сильно поглощает ультрафиолетовую радиацию Солнца и тем самым защищает органическую жизнь планеты от губительного жесткого излучения.

Выше 55 км располагается мезосфера, которая характеризуется понижением температуры с высотой. К мезопаузе (80- 85 км) температура понижается до - 80 °С.

Над мезопаузой располагается наиболее мощный слой атмосферы - термосфера, характеризующаяся непрерывным ростом температуры с высотой. Термосфера простирается до высот 800- 1000 км, где переходит в экзосферу, также характеризующуюся ростом температуры до значений 1000-3000°К. Столь высокие значения температуры воздуха в верхних слоях атмосферы являются лишь мерой кинетической энергии молекул и атомов газов.

В плане взаимодействия атмосферы и земной поверхности атмосферу делят на планетарный пограничный слой (слой трения) толщиной 1 -1,5 км и свободную атмосферу. Нижняя 30-50-метровая часть планетарного пограничного слоя носит название приводного (приземного) слоя атмосферы. Этот слой характеризуется наибольшими вертикальными градиентами метеорологических полей. Именно в этом слое происходит в основном вся хозяйственная деятельность человека.

По электрическому состоянию атмосферу делят на нейтросферу (до высот 40 км), переходный слой и ионосферу (более 80 км). На высотах 80-100 км все газы почти полностью ионизированы, а концентрация электронов достигает 10 6 в 1 см3. За счет высокой подвижности электронов проводимость ионосферы в 1012- 1014 раз выше проводимости нейтросферы. В ионосфере выделяют слои D, Е, F\ и Fn, где наблюдаются относительные максимумы концентрации электронов. При распространении радиоволн в атмосфере все эти слои играют определенную роль.

Еще более неоднородна атмосфера (особенно ее нижняя часть - тропосфера) в горизонтальном направлении. Неоднородность обусловливается главным образом неравномерным нагревом атмосферного воздуха, вызывающим неравномерное распределение атмосферного давления. Приземная атмосфера расчленена на отдельные объемы воздуха, имеющие более или менее однородные свойства,- воздушные массы. Воздушные массы, обладающие различными термодинамическими свойствами, разделяются переходными зонами - атмосферными фронтами. На особо обостренных атмосферных фронтах могут зарождаться мезомасштабные вихри - циклоны и антициклоны, способствующие широтному воздухообмену на планете.

В результате воздействия указанных сил атмосфера находится в постоянном и непрерывном движении. Совокупность результирующих горизонтальных и вертикальных движений носит название общей циркуляции атмосферы.

Хотя общая циркуляция атмосферы имеет сложный и постоянно меняющийся характер, основные ее закономерности сохраняются длительное время и служат наряду с другими факторами важными элементами климата обширных районов Земли.

4. Солнечная радиация и ее ослабление в атмосфере

Атмосферные процессы сопровождаются перераспределением огромных количеств энергии (в конечном счете все виды энергии - тепло). Для нашей планеты существуют три потенциальных источника тепловой энергии: лучистая энергия Солнца (солнечная радиация), энергия звезд и солнечная, отраженная от Луны, и, наконец, внутреннее тепло остывающей Земли, поступающее на поверхность в результате тектонических процессов с термальными водами, гейзерами и пр. Энергия звезд и внутреннее тепло Земли ничтожно мало по сравнению с солнечной радиацией, поэтому лучистую энергию Солнца рассматривают как единственный источник всех энергетических процессов на Земле.

Распределение энергии в спектре Солнца по длинам волн неравномерно. Его можно аппроксимировать законом Планка. Около 99% солнечной энергии приходится на длины волн г от 0,1 до 4 мкм. Эти волны называются короткими. Только один процент солнечной энергии приходится на длинные волны (г > 4 мкм). В коротковолновом участке солнечного спектра можно выделить ультрофиолетовые волны (0,1 - 0,4 мкм), видимые волны (0,4 - 0,78 мкм) и ближние инфракрасные волны (0,78 - 4 мкм). На видимый участок солнечного спектра приходится почти половина энергии, излучаемой Солнцем. В видимом участке спектра самые короткие фиолетовые волны, а самые длинные - красные.

На ультрафиолетовую часть приходится около 5%, видимую - 52% и на инфракрасную - 43 %. В видимом участке спектра самые короткие фиолетовые волны. Максимум солнечного излучения приходится на волны длиной 0,47 мкм, что соответствует сине-голубому участи солнечного спектра. Самые длинные волны - красные.

У поверхности Земли на ультрафиолетовую часть спектра приходится около 1 %, видимую - около 40 % и инфракрасную - около 60 %. Максимум излучения здесь приходится на длины волн около 0,56 мкм, что соответствует желто-зеленому участку спектра.

Солнечная радиация в атмосфере поглощается преимущественно озоном (ультрафиолетовые лучи), водяным паром и углекислым газом, также облаками и твердыми частицами примесей. В солнечном спектре у Земли не наблюдаются волны короче 0,29 мкм.

Атмосферный воздух - оптически неоднородная среда, рассеивающая лучистую энергию Солнца. В результате чего, например, освещаются места, куда не проникают прямые солнечные лучи. Рассеяние лучистой энергии в атмосфере происходит двояко: на молекулах и в аэрозоле. Интенсивность молекулярного и аэрозольного рассеяния различны. В результате этого процентное содержание лучей различной длины волн постоянно меняется, меняется и цвет небесной сферы, солнечного диска и пр. Электромагнитное коротковолновое излучение Солнца поступает к земной поверхности в виде прямой радиации, рассеянной и суммарной.

5. Теплообмен океана и атмосферы

Температура поверхности Земли в среднем составляет 15° (288 К). Имея такую температуру, Земля излучает в атмосферу в основном длинноволновую инфракрасную (тепловую) радиацию. Длина волны, на которую приходится максимум энергии, составляет 10 мкм.

Атмосфера поглощает значительную часть длинноволнового излучения земной поверхности. Основными поглотителями длинноволновой радиации являются углекислый газ (СО2 ) и особенно вода (Н2 О), поскольку воды в атмосфере много. Облака состоят из жидкой (капли), твердой (кристаллы) и газообразной (водяной пар) воды. Они интенсивно поглощают длинноволновое излучение Земли, действуя как изоляционный слой, подобно стеклянным стенкам парника. Такое воздействие носит название парникового эффекта.

Тепловое состояние земной поверхности может характеризоваться, таким образом, разностью между теплом поглощенным и эффективным излучением. Эта разность называется радиационным балансом. Радиационный баланс может быть как положительным, так и отрицательным. Он переходит от положительных дневных к отрицательным ночным значениям перед заходом Солнца при высотах его 10-15°. Наличие снежного покрова увеличивает этот угол до 20-25°. Радиационный баланс моря на 10-20 % больше баланса суши за счет меньших значений альбедо воды, так как эффективное излучение этих поверхностей практически одинаково. Среднее многолетнее значение радиационного баланса равно нулю.

Большая часть солнечной энергии поглощается земной поверхностью, которая вследствие своей физической неоднородности (океан, суша, различия в рельефе, холодные и теплые течения и т. д.) нагревается неодинаково. Различно будет нагреваться и атмосферный воздух, прилегающий к этой поверхности. Более теплые объемы воздуха (как более легкие) будут подниматься вверх, а более холодные - опускаться вниз. Перемещения воздуха за счет различий плотности будут носить турбулентный характер и тем интенсивнее, чем быстрее падает температура воздуха с высотой. Такая турбулентность носит название термической турбулентности, или конвекции. Таким образом, тепло от ПП к атмосфере передается наряду с молекулярной и конвективной теплопроводностью.

Влияние радиационных факторов на перевозимые грузы.

В тропических широтах днем корпус судна в результате поглощения солнечной радиации сильно перегревается. Непосредственно на палубных перекрытиях температура может достигать 60-70°С. Это оказывает заметное воздействие на грузы, чувствительные к высоким температурам. Изменяется температурно-влажностный режим и в трюмах под палубой. В ночное время, при отрицательном радиационном балансе, корпус судна может стать холоднее наружного воздуха. Тогда температура охлаждающихся поверхностей может опуститься ниже точки росы трюмного воздуха. Такие колебания особенно велики в трюмах, расположенных над ватерлинией.

6. Температурные градиенты и стратификация атмосферы

Все метеорологические элементы изменяются в пространстве и во времени, т. е. являются функциями координат точки и времени. Пространственное распределение метеорологических элементов называют полями этих элементов. Изменчивость метеорологического элемента в пространстве удобно характеризовать градиентом этого поля. Градиентом метеорологического поля называется падение данной величины по нормали к поверхности равного значения этой величины, рассчитанное на единицу расстояния.

Для практических целей нецелесообразно оперировать пространственными градиентами метеорологических элементов, а находят их проекции на горизонтальную (уровенную) поверхность - горизонтальный градиент и вертикальную ось - вертикальный градиент. Вертикальный температурный градиент - -- обозначается г и единицей измерения для него является градус температуры на 100 м высоты. Горизонтальный температурный градиент - измеряется в градусах на градус меридиана (примерно 100 км).

Падение температуры с высотой в среднем составляет 0,65°С на 100 м высоты. Уменьшение температуры с высотой объясняется наличием снежных шапок на вершинах гор даже в экваториальных широтах. Это является основной причиной того, что абсолютный минимум температуры на поверхности Земли (-89°С) наблюдается именно в южном полушарии, в центре Антарктиды, где высота над уровнем моря составляет более 4000 м. В северном полушарии абсолютный минимум темпертуры составляет -69°С. Наблюдается он в Якутии, примерно на уровне моря.

Стратификация атмосферы и погода.

При условии, если подстилающая поверхность теплая, а воздух холодный, температура с высотой быстро падает (более 1°С на 100 м высоты) в атмосфере развиваются вертикальные движения. Такая стратификация (распределение температуры с высотой) называется неустойчивой (рис.5).

Теплый воздух поднимается вверх, возникает термическая конвекция. Возможно образование и развитие конвективной облачности со всеми сопутствующими явлениями (ливневыми осадками, градом и т.д.).

Неустойчиво стратифицирован воздух в экваториальных широтах. В умеренных широтах неустойчивая стратификация наблюдается в тыловых частях циклонов и граничащих с ними антициклонов. Видимость там хорошая за исключением зоны выпадающих осадков.

При инверсионном распределении температуры с высотой стратификация воздуха устойчивая. Инверсия может образовываться непосредственно у поверхности Земли в результате радиационного охлаждения самого нижнего слоя воздуха, либо в некотором удаленном от поверхности Земли слое (рис.4). Причиной устойчивой стратификации может быть адвекция (горизонтальный перенос) теплой воздушной массы над слоем холодного воздуха или же результат опускания и нагревания воздуха. Такой устойчивый слой в атмосфере образует как бы потолок для конвекции, через который она пробиться не может. Под инверсией скапливаются примеси, ядра конденсации, водяные пары, принесенными сюда конвективными токами из нижних слоев атмосферы. Инверсия является верхним пределом, ниже которого образуется слоистая или слоисто-кучевая облачность.

Стратификация атмосферы будет устойчивой и при изотермии, то есть при постоянстве температуры с высотой, и даже при падении температуры с высотой, если это падение меньше, чем 1°С на 100 м высоты. Устойчивая стратификация препятствует развитию вертикальных движений. В таких условиях невозможно образование и развитие конвективной облачности. В холодное время года при устойчивой стратификации образуются туманы. Во все времена года с такой стратификацией связано ухудшение видимости, увеличение концентрации примесей в атмосфере.

7. Температурные инверсии

Наиболее характерное изменение температуры воздуха с высотой в тропосфере - ее падение со средней скоростью около 0,7 °С на 100 м. Однако в реальных условиях могут встречаться слои воздуха, где температура с высотой постоянна (г = 0) или растет (г>0). В первом случае такие слои носят название изотермических, во втором - инверсионных.

По своей сути инверсионные слои - примеры предельной устойчивости в атмосфере. Они задерживают поток водяного пара вверх, гасят вертикальные движения воздуха и играют большую роль в распространении электромагнитных и звуковых волн и атмосфере. По причине образования инверсии делятся на радиационные и адвективные. Первые чаще образуются на суше и над ледяными полями в море и связаны с антициклонами и тыловыми частями циклонов, вторые - нередки в районах холодных океанских течений и обусловливаются теплыми фронтами циклонов. Зачастую радиационные и адвективные инверсии сопровождаются одноименными туманами.

8. Суточные и годовые колебания температуры

Приток солнечной радиации к ПП имеет суточный и годовой ход, поэтому и температура этой поверхности также имеет суточную и годовую перш личность. Вследствие этого атмосферный воздух в приземном слое также будет иметь аналогичные колебания.

Наиболее прост и отчетлив суточный ход температуры воздуха в глубине континентов во время установившейся погоды (мало меняющаяся облачность, отсутствие адвекции тепла и пр.). В этом случае суточный ход температуры представляет собой синусоиду с минимумом около времени восхода солнца и максимумом через 2-3 ч после полудня (14-15 ч местного времени).

Суточные и годовые колебания температуры воздуха над морем существенно отличны от этих изменений над сушей. Это происходит вследствие трех причин: 1) коротковолновая радиация Солнца проникает в воду до нескольких десятков метров, а на суше она поглощается тонким (несколько микрон) поверхностным слоем; 2) турбулентный характер морских течений многократно увеличивает поток тепла на глубину; 3) различия в теплоемкости воды и суши. В результата суммарного воздействия этих причин суточные колебания температуры в воде распространяются до глубин десятков метров, а в почве -0,8-0,9 м. Годовые колебания температуры воды в океане ощущаются на глубинах до сотен метров, а в почве-10-20 и. Все вышесказанное приведет к тому, что амплитуда суточных колебаний температуры поверхности воды в десятки раз меньше, чем поверхности почвы. Поэтому амплитуда суточных изменений температуры воздуха над водой будет значительно меньше, чем над сушей. Например, максимальная суточная амплитуда температуры воздуха над морем наблюдалась летом на широте 36° и составляла 1,5 "С, а минимальная - зимой на широте 64° и не превышала 0,2 °С.

В первом приближении распределение температур можно описать как широтное. Широтное распределение изотерм наблюдается в центральных частях Тихого и Атлантического океанов. Это особенно справедливо для Южного полушария, где кроме нескольких исключений, изотермы следуют строго вдоль параллелей. В соответствии с этим, самые высокие температуры воздуха и водной поверхности (до 28°С) наблюдаются в тропиках. Есть относительно немного областей, где температура воды достигает 29°С. Самая высокая температура воды (33°С) наблюдается в центральной части Персидского залива в августе.

Температура воздуха в приводном слое тропической зоны 30° с.ш. до 30° ю.ш. равна или чуть ниже (до 0,5°С) температуры воды. В средних широтах воздух летом несколько теплее воды, а зимой холоднее. Самая низкая температура морской воды ограничена точкой замерзания (-2°С), а при низкой солености точка замерзания 0°С. Такие температуры наблюдаются у Арктики и Антарктики, вблизи ледяных полей. Температура воздуха там может достигать значительных отрицательных величин.

Годовой ход температуры воздуха над морем в целом параллелен годовому ходу температуры поверхности моря.

В зависимости от широты места выделяют четыре типа годового хода температуры воздуха (над океаном).

Экваториальный тип. Амплитуды здесь минимальные и составляют 1-2°. В годовом ходе два максимума - в периоды весеннего и осеннего равноденствий и два минимума - во время зимнего и летнего солнцестояний.

Тропический тип. В тропиках амплитуда составляет 5-10°, в годовом ходе один максимум (после летнего солнцестояния) и один минимум (после зимнего солнцестояния).

Тип умеренного пояса. Годовой ход здесь простой - один максимум (в июле) и один минимум (в январе). Амплитуда может достигать 10-15°. На побережьях морей и океанов она увеличивается до 20-25°.

Полярный тип. Полярные районы характеризуются уменьшением годовых амплитуд, холодной зимой и коротким сравнительно теплым летом. Минимум температуры наблюдается в конце полярной зимы (март), а максимум - в конце полярного лета (август).

В районах побережий, где заметно влияние муссонной циркуляции, годовой ход температуры воздуха похож на экваториальный тип, но характеризуется большими амплитудами.

9. Карты изотерм Мирового океана

Систематические наблюдения за температурой воздуха на планете ведутся уже продолжительное время. Хотя таких наблюдений над поверхностью Мирового океана значительно меньше, чем над сушей, тем не менее, наука располагает достаточными данными для построения карт средних многолетних значений температур воздуха над морем. Обычно представляют интерес карты средних температур полярных сезонов года - карты январских и июльских изотерм. Анализ карт показывает, что в соответствии с широтным убыванием притока лучистой энергии Солнца температура воздуха у земной поверхности уменьшается от экватора к полюсам. Наблюдается существенное отклонение изотерм от широтных кругов. Особенно это заметно в северном полушарии, где площадь материков больше и их влияние более заметно. В районе холодных и теплых океанских течений заметны мощные вторжения («языки») тепла и холода соответственно. В некоторых местах Земли заметны системы замкнутых изотерм с минимальными и максимальными значениями средних температур. Это так называемые полюса холода и тепла планеты. В северном полушарии минимум ( - 71 °С) наблюдается у Верхоянска (Оймякон), а в южном - на советской антарктической станции «Восток», где зарегистрирована самая низкая на Земле температура - 88,3°. Самые высокие температуры наблюдались в Ливане (Триполи) +54,5° и на юге Ирана +58,2°.

Площадь материков в северном полушарии больше, чем в южном, поэтому в среднем северное полушарие на 2° теплее южного, а термический экватор не совпадает с географическим и располагается на параллели 10° с. ш.

Карты изотерм Мирового океана необходимы судоводителю во время подготовки к плаванию в различных климатических зонах и связанных с ним расчетов изменения осляки, микроклимата трюмов и пр. Эти карты имеются во всех климатических справочниках и атласах.

Вопросы для самоконтроля

1. Что изучает гидрометеорология?

2. Каковы методологические особенности гидрометеорологии?

3. Что собой представляют метеорологические элементы и явления?

4. Дать характеристику состава атмосферы.

5. Каковы особенности строения атмосферы?

6. Каковы особенности спектра солнечной радиации?

7. Что собой представляет прямая, рассеянная, саммарная и отраженная солнечная радиация?

8. Охарактеризуйте суточный и годовой ход температуры поверхности океана.

9. Что собой представляет конвективный и турбулентный поток тепла?

10. В чем заклечаються индивидуальные и адвективные изменения температуры?

11. Что такое вертикальный температурный градиент?

12. Охарактеризовать адиабатические процессы в атмосфере.

13. Как происходит изменение температуры атмосферы с высотой?

14. Дать понятие процессам изотермии и инверсии.

15. Дать характеристику суточного и годового изменения температуры в атмосфере.

16. Каковы особенности географического распределения температуры воздуха?

Лекция 2 Вода в атмосфере. Облака и их международная классификация

1. Испарение. Характеристики влажности воздуха

2. Суточные и годовые колебания характеристик влажности

3. Конденсация водяного пара

4. Понятия туманов и облаков

5. . Классификация облаков и туманов

6. Связь облачных структур с типом погоды.

7. Атмосферные осадки

8. Влияние осадков на дальность видимости и работу судовых РЛС

1. Испарение. Характеристики влажности воздуха

В атмосфере Земли в каждый момент времени содержится около 0,001 % всех запасов воды планеты. Причем 95% этого количества находится в виде пара и лишь 5% в виде продуктов конденсации. Всего с поверхности Земли за год испаряется около 5,2.*1013 т воды. Основная масса испаряется с поверхности Мирового океана (4,5 1013 т). За год атмосферная влага обновляется примерно 40 раз за счет непрерывного кругооборота: испарение, конденсация и выпадение на поверхность в виде осадков.

Наша планета Земля - единственная из всех планет солнечной системы, на которой вода может в естественных условиях находиться во всех трех фазовых состояниях. Будь Земля несколько ближе к Солнцу, не была бы жидкой воды. Процесс испарения представляет собой фазовый переход вещества (воды) из жидкого в газообразное состояние. При этом молекулы воды как покидают жидкость (испарение), так и возвращаются в нее (конденсация). Конденсация вызывает такие метеорологические явления как роса, иней, дымка, туман, облака, осадки.

Влагосодержание в воздухе характеризуется следующими величинами:

1) абсолютная влажность «а»-количество водяного пара (г), находящегося в 1 м 3 влажного воздуха; Между абсолютной влажностью а и плотностью водяного пара р п существует очевидная связь

а = 10 3 р п (1)

2) упругость водяного пара е (мм рт. ст., гПа) - парциальное (внутреннее) давление пара в смеси с абсолютно сухим воздухом. Между упругостью водяного пара и абсолютной влажностью воздуха установлена следующая зависимость:

a = е, (2)

где Ь - коэффициент расширения воздуха;

t-температура, °С;

3) максимальная упругость водяного пара (упругость насыщения) Е, гПа,- предельное количество водяного пара, которое может содержать воздух при данной температуре. Упругость насыщения Е, зависит от температуры воздуха и в меньшей степени от атмосферного давления;

4) относительная влажность воздуха ѓ-отношение фактической упругости водяного пара, находящегося в воздухе, к упругости насыщения при той же температуре:

ѓ = 100% (3);

5) дефицит влажности d (недостаток насыщения) - разность между упругостью насыщения Е, и фактической упругостью при одинаковой температуре;

6) точка росы td - температура, при которой водяной пар, находящийся в атмосфере, достигает состояния насыщения водяным паром при постоянном общем атмосферном давлении (е = Е; ѓ=100 %; d = 0).

7). Массовая доля водяного пара (s) - масса водяного пара в 1 кг влажного воздуха. Измеряется в килограммах на килограмм (кг/кг), в граммах на килограмм (г/кг) или в промилле (‰).

2. Суточные и годовые колебания характеристик влажности

Практический интерес для нужд судовождения представляют временные колебания абсолютной (е, гПа) и относительной (ѓ, %) влажности воздуха. Поскольку влагосодержание воздуха зависит в первую очередь от температуры, а последняя имеет ярко выраженные суточные и годовые колебания, то и характеристики влажности имеют суточные и годовые изменения. Суточный ход абсолютной влажности воздуха над морем аналогичен суточному ходу температуры воздуха. Максимальные значения наблюдаются в 14-15 ч, минимальные - около восхода Солнца. Суточный ход относительной влажности над водой также параллелен суточному ходу температуры воздуха. Это происходит от того, что с ростом испарения в дневные часы влагосодержание растет, а упругость насыщения Et изменяется незначительно, так как амплитуда суточных колебаний температуры воздуха над водой мала.

Годовой ход абсолютной влажности совпадает с годовым ходом температуры. В северном полушарии, например, максимум приходится на июль, минимум - на январь.

Годовые вариации относительной влажности, напротив, имеют максимальные значения зимой, минимальные - летом.

3. Конденсация водяного пара

Вода - самое распространенное и единственное вещество планеты, которое может находиться в естественных условиях сразу в нескольких фазовых соединениях: газообразном, жидком и твердом. Фазовое равновесие воды осуществляется при температуре около 0 °С и упругости пара е=6,1 гПа.

По своей природе ядра конденсации подразделяются на четыре группы:

- наземные (частицы вулканической пыли, почвы, пыльца растений и пр.),

- промышленного происхождения (продукты горения, пары кислот, щелочей, солей и т. д.),

- частицы морской соли

- неизвестные частицы (космические, продукты фотосинтеза и атмосферных химических реакций

С высотой концентрация ядер конденсации быстро падает и на высотах 10 км, например, составляет не более одного на 1 см3 (т. е. соответствует числу капель в облаках на этих высотах).

4. Понятия туманов и облаков

Облака состоят из крошечных капелек воды и (или) ледяных кристаллов, которые образуются в результате конденсации водяного пара.

Продукты конденсации или сублимации водяного пара в воздухе - мельчайшие капли воды или ледяные кристаллы. В зависимости от концентрации мельчайших частиц в воздухе изменяется величина видимости. Большие объемы воздуха, где образуются скопления продуктов конденсации и сублимации, называются туманом, дымкой или облаком. Если помутнение атмосферного воздуха каплями воды или ледяными кристаллами невелико (дальность видимости меньше 10 км, но больше 1 км), это явление называется дымкой. Если же дальность видимости при помутнении становится меньше 1 км, то такое явление носит название тумана. Облака и туманы образуются при разных условиях, но принципиальной разницы в их природе нет. Когда конденсация происходит непосредственно у земной поверхности и приводит к помутнению атмосферного воздуха - это туман или дымка, а если же на некоторой высоте от поверхности - это облака.

5. Облака их классификация

Форма, размеры, высота нижнего основания, вертикальная мощность, и характер облаков зависят от условий, при которых они образовывались. Поэтому, они служат индикаторами различных процессов, происходящих в атмосфере. Возможности распознавать различные формы облаков, и знание сопутствующих им условий используются в предсказании погоды.

Разнообразие облаков бесконечно. Однако их можно классифицировать по общим признакам. По высоте нижней границы они группируются в три яруса. Облака верхнего яруса находятся на высотах более 6000 м. Температуры там отрицательные и облака состоят преимущественно из ледяных кристаллов. Облака среднего яруса находятся на высотах между 2000 и 6000 м. В теплое время года они жидко-капельные, хотя верхние их слои содержат ледяные кристаллы. Облака нижнего яруса находятся на высотах менее 200- м. В теплое время года они состоят полностью из капель, зимой - из кристаллов. Указанные высоты характерны для умеренных широт. В низких широтах они расположены выше, а в полярных районах - на меньших высотах.

Кроме этих трех групп есть еще облака вертикального развития, которые начинаются в самом нижнем ярусе и могут простираться до тропопаузы.

Выделяют 10 основных форм облаков (рис.2). Их названия составлены из различных комбинаций следующих латинских слов:

Cirrus - нити или пучки волос,

Cumulus - груда, скопление,

Stratus - слоистые,

Alto - высокие,

Nimbus - осадки.

Отдельные формы облаков имеют различные виды и разновидности.

В зависимости от высоты нижней границы облака подразделяются на три яруса: верхний (высота основания более 6000 м), средний (от 2000 до 6000 м) и нижний (до высоты 2000 м). К облакам нижнего яруса относятся также облака, у которых нижнее основание расположено в непосредственной близости от земли, а вершины могут достигать высоты среднего и верхнего ярусов. Такие облака выделяются в отдельную группу - облака вертикального развития.

Характеристика облачности на картах приземного анализа соответствует морфологической классификации облаков с разделением их по ярусам (высоте расположения нижней кромки) на 10 основных форм:

Согласно международной классификации выделяют около 100 разновидностей (форм) облаков. В основу такой классификации положены внешний вид облаков и высота их нижнего основания.

Высота нижнего основания облаков меняется в течение года и в зависимости от широты места. В целом к высоким широтам и от лета к зиме высота облаков снижается. На практике используют средние значения высот для умеренных широт.

6. Атмосферные осадки их классификация

Классификация осадков. По виду атмосферные осадки делятся на жидкие, твердые и наземные.

К жидким осадкам относятся:

дождь - осадки в виде капель различного размера диаметром 0,5-7 мм;

морось - мелкие капельки диаметром 0,05-0,5 мм, находящиеся как бы во взвешенном состоянии.

К твердым осадкам относятся:

снег - кристаллы льда, образующие различного рода снежинки (пластинки, иглы, звезды, столбики) размером 4-5 мм. Иногда снежинки объединены в хлопья снега, размеры которых могут достигать 5 см и более;

снежная крупа - осадки в виде непрозрачных сферических крупинок белого или матово-белого (молочного) цвета диаметром от 2 до 5 мм;

ледяная крупа - твердые прозрачные с поверхности частицы, имеющие в центре непрозрачное матовое ядро. Диаметр крупинок от 2 до 5 мм;

град- более или менее крупные кусочки льда (градины), имеющие сферическую или неправильную форму и сложную внутреннюю структуру. Диаметр градин колеблется в очень широких пределах: от 5 мм до 5-8 см. Известны случаи, когда выпадали градины весом 500 г и более.

Если осадки не выпадают из облаков, а осаждаются из атмосферного воздуха на поверхности земли или на предметах, то такие осадки называются наземными. К ним относятся:

роса - мельчайшие капли воды, конденсирующиеся на горизонтальных поверхностях предметов (палубе, шлюпочных тентах и пр.) за счет радиационного выхолаживания их в ясные безоблачные ночи. Небольшой ветер (0,5-10 м/с) способствует образованию росы. Если температура горизонтальных поверхностей ниже нуля, то водяной пар в аналогичных условиях сублимируется на них и образуется иней - тонкий слой ледяных кристаллов;

жидкий налет- мельчайшие капли воды или сплошная водяная пленка, образующиеся в пасмурную и ветреную погоду на наветренных преимущественно вертикальных поверхностях холодных предметов (стенки надстроек, защитные устройства лебедок, кранов и пр.).

гололед - это ледяная корка, образующаяся при условии, если температура указанных поверхностей ниже 0 °С. Кроме того на поверхностях судна может образовываться твердый налет - слой густо или плотно сидящих на поверхности кристаллов или тонкий сплошной слой гладкого прозрачного льда.

В туманную морозную погоду при слабом ветре на оснастке судна, выступах, карнизах, проводах и пр. может образовываться зернистая или кристаллическая изморозь. В отличие от инея изморозь не образуется на горизонтальных поверхностях. Рыхлое строение изморози отличает ее от твердого налета. Зернистая изморозь образуется при температуре воздуха от -2 до - 7 °С вследствие намерзания на предмет переохлажденных капель тумана, а кристаллическая изморозь, представляющая собой белый осадок из кристаллов тонкой структуры, образуется ночью при безоблачном небе или тонких облаках из частиц тумана или дымки при температуре от -11 до -2 °С и выше.

По характеру выпадения атмосферные осадки делятся на ливневые, обложные и моросящие.

Ливневые осадки выпадают из кучево-дождевых (грозовых) облаков. Летом это крупнокапельный дождь (иногда с градом), а зимой - обильный снегопад с частой сменой форм снежинок, снежной или ледяной крупы. Обложные осадки выпадают из слоисто-дождевых (летом) и высокослоистых (зимой) облаков. Они характеризуются небольшими колебаниями интенсивности и большой длительностью выпадения.

Моросящие осадки выпадают из слоистых и слоисто-кучевых облаков в виде мелких капель диаметром не более 0,5 мм, опускающихся с очень малыми скоростями.

По интенсивности осадки подразделяются на сильные, умеренные и слабые.

7. Облака и осадки

Облака верхнего яруса.

Cirrus (Ci)- русское название перистые, отдельные высокие, тонкие, волокнистые, белого цвета, часто шелковистые облака. Их волокнистый и перистый вид вызван тем, что они состоят из ледяных кристаллов.

Cirrus появляются в виде изолированных пучков; длинных, тонких линий; перьев, похожих на дымовые факелы, изогнутых полос. Перистые облака могут размещаться параллельными полосами, которые пересекают небо и, кажется, сходятся в одной точке на горизонте. Это будет направление на область низкого давления. Из-за их высоты они становятся освещенными раньше, чем другие облака утром, и остаются освещенными после того, как Солнце зайдет. Cirrus вообще связаны с ясной погодой, но если за ними следуют более низкие и более плотные облака, то в дальнейшем может быть дождь или снег.

Cirrocumulus (Cc), русское название перисто-кучевые, - это высокие облака, состоящие из маленьких белых хлопьев. Обычно освещенности они не уменьшают. Размещаются они на небе отдельными группами из параллельных линий, часто как рябь, похожая на песок на побережье или волны на море. Cirrocumulus состоят из ледяных кристаллов и сопутствуют ясной погоде.

Cirrostratus (Cs), русское название перисто-слоистые, - тонкие, белые, высокие облака, иногда покрывающие небо полностью и придающие ему молочный оттенок, более или менее отчетливый, напоминающий тонкую запутанную сеть. Ледяные кристаллы, из которых они состоят, преломляют свет, и образуют гало с Солнцем или Луной в центре. Если в дальнейшем облака утолщаются и понижаются, то можно ждать выпадения осадков примерно через 24 часа. Это облака системы теплого фронта.

Облака верхнего яруса осадков не дают.

Облака среднего яруса. Осадки.

Altocumulus (Ac), русское название высококучевые, - облака среднего яруса, состоящие из слоя больших отдельных шарообразных масс. Altocumulus (Ac) похожи на облака верхнего яруса сirrocumulus. Поскольку они лежат ниже, их плотность, водность и размеры отдельных структурных элементов больше, чем у сirrocumulus. Altocumulus (Ac) могут различаться по толщине. Они могут быть от ослепительно белых, если они освещены Солнцем, до темно-серых, если закрывают все небо. Их часто ошибочно принимают за stratocumulus. Иногда отдельные структурные элементы сливаются и образуют ряд больших валов, подобно океанским волнам, с полосами синего неба между ними. Эти параллельные полосы отличаются от cirrocumulus тем, что они появляются на небе большими плотными массами. Иногда аltocumulus появляются перед грозой. Осадков они как правило не дают.

Altostratus (As), русское название высокослоистые, - облака среднего яруса, имеющие вид сероволокнистого слоя. Солнце или Луна, если они видны, просвечиваются, как через матовое стекло, часто с венцами вокруг светила. Гало в этих облаках не образуются. Если эти облака утолщаются, понижаются, или превращаются в низкие рваные Nimbostratus, то из них начинают выпадать осадки. Тогда следует ожидать затяжных дождей или снега (на протяжении нескольких часов). В теплое время года капли из аltostratus, испаряясь, не долетают до поверхности земли. В зимнее время они могуи давать значительные снегопады.

Облака нижнего яруса. Осадки.

Stratocumulus (Sc) русское название слоисто-кучевые - низкие облака, выглядят мягкими, серыми массами, похожими на волны. Они могут быть сформированы в длинные, параллельные валы, подобные аltocumulus. Иногда из них выпадают осадки.

Stratus (St), русское название слоистые, - низкие однородные облака, напоминающие туман. Часто их нижняя граница находится на высоте не более 300 м. Завеса плотных stratus придает небу туманный вид. Они могут лежать на самой поверхности земли и их тогда называют туманом. Stratus могут быть плотными, и так плохо пропускать солнечный свет, что Солнце вообще не видно. Они, как одеялом, покрывают Землю. Если посмотреть сверху (пробившись на самолете сквозь толщу облаков), то освещенные солнцем они ослепительно белые. Сильный ветер иногда разрывает stratus в клочья, называемые stratus fractus.

Из этих облаков зимой могут выпадать легкие ледяные иглы, а в летнее время - морось - очень мелкие капли, взвешенные в воздухе и постепенно оседающие. Морось бывает из сплошных низких stratus или из лежащих на поверхности Земли, то есть из тумана. Туман очень опасен в мореплавании. Переохлажденная морось может вызвать обледенение судна.

Nimbostratus (Ns), русское название слоисто-дождевые, - низкие, темные. Слоистые, бесформенные облака, почти однородные, но иногда с влажными клочьями под нижним основанием. Nimbostratus обычно охватывают огромные территории, измеряемые сотнями километров. На всей этой огромной территории одновременно идет снег или дождь. Осадки выпадают долгие часы (до 10 часов и больше), капли или снежинки имеют небольшие размеры, интенсивность небольшая, но за это время может выпасть значительное количество осадков. Их называют обложными. Аналогичные осадки могут выпадать еще из Altostratus, а иногда и из Stratocumulus.

Облака вертикального развития. Осадки.

Cumulus (Cu). Русское название кучевые, - плотные облака, образующиеся в поднимающемся по вертикали воздухе. При подъеме воздух адиабатически охлаждается. Когда его температура достигнет точки росы, начинается конденсация и возникает облако. Cumulus имеют горизонтальное основание, выпуклую верхнюю и боковые поверхности. Cumulus появляются в виде отдельных хлопьев, и никогда не закрывают небо. Когда вертикальное развитие небольшое, облака похожи на клочья ваты или цветную капусту. Cumulus называются облаками «хорошей погоды». Они обычно появляются к полудню, а к вечеру исчезают. Однако Cu могут сливаться с аltocumulus, или вырастать и превращаться в грозовые сumulonimbus. Cumulus отличаются большой контрастностью: белой, освещенной Солнцем, и теневой стороны.

Cumulonimbus (Cb), русское название кучево-дождевые, - массивные облака вертикального развития, поднимающиеся громадными столбами на большую высоту. Эти облака начинаются в самом нижнем ярусе и простираются до тропопаузы, а иногда заходят и в нижнюю стратосферу. Они выше самых высоких гор на Земле. Особенно велика их вертикальная мощность в экваториальных и тропических широтах. Верхняя часть Cumulonimbus состоит из ледяных кристаллов, часто растягивающихся по ветру в форме наковальни. В море вершина сumulonimbus может быть видна на большом расстоянии, когда основание облака еще находится за горизонтом.

Cumulus и сumulonimbus называют облаками вертикального развития. Они образуются в результате термической и динамической конвекции. На холодных фронтах сumulonimbus возникают в результате динамической конвекции.

...

Подобные документы

  • Фронтальные зоны, возникающие в результате подъема глубинных вод на поверхность океана. Механизм образования апвеллинга. Общая характеристика фронтов, а также особенности фронтов мировых апвеллингов. Фронты органических веществ в данных районах.

    реферат [28,8 K], добавлен 28.10.2012

  • Общая характеристика, ресурсы и тенденции освоения Мирового океана. Анализ запасов, цен и экономического значения крупнейших нефтяных и газовых месторождений мира, перспективы их использования. Виды загрязнений вод Мирового океана и способы борьбы с ними.

    курсовая работа [134,9 K], добавлен 22.07.2010

  • В условиях нехватки ископаемого сырья, когда разведанные залежи природных ресурсов на суше всё менее экономически выгодно разрабатывать, человек обращает свой взгляд на огромные территории Океана. Минеральные ресурсы Мирового океана и их разработка.

    контрольная работа [58,9 K], добавлен 15.04.2008

  • Краткая характеристика минеральных ресурсов океанов планеты. Причины возникновения экологических проблем. Усилия мирового сообщества по предотвращению вредного воздействия на воды Мирового океана. Энергия приливов и отливов. Ледники Антарктики и Арктики.

    курсовая работа [1,8 M], добавлен 31.03.2014

  • Основные черты рельефа дна Мирового океана. Ресурсы Мирового океана. Континентальный шельф, склон, континентальное подножье. Жидкая руда. Кладовые океанического дна. Глубоководные рудные осадки гидротермального происхождения. Недра морского дна.

    курсовая работа [947,3 K], добавлен 16.12.2015

  • Характеристика климатических особенностей, географического положения и значения мирового океана, через который пролегают морские и воздушные коммуникации между странами тихоокеанского бассейна и транзитные пути между странами Атлантического океана.

    презентация [896,5 K], добавлен 16.11.2010

  • Основные элементы рельефа дна, солёность и температура вод Мирового океана. Биологические ресурсы, объёмы использования и географическое распространение по океанам. Доля аквакультуры в производстве рыбы и моллюсков. Особенности рыболовного промысла.

    курсовая работа [5,4 M], добавлен 23.04.2015

  • Жидкие, газообразные, растворенные и твердые минеральные ресурсы. Самые крупные нефтегазоносные бассейны на шельфе Атлантического океана. Энергетический потенциал океанических течений. Фитопланктон и зоопланктон. Освоение ресурсов Мирового океана.

    реферат [24,0 K], добавлен 16.04.2013

  • Роль Мирового океана в жизни Земли. Влияние океана на климат, почву, растительный и животный мир суши. Характерные свойства воды — соленость и температура. Процесс образования льда. Особенности энергии волн, приливно-отливных движений воды, течений.

    презентация [2,5 M], добавлен 25.11.2014

  • Рассмотрение первых приборов по изучению метеорологии и погодных явлений. Особенности современного этапа развития метеорологии. Ученые, повлиявшие на развитие современной метеорологии. Рассмотрение связи современной метеорологии и гражданской авиации.

    дипломная работа [1,4 M], добавлен 12.03.2023

  • Характеристика и изменение ледяного покрова Мирового океана. Ледяной покров Северного и Южного полушария. Свойства морского льда: соленость, пористость, плотность, теплоемкость, теплота фазовых переходов, теплопроводность. Разновидности и дрейф льда.

    курсовая работа [1,9 M], добавлен 26.07.2015

  • Обитатели Мирового океана как источника важных ресурсов, его значение для транспорта и рекреации. Основные ресурсы Мирового океана. Классификация природных ресурсов. Подводная добыча каменного угля. Ресурсы Тихого, Атлантического и Индийского океанов.

    презентация [9,4 M], добавлен 20.01.2017

  • Основные сведения о ветре. Атмосферная циркуляция и воздушные массы. Описание турбулентности, порывистости, направления и скорости ветра. Воздушные течения в нижнем слое атмосферы. Изучение климата и ветрового режима Ханты-Мансийского автономного округа.

    курсовая работа [834,9 K], добавлен 27.03.2015

  • Силы, действующие в атмосфере. Порядки величин метеорологических элементов. Политропические изменения термодинамического состояния воздуха. Изменение состояния влажного воздуха. Абсолютный и относительный геопотенциал. Поверхности раздела в атмосфере.

    методичка [779,9 K], добавлен 22.06.2015

  • Физико-географическое положение океана. Подводные окраины материков. Области переходной зоны. Меридиональное простирание Срединно-Атлантического хребта. Рельеф дна. Температура, солёность, лёдообразование, течения, водные массы, флора и фауна Атлантики.

    реферат [21,2 K], добавлен 24.03.2015

  • Геологическое строение и рельеф дна Тихого океана. Подводные окраины материков. Срединно-океанические хребты и ложе океана. Распределение солености вод, климат и течения. Фитопланктон Тихого океана, его животный мир, богатые месторождения минералов.

    реферат [4,5 M], добавлен 19.03.2016

  • Метеорология - наука о строении и свойствах земной атмосферы и совершающихся в ней физических процессах. Понятие и характеристики ветра, его виды. Природа воздушного потока, особенности его формирования. Анемометр как прибор для измерения скорости ветра.

    контрольная работа [16,6 K], добавлен 21.09.2012

  • История освоения и исследования Индийского океана. Основные черты рельефа дна океана. Континентальные окраины Индийского океана. Зондская островная дуга. Растительный и животный мир. Циркулирование поверхностных вод в северной доли Индийского океана.

    курсовая работа [44,4 K], добавлен 10.07.2015

  • Вклад Т. Хейердала и Ж.-И. Кусто в исследования Тихого океана. Результаты работы научно-исследовательских судов и кругосветных экспедиций. Достижения международных проектов, направленных на открытие и уточнение условий наименее изученных участков океана.

    курсовая работа [7,6 M], добавлен 19.03.2014

  • Система срединно-океанических хребтов. История формирования Индийского океана. Рельеф дна океана. Моря Индийского океана. Крупные материковые острова. Температурные характеристики вод. Циркуляция поверхностных вод. Солёность воды и водный баланс.

    презентация [1,2 M], добавлен 27.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.