Основные факторы почвообразования

Суть аэровизуальных наблюдений и аэрофотосъемки. Сочетание методов качественного анализа аэрофотоматериалов с количественными. Проведение работы с аэрофото- и космическими материалами и отраслевыми картами. Синтез преимуществ дистанционного зондирования.

Рубрика География и экономическая география
Вид курсовая работа
Язык русский
Дата добавления 16.12.2019
Размер файла 30,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Геолого-географический факультет

Кафедра экологии, природопользования, землеустройства и безопасности жизнедеятельности

Курсовая работа, выполнена в рамках изучения дисциплины

"Почвоведение"

Факторы почвообразования. Антропогенный фактор

Тораев Умид Сетдарович

Астрахань - 2017

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. МЕТОДЫ АЭРО-И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ

1.1 Аэрометоды

1.2 Космические методы

ГЛАВА 2. РАБОТА С ТОПОГРАФИЧЕСКИМИ, АЭРОФОТО-, КОСМИЧЕСКИМИ МАТЕРИАЛАМИ ДЛЯ ПРЕДВАРИТЕЛЬНОГО ВЫДЕЛЕНИЯ ПТК

2.1 Работа с топографическими картами

2.2 Работа с аэрофото- и космическими материалами и отраслевыми картами

2.3 Преимущество дистанционного зондирования

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Загрязнение биосферы, исчерпание природных ресурсов, разрушение экосистем, потеря природной способности самовосстановления - все это сложные и опасные процессы, развитие которых вызвано и стимулируется хозяйственной деятельностью человека.

В настоящее время в результате исследований добываются большие объемы экологической информации. К ней относятся материалы дистанционного зондирования, качественные и количественные характеристики загрязняющих веществ и статистические данные об объемах и условиях их поступления в окружающую среду, данные о состоянии здоровья населения, растительном покрове и животном мире и многое другое. Как правило, единственным, что объединяет столь разнородные сведения, остается их принадлежность к определенной территории. Карта является единственным наиболее эффективным средством показа любых явлений, характеристики которых изменяются в пространстве. Поэтому тема картографического обеспечения при оценке экологического состояния территории наиболее актуальная.

Цель курсовой работы - теоретическое знакомство с методами картографирования используемыми в исследовании и решении экологических проблем.

В задачи курсовой работы входило:

рассмотрение методов аэро- и космических исследований;

изучение источников информации для создания экологических карт;

изучение особенностей работ с топографическими, аэрофото-, космическими материалами;

ГЛАВА 1. МЕТОДЫ АЭРО-И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ

1.1 Аэрометоды

Аэрометоды - исследование территории с помощью летательных аппаратов. Они подразделяются на аэровизуальные и различные виды съемок, из которых в физико-географических исследованиях находит применение аэрофотосъемка.

Аэровизуальные наблюдения представляют собой обзор местности с самолета или вертолета с целью изучения природных особенностей территории и степени изменения ее человеком. Они применяются для рекогносцировки (особенно в труднодоступных районах), для картографирования и дешифрирования аэрофотоснимков. В последнем случае аэровизуальные наблюдения сочетаются с наземными на ключевых участках. Весьма эффективны аэровизуальные наблюдения для изучения сезонных изменений природы в пространстве.

Аэрофотосъемка - это фотографирование местности с летательных аппаратов. Результат съемки - аэрофотоматериалы, представленные в виде снимков, репродукций накидного монтажа, фотосхем и фотопланов. Первые аэрофотосъемки для производственных целей (лесоустройства, землеустройства, дорожного строительства) были проведены в нашей стране в 1924 г. В 30-х гг. XX в. аэросъемкой уже были покрыты огромные пространства, ее материалы использовались для топографических целей, изучения Арктики и лесов. Имелись первые опыты применения их для изучения рельефа, болот, рек. Все более очевидной становилась большая научная ценность аэрофотосъемки, однако до окончания Великой Отечественной войны продолжался период широкого, но недостаточно глубокого использования материалов аэрофотосъемки. Изучались лишь те объекты, которые находили непосредственное отображение на аэрофотоматериалах.

Лишь в послевоенные годы повысился интерес к методам дешифрирования аэрофотоизображения. Географы увидели в аэрофотометодах новый многообещающий способ быстрого сбора информации на большой территории. Аэрофотометоды стали использовать во всех географических науках и в ряде смежных наук. Этому способствовало появление новых видов аэрофотосъемки: черно-белой спектрозональной, цветной и цветной спектрозональной, а также совершенствование методов дешифрирования аэрофотоизображения.

Советские географы выработали свой, весьма эффективный метод дешифрирования аэрофотоснимков - ландшафтный. Сущность его заключается в том, что «путем анализа фотоизображения того или иного географического комплекса в целом устанавливается та его составная часть, которая непосредственно на аэрофотоснимках не отобразилась». Ландшафтный метод постепенно становится основным при различных территориальных исследованиях с применением аэрофотоматериалов.

Дешифрирование основывается на анализе прямых дешифровочных признаков: тона (или цвета), структуры, формы и размера фотоизображения, а также отбрасываемой объектами тени. Но по прямым признакам могут быть отдешифрированы лишь компоненты, непосредственно изображенные на снимках (растительность, рельеф на безлесных участках, водные объекты, незадернованные горные породы), однако и для них эти признаки позволяют получать весьма скудные данные.

Значительно возрастает объем информации, получаемой с аэрофотоснимков, при использовании косвенных дешифровочных признаков. Такими признаками являются взаимосвязи объектов и явлений в пространстве и во времени.

Косвенные признаки разнообразны, и большинство из них имеет местное значение, поэтому выявление их требует знания природных условий исследуемого района, внимательного изучения взаимосвязей между отдельными компонентами ПТК. Косвенные признаки обычно выявляются путем наземного дешифрирования аэрофотоснимков на ключевых участках, а затем используются при камеральном дешифрировании снимков на остальную территорию. Например, растительный покров служит для определения глубины залегания грунтовых вод в пустыне, а в лесной зоне переход от пойменных лугов и черноольшаников к сосновым лесам свидетельствует о смене поймы террасой и т.д.

Сочетание методов качественного анализа аэрофотоматериалов с количественными (фотометрическим, фотограмметрическим, стереограмметрическим) является наилучшим вариантом применения аэрофотометода, позволяющим полностью использовать богатое содержание аэрофотоснимков.

Аэрометод - это метод исключительно первого этапа познания - сбора фактического материала и получения информации о природных комплексах. Последующая обработка собранных данных производится уже с применением других методов: математических, сравнительного, исторического и т.д. Однако, несмотря на это, значение его в географических исследованиях чрезвычайно велико.

1.2 Космические методы

Космические методы географических исследований начали развиваться на базе аэрометодов с 1960 г., когда был запущен первый метеорологический спутник и получен первый космический снимок Земли. Обладая основными достоинствами аэрометодов, космические методы имеют перед ними преимущество в том, что дают возможность получать в короткие сроки сопоставимую глобальную информацию о земной поверхности. Это позволяет реально перейти к целостному изучению географической оболочки Земли и слагающих ее компонентных оболочек, а также к установлению глобальных географических закономерностей.

Как и аэрометоды, космические методы относятся к дистанционным методам исследования. В настоящее время проводится несколько различных видов космических съемок (фотографическая, телевизионная, спектрометрическая, микроволновая и др.). Использование многообъективных камер делает доступным получение многозональных снимков.

Основным отличием космических снимков от аэрофотоснимков является их намного большая обзорность, зависящая, как известно, от высотного положения летательного аппарата. Если съемка с высотных самолетов производится с высоты 10 - 20 км, то с помощью ракет она ведется уже с высоты 80 - 250 км. Оптимальная высота фотографирования Земли со спутников - 200 - 1500 км. Первое глобальное изображение Земли (полушарие в целом) было получено искусственным спутником «Молния» с высоты 20- 40 тыс. км. С помощью космических методов получают информацию предельно объективную, массовую, разнообразную, синхронную по обширным участкам географической оболочки. Это дает возможность изучать пространственно-временные изменения географической оболочки, современную структуру и динамику ПТК планетарного (глобального) и регионального уровней. Тщательный анализ космических снимков позволяет не только познавать эмпирические закономерности, но и подняться на уровень теоретических обобщений.

Космические методы наиболее тесно связаны в своем использовании с картографическим и математическими методами. Метеорология и геология пока еще остаются главными потребителями информации из Космоса. В комплексной физической географии также постепенно накапливается опыт применения космических методов. Несомненно, что космические методы будут развиваться дальше и широко использоваться в географии. Однако одной из сложных проблем их использования является огромнейший, буквально лавинный поток информации, требующий обработки и осмысления.

ГЛАВА 2. РАБОТА С ТОПОГРАФИЧЕСКИМИ, АЭРОФОТО-, КОСМИЧЕСКИМИ МАТЕРИАЛАМИ ДЛЯ ПРЕДВАРИТЕЛЬНОГО ВЫДЕЛЕНИЯ ПТК

2.1 Работа с топографическими картами

Изображение рельефа горизонталями, применяемое на топографических картах, - замечательный способ передачи объемов на плоскости, своего рода непрерывное изображение, тогда как карта форм рельефа в контурах - чисто плоскостное дискретное изображение. По ней сложнее оценить динамику, особенно гравитационных (эрозия, сток) и других процессов. В идеале на ландшафтной карте лучше было бы совместить оба способа рисовки рельефа, но это трудно осуществить по техническим причинам, и, прежде всего, потому, что ландшафтная карта сама по себе часто получается очень загруженной и трудно читаемой.

Примечательно, что по топографической карте в сочетании с аэрофотоснимками зачастую хорошо читается не только строение поверхности, но и состав пород, генезис отложений и форм рельефа.

Краткое содержание метода поконтурного изображения рельефа

Сначала на топографической основе выделяют речную и эрозионную сеть: оконтуривают речные долины, овраги, балки, лощины. Затем оставшиеся участки междуречий разделяют по степени крутизны на контуры с примерно одинаковым сгущением горизонталей.

Как показывает практика, труднее всего дается первый шаг: «оторваться от горизонтали», т.е. понять, что контур эрозионной формы всегда пересекает горизонтали, а не идет вдоль них.

Последующее изложение является ключом к пониманию азов техники ландшафтного картографирования. Поэтому рекомендуется, прочитав его, попробовать самостоятельно выполнить подобную работу, при необходимости снова возвращаясь к изучению текста и иллюстраций. Полезно иметь несколько вариантов учебных карт на плотной бумаге, где мягким карандашом можно было бы опробовать разные варианты решений. Этот текст должен быть проработан досконально, включая все подписи к рисункам.

Удобнее всего начинать учиться рисовать контуры, во-первых, на картах крупного масштаба 1: 10000 (или крупнее), в крайнем случае - на 1:25 000 и, во-вторых, на картах с изображением эрозионного рельефа, где хорошо показана балочная сеть и ярко выражены уклоны.

Для учебных занятий обычно готовят несколько вариантов карт-бланковок, где вся топографическая нагрузка снята, кроме рельефа в горизонталях. Таким образом, снимаются все факторы, кроме эрозионного. Это делается, чтобы быстрее приобрести навыки формальной рисовки сначала без привлечения других отраслевых карт и аэрофотоснимков. Научиться «чувствовать рельеф» полезно для географов всех специальностей.

«Решив» такую задачу на нескольких фрагментах топокарт, т.е. «выловив» и оконтурив все эрозионные формы и разделив остальную территорию по степени крутизны, можно начать привлекать аэрофото- и различные отраслевые материалы, попытаться дать характеристику каждого полученного выдела, раскрыть его содержание. С этого момента и начинается процесс анализа-синтеза - искусство оптимального воплощения в картографическую модель всех своих знаний. Скорее всего, первоначальную рисовку контуров при этом придется несколько изменить.

Формальная рисовка ландшафтных контуров не столь уж сложна (при приобретении первоначального навыка), и поддается автоматизации. Однако, на наш взгляд, только карты самого крупного масштаба дают более или менее реальное изображение рельефа и соответственно выделенных контуров ПТК. На картах же среднего и мелкого масштабов генерализация топографической основы и рисовка по ней контуров природных компонентов или комплексов приводят к искажению как характера самих контуров, так и соотношения площадей различных видов картографируемых природных объектов. аэровизуальный космический дистанционный зондирование

Влияние рельефа на формирование ПТК, как указывалось выше, заключается в первую очередь в перераспределении им влаги и тепла.

Поэтому, если при разделении склонов на части по крутизне поверхности встречаются случаи, когда какой-то значительный участок склона мог бы быть выделен по крутизне в определенную категорию, но в его средней части имеется небольшая полоска более пологого склона, выделять эту полоску отдельно нецелесообразно, так как стекающая по поверхности влага не успеет существенно уменьшить скорость движения и как бы проскочит эту полоску. Также нецелесообразно выделять отдельную небольшую полоску склона с большей крутизной, оказавшейся внутри значительной его части, выделяемой в категорию с меньшей крутизной.

Экспозиционные различия по теплообеспеченности на крутых склонах проявляются ярче, чем на пологих, на южных (и юго-западных) и северных (и северо-восточных) лучше, чем на западных и восточных. Поэтому при составлении предварительной карты ПТК крутым склонам северной и южной экспозиций следует давать разные номера. Выпуклые склоны как на профиле, так и плане отличаются от вогнутых по увлажнению, и это тоже надо учитывать при рисовке контуров ПТК.

Мы рассмотрели лишь частные примеры выявления контуров форм и элементов рельефа в условиях эрозионных равнин средней полосы Русской равнины при крупном масштабе картографирования. В иных физико-географических условиях возникнут новые вопросы. Например, в условиях холмисто-грядового моренного рельефа, чередующегося с водно-ледниковыми поверхностями, где эрозионная сеть может быть слабо развитой, для первого, наиболее общего разграничения территории на разные природные комплексы А.А. Видина рекомендует раскрасить карту в горизонталях по разным высотным уровням. И действительно, этот прием позволяет без особого труда разобраться в сложном «переплетении» моренных и водно-ледниковых образований. На моренных холмах могут выявиться вершинные поверхности, полого-наклонные или с мелкими всхолмлениями, а на водно-ледниковых равнинах будут видны террасовидные поверхности разных уровней. Впрочем, этот прием ярусной раскраски по горизонталям может оказаться полезным и на эрозионно-расчлененной территории. В обоих случаях это позволяет выявить ярусность ПТК, в частности склоновую микрозональность.

От масштаба карты зависит и ранг ПТК, выделяемого в самостоятельный контур. Например, на карте масштаба 1:10 000 в пойме более или менее значительной реки хорошо читается по горизонталям гривистый рельеф, и каждую гриву и межгривное понижение (урочища) можно выделить контуром. На картах масштаба 1: 25 000 это уже не всегда возможно и часто выделяется целиком участок гривистой поймы, т.е. целая совокупность взаимосвязанных урочищ. На карте же масштаба 1: 200 000 даже целиком всю пойму практически невозможно проследить по горизонталям, так как сечение горизонталей 20 м, а относительные превышения террас над поймой могут составлять 5 - 10 м.

В этом случае помогают другие косвенные признаки, читаемые по топографической карте, например, граница луга и пашни (хотя пойма может тоже оказаться распаханной, а терраса луговой). Иногда вдоль реки на карте показана заболоченность, позволяющая «нащупать» пойму. Может помочь и размещение населенных пунктов, которые, как правило, находятся вне поймы. Во всяком случае, многоэтажной застройки на пойме не будет нигде, если только это не искусственная насыпь на бывшей пойме. Шоссейная дорога «без нужды» также не пойдет по пойме, а пойдет по террасе или коренному берегу. Если же она пересекает речную долину, то ее отрезок на пойме выделится знаком насыпи. Скотный двор или водонапорная башня в пойме реки почти однозначно отмечают островок надпойменной террасы, не выразившийся в горизонталях карты и т.д.

Рисовка контуров ПТК по топографической основе чаще всего идет параллельно с работой над аэрофото- и космоматериалами, а также над отраслевыми картами, поэтому многие вопросы снимаются. Отметим лишь, что при работе с топографическими картами среднего и мелкого масштабов хорошо иметь и более крупномасштабные карты для более уверенной и точной рисовки.

2.2 Работа с аэрофото- и космическими материалами и отраслевыми картами

Использование аэрофотоматериалов можно рекомендовать как для крупного, так и для среднего масштабов исследований. Космические снимки удобны для работ мелкого и среднего масштабов, а при условии их увеличения и для крупного.

Обычно при крупномасштабных исследованиях используются черно-белые контактные отпечатки аэрофотоснимков разных масштабов (чаще 1:17 000 и 1:12 000, но возможны и другие - от 1: 5000 до 1:60 000) в зависимости от наличия в фондах Госгеонадзора готовых негативов, так как заказывать специально новую аэрофотосъемку часто невозможно из-за финансовых соображений. Выбираются материалы более свежих полетов, лучше начала лета, когда контрастность в увлажнении разных ПТК фиксируется наиболее четко.

На аэрофотоснимках обычно хорошо просматриваются типы местностей со специфичной для них урочищной структурой. Можно распознать на них и подурочища, и отдельные крупные фации. На космических снимках, охватывающих большую территорию, видны уже разные ландшафты, приуроченные к определенным тектоническим структурам, или, может быть, «просвечивают» тектонические структуры через разный рисунок ландшафтов.

По возможности используются цветные или спектрозональные снимки, особенно для дешифрирования растительности, а также (дополнительно) аэрофотоснимки прежних лет разной давности, по которым можно проследить скорость протекания некоторых процессов (например, эоловых, эрозионных, заболачивания, зарастания, смену угодий, изменений в размещении населенных пунктов и т.д.). Практикуется также просмотр парных снимков под стереоскопом. На снимках выявляются контуры, отличающиеся по форме, фототону, рисунку (структуре) фотоизображения, его тени.

Выявляются, в первую очередь, естественные границы, связанные с изменениями природного характера. Резкая смена фотоизображения по прямолинейным границам часто отражает результаты хозяйственной деятельности человека (смену угодий, полей севооборота и др.). Такие границы интересны как границы производных (антропогенных модификаций) фаций и урочищ, обычно они тоже фиксируются, но иным способом, чем природные (например, точечным пунктиром).

При дешифрировании используются как прямые признаки объектов, непосредственно видимые на аэрофотоснимке, так и косвенные, базирующиеся на закономерных связях, существующих в ПТК. Например, если на террасе отдешифрирован сосновый лес, то вполне вероятно, что она песчаная. Или, если распаханный участок вблизи бровки балки имеет более светлый тон, чем соседние, то, скорее всего, его почвы значительно эродированы, и т.д.

Зачастую изменение рисунка либо тона вполне объяснимо и соответствует или изменению растительности, или увлажнения, или же слагающих поверхность пород, или сразу нескольких компонентов, в чем можно убедиться, сверившись с топокартой и (или) отраслевыми природными картами. Но нередко в камеральных условиях объяснить причину изменения характера изображения на аэрофотоснимке не удается, и расшифровка его откладывается на полевой период.

Результаты дешифрирования вырисовывают на матовой пленке, наложенной поверх аэрофотоснимка, мягким простым карандашом и (или) гуашью. Можно сразу переносить их на топооснову, дополняя или уточняя те контуры, которые на ней уже были отрисованы по горизонталям как формы и элементы форм рельефа. Параллельно составляют табличную (рабочую) легенду, где для каждого выделенного и пронумерованного контура раскрывают его основное содержание: местоположение и рельеф, породы, увлажнение, почвы, растительность. В примечании указывают, необходимо ли полевое уточнение свойств ПТК, и чего именно (опознание слагающих пород, почв и т.д.).

Составление предварительной ландшафтной карты среднего масштаба отличается меньшей степенью детальности дешифрирования. Известные трудности возникают при этом в связи с разномасштабностью материалов. Как правило, масштаб аэрофотоснимков намного крупнее составляемой карты. В связи с этим удобнее пользоваться не отдельными контактными отпечатками, а накидными монтажами или, еще лучше, фотосхемами, либо увеличенными космоснимками (и космопланами с нанесенными на них горизонталями), позволяющими обозревать одновременно большую территорию, выявлять на ней природные территориальные комплексы, и укладывать их на топографическую основу избранного масштаба или на наложенную на нее кальку (пленку). Просмотр всей массы контактных отпечатков аэрофотоснимков под стереоскопом в этом случае практически невозможен из-за слишком большого их количества. Однако в отдельных случаях это вполне целесообразно, например, при выявлении границ, совпадающих с перегибами склонов коренных берегов речной долины, террас и др.

Как правило, в учебных планах физико-географов - ландшафтоведов есть специальные курсы по дешифрированию аэрофото- и космических снимков, поэтому мы не будем на этом останавливаться.

При любом масштабе работ для наполнения контуров конкретным содержанием одновременно с анализом аэрофото- и космоматериалов используются имеющиеся по изучаемой территории специальные (компонентные) карты: почвенная, четвертичных отложений, дочетвертичных отложений, структурно-тектонические, гидрогеологические, инженерно-геологические, геоморфологические, карты (планы) лесной таксации и другие, показывающие растительный покров. Однако растительность - компонент, как правило, наиболее измененный человеком. Эти изменения могут быть недолговечны и случайны, а сами карты (и планы) часто слишком мозаичны, что затрудняет их использование. Поэтому материалы по растительному покрову территории используются уже после всех других. Особое внимание обращается на типы местообитаний, для чего пользуются шкалами Л.Г. Раменского, В.В. Погребняка (в переработке А.А. Видиной), экологическими рядами, с тем, чтобы за сегодняшней картиной сильно измененной растительности разглядеть ее коренные варианты.

В случае несоответствия контуров специальных карт с характером фотоизображения предпочтение отдается аэрофотоматериалам, однако возникший вопрос фиксируется для дальнейшего выяснения.

Составленные по аэрофото- и (или) космоматериалам и специальным картам (геологическим, геоморфологическим и др.) предварительные ландшафтные карты имеют, как правило, довольно хорошую рисовку контуров, но схематичную легенду, еще недостаточно полную и точную по содержанию.

Однако, несмотря на всю неполноту, легенда предварительной ландшафтной карты не должна представлять собой хаотичный перечень контуров различного содержания. Уже в подготовительный период надо стремиться систематизировать материал, произвести первоначальную классификацию ПТК, соблюдая структурно-генетический принцип и избегая логических ошибок.

В процессе полевой работы основная задача заключается в раскрытии содержания выявленных контуров (по их типологическим группам) и в выяснении спорных вопросов, возникших при анализе разнородных материалов. Границы же контуров ПТК обычно мало изменяются после полевых работ, так как аэрофото- и космоматериалы позволяют положить их на карту даже с большей степенью точности, чем при непосредственном наблюдении в поле.

По предварительной ландшафтной карте еще до выезда в поле рекомендуется разработать сеть маршрутов и наметить точки комплексных описаний. А.А. Видина считает возможным для крупного масштаба работ (1: 10 000 - 1: 25 000) в лесной зоне средней полосы России задавать одной рабочей паре (специалист и рабочий или коллектор) на однодневный маршрут протяженностью 2 - 3 км 20 - 23 точки комплексного описания (полного на основных точках и сокращенного на картировочных). В лесостепной зоне при большей сложности описания почвенных профилей серых лесных почв и черноземов дневная норма снижается до 12-15 точек на рабочую пару, но одновременно увеличивается длина полевого маршрута до 3 - 4 км. Последнее связано, по нашему мнению, с меньшей сложностью морфологической структуры ландшафтов эрозионно-денудационных равнин лесостепи по сравнению с ландшафтами моренных и моренно-водноледниковых равнин лесной зоны, что позволяет делать сеть точек более разреженной.

На 1 км2 может быть задано от 2-3 до 20-25 точек. В среднем необходимая плотность точек на 1 км2 в лесной зоне составляет 10-15, в лесостепной 6 - 8, а на ключевых участках до 10-12 точек и больше. Это несколько более высокие нормы, чем приведенные ниже расчеты, заимствованные из опыта почвенной съемки. Может быть, это и правомерно, так как ландшафтная съемка, по-видимому, сложнее почвенной, по крайней мере, по мнению И.И. Мамай, указанные выше нормы занижены. Ландшафтоведы давно уже отказались от практиковавшегося ранее в отраслевых исследованиях регулярного размещения точек по сети квадратов, так как использование аэрофотоснимков, хороших топографических карт и других материалов и составление предварительных ландшафтных карт позволяет сделать эту сеть более рациональной - разреженной на крупных контурах относительно однородной территории и более густой на площадях с мелкоконтурными и разными по характеру ПТК. Однако использование компьютерной техники при составлении ландшафтных карт вновь вынуждает нас признать правомерность метода регулярного размещения точек наблюдения.

Нормативы отдельных видов работ ландшафтных исследований еще не выработаны. Для комплексного дешифрирования аэрофотоснимков при составлении ландшафтной карты масштаба 1:10 000 на среднеосвоенную территорию средней полосы Русской равнины А.А. Видина определяет норму в 5 - 8 км2 (или 5 - 8 дм2 в масштабе карты) на одного человека в день. Наш опыт работы показал, что для масштаба 1: 100 000 можно за это же время отдешифрировать 100 км2 (или 1 дм2 в масштабе карты). Но как бы ни были значительны затраты времени на составление предварительных ландшафтных карт, они оправдываются существенным повышением качества всей работы в целом и более сжатыми сроками полевых работ.

2.3 Преимущество дистанционного зондирования

Материалы дистанционного зондирования получают в результате неконтактной съемки с летательных воздушных и космических аппаратов, судов и подводных лодок, наземных станций. Получаемые документы очень разнообразны по масштабу, разрешению, геометрическим, спектральным и иным свойствам. Все зависит от вида и высоты съемки, применяемой аппаратуры, а также от природных особенностей местности, атмосферных условий и т.п. Главные качества дистанционных изображений, особенно полезные для составления карт, - это их высокая детальность, одновременный охват обширных пространств, возможность получения повторных снимков и изучения труднодоступных территорий. Благодаря этому данные дистанционного зондирования нашли в картографии разнообразное применение: их используют для составления и оперативного обновления топографических и тематических карт, картографирования малоизученных и труднодоступных районов (например, высокогорий). Наконец, аэро- и космические снимки служат источниками для создания общегеографических и тематических фотокарт. Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и панхроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - сложноцветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ночная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.

Главные достоинства аэроснимков, космических снимков и цифровых данных, получаемых в ходе дистанционного зондирования, - их большая обзорность и одномоментностъ. Они покрывают обширные, в том числе труднодоступные, территории в один момент времени и в одинаковых физических условиях. Снимки дают интегрированное и вместе с тем генерализованное изображение всех элементов земной поверхности, что позволяет видеть их структуру и связи. Очень важное достоинство - повторность съемок, т.е. фиксация состояния объектов в разные моменты времени и возможность прослеживания их динамики.

Существует несколько основных направлений применения материалов дистанционного зондирования в целях картографирования:

- составление новых топографических и тематических карт;

- исправление и обновление существующих карт;

- создание фотокарт, фотоблок-диаграмм и других комбинированных фото картографических моделей;

- составление оперативных карт и мониторинг.

ЗАКЛЮЧЕНИЕ

В настоящее время в результате прогресса индустриального общества, рост городов и рост изменения ландшафтов антропогенного характера, традиционные методы исследований не способны успевать, в связи с чем актуальны методы исследования материалов с помощью аэрометодов и космических исследований.

Благодаря аэрофото и космическим материалам в картографии появилось разнообразные применения: их используют для составления и оперативного обновления топографических и тематических карт, картографирования малоизученных и труднодоступных районов (например, высокогорий). Наконец, аэро- и космические снимки служат источниками для создания общегеографических и тематических фотокарт. Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и панхроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - сложноцветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ночная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.

Главные достоинства аэроснимков, космических снимков и цифровых данных, получаемых в ходе дистанционного зондирования, - их большая обзорность и одномоментностъ. Они покрывают обширные, в том числе труднодоступные, территории в один момент времени и в одинаковых физических условиях. Снимки дают интегрированное и вместе с тем генерализованное изображение всех элементов земной поверхности, что позволяет видеть их структуру и связи. Очень важное достоинство - повторность съемок, т.е. фиксация состояния объектов в разные моменты времени и возможность прослеживания их динамики.

СПИСОК ЛИТЕРАТУРЫ

1. Арустамова Э.А. Природопользование. М.: Издательский Дом «Дашков и Ко», 2000. - 284 с.

2. Валова В.Д. Основы экологии. Издательский дом "Дашков и Ко". М - 2001.

3. Стурман В.И. Основы экологического картографирования: Учеб. пособие. Ижевск: Изд-во Удм. ун-та, 1995. 221 с.

4. Берлянт А.М. Картографический метод исследования. 2-е изд. М.: Изд-во МГУ, 1988. 252 с.

5. Комплексное экологическое картографирование. (Географический аспект). / Под. ред. Н.С. Касимова: Учеб. пособие. М, 1997. 147 с.

6. Суворов А.К. Геоинформационные технологии и экологическое картографирование // Геоинформационное картографирование. М., 1993. С. 66-84.

Размещено на Allbest.ru

...

Подобные документы

  • Задачи физической географии. Взаимодействие природных и природно-антропогенных геосистем с глобальными факторами. Работа с топографическими, аэрофото- и космическими материалами, описание растительности, ландшафтное профилирование и картографирование.

    курс лекций [188,1 K], добавлен 21.01.2010

  • Современные географические открытия в Антарктиде, сделанные с помощью методов аэрофотосъемки и радиозондирования. Открытие русскими гидрографами пролива, разделяющего остров Нортбрук в архипелаге Земля Франца-Иосифа и теплого течения в Ледовитом океане.

    презентация [7,7 M], добавлен 10.06.2014

  • Проект структурирования ландшафтов участка полигонально-валиковой южной субарктической тундры долины реки Анабар на базе данных дистанционного зондирования Земли в сочетании с данными полевых работ и с использованием геоинформационных технологий.

    дипломная работа [10,7 M], добавлен 29.06.2012

  • История и основные этапы становления и развития географии почв как научного направления, его содержание и значение, яркие представители и их деятельность. Факторы почвообразования по Докучаеву. Классификация и типы почв, их распространенность по миру.

    презентация [5,4 M], добавлен 05.02.2012

  • Проблема використання географічних карт в педагогічній теорії і практиці, карти як засіб наочності, їх особливості та значення, використання на уроках природознавства в початковій школі. Експериментальна методика формування умінь працювати з картами.

    дипломная работа [2,1 M], добавлен 24.09.2009

  • Экологические условия почвообразования. Характеристика зональных факторов степей Одесского района: климата, растительности и рельефа. Поверхностные и грунтовые воды степной зоны. Характеристика гранулометрического состава и водно-физических свойств почв.

    курсовая работа [100,2 K], добавлен 23.02.2012

  • Особенности территориальной организации мирового хозяйства, размещения производительных сил в соответствии с закономерностями, принципами, факторами, отраслевыми особенностями. Анализ регионального развития, политики. Экономика качества окружающей среды.

    реферат [45,7 K], добавлен 28.01.2010

  • Географическое положение Апеннинского полуострова. Факторы почвообразования: почвообразовательные породы, рельеф, живые организмы, климат и время. Разнообразие почвенного покрова Апеннинского полуострова. Использование почв и их экологическое состояние.

    контрольная работа [37,2 K], добавлен 03.01.2011

  • Факторы почвообразования; исследование физической структуры, механического и химического состава разреза. Местоположение и природные условия участка. Строение и морфологические свойства почвы; комплексная оценка: содержание гумуса, СО2, реакция раствора.

    курсовая работа [408,5 K], добавлен 15.05.2015

  • Образный подход в географии, проблема точной и образной передачи наблюдений географами. Одно из направлений "гуманистической географии" - изучение "образа места", а один из методов - обращение к текстам литературных произведений. Региональные описания.

    реферат [24,8 K], добавлен 03.09.2010

  • Формирование, развитие, распространение овражной эрозии и борьба с ней. Разработка методов оценки потенциала овражной эрозии на основе экспериментальных данных, натурных наблюдений и модели овражной эрозии. Проектирование противоэрозионных мероприятий.

    курсовая работа [35,2 K], добавлен 13.05.2013

  • Общие понятия и сведения про климат. История развития современной системы метеорологических наблюдений. Факторы, ответственные за возникновение комфортных климатических условий на Земле. Типы климатов, их характеристика. Климат будущего планеты Земля.

    доклад [268,0 K], добавлен 13.12.2011

  • Зима как природный фактор. Образование и форма снега. Физико-механические свойства снежного покрова. Факторы, влияющие на образование снежинок. Методические особенности его изучения, их практическое применение. Методика проведения снегомерных наблюдений.

    курсовая работа [631,6 K], добавлен 01.03.2014

  • Стреотопографический и комбинированный методы создания топографических карт. Цифровые фотограмметрические технологии создания цифровых карт и ортофотопланов. Элементы внутреннего ориентирования снимка. Создание модели и взаимное ориентирование снимков.

    курсовая работа [3,0 M], добавлен 12.02.2013

  • Географическое положение и природно-климатические условия Гренландии. Причины и возраст оледенения материка. История и методы исследования его подледникового рельефа. Использование сейсморазведки, радиолокационного зондирования и глубокого бурения.

    курсовая работа [1,2 M], добавлен 10.04.2014

  • Современные знания о ледниках. Строение ледника и его движение. Расположение ледников Алтая. Объекты изучения, основные цели и задачи исследований ледников Алтая. Использование космических съемок и наблюдений. Области питания и расхода ледников.

    курсовая работа [1,8 M], добавлен 14.06.2012

  • Географическое положение, природно-климатические условия, основные черты рельефа, температура воздуха и осадки Новосибирской области, а также общая характеристика ее сельского хозяйства. Данные наблюдений за элементами погоды Новосибирска за апрель 2006г.

    курсовая работа [30,4 K], добавлен 21.10.2010

  • Природно-климатическая характеристика Курманаевского района, расположенного в западной части Оренбургской области, разнообразие рельефа и почвы. Топографические карты, их особенности и географическое содержание. Измерение длин и площадей по карте.

    курсовая работа [607,7 K], добавлен 18.05.2016

  • Особенности почвообразования на территории пойм, определяющего многие черты генезиса, состава и свойств аллювиальных почв. Характерные элементы равнинного рельефа центральной поймы. Гранулометрический состав и свойства пойменных темногумусовых почв.

    презентация [1,5 M], добавлен 03.04.2017

  • Общие условия почвообразования в пустыне. Морфологические особенности автоморфных почв пустынь. Генетические особенности серо-бурых почв, их минеральный состав и химический анализ. Солончаки — характерное гидроморфное почвенное образование пустынь.

    презентация [4,7 M], добавлен 05.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.