Разработка нефтяных и газовых месторождений

Физические свойства горных пород - коллекторов нефти и газа. Состав пластовых флюидов. Состояние жидкостей и газов в пластовых условиях. Источники пластовой энергии и режимов работы нефтяных и газовых залежей. Разработка газоконденсатных месторождений.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 12.01.2013
Размер файла 5,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Удаление механических примесей из воды (до 1--3 мг/л), обескислороживание (деаэрация) и бактерицидная обработка воды используемой для приготовления мицеллярных растворов,-- также необходимое условие их эффективного применения.

Основным ограничивающим фактором применения метода мицеллярного заводнения служит большая потребность в химических реагентах. Для того чтобы применить метод на залежи с начальными запасами 1 млн т и получить дополнительно 250-300 тыс. т нефти, требуется закачать в пласт 100-150 тыс. м3 мицеллярного раствора и 300-400 тыс. м3 полимерного раствора, на которые понадобится 8-15 тыс. т нефтяных сульфонатов, 2-3 тыс. спиртов, 150-250 т полимеров и 25-50 тыс. т углеводородов. Следовательно, для промышленного применения метода в широких масштабах требуется организовать производство огромных объемов различных химических продуктов.

Высокая стоимость всех требующихся для мицеллярных растворов компонентов и их чувствительность к пластовым солям -важнейшие сдерживающие факторы широкого применения метода.

Проблемы, связанные с применением мицеллярно-полимерного заводнения, обусловлены главным образом недостаточной изученностью фундаментальных физико-химических основ, механизма пластовых процессов. Из всех известных методов мицеллярно-полимерное заводнение, обладая самым сложным механизмом процессов, является наименее изученным и испытанным в промышленных условиях.

7.13 Микробиологическое воздействие на пласт

Методы увеличения нефтеотдачи с применением микроорганизмов широко исследуются. Их привлекательность связана, в первую очередь, с простотой реализации, минимальной капиталоемкостью и безопасностью для окружающей среды.

В области увеличения нефтеотдачи биотехнологические процессы можно использовать в двух главных направлениях. Во-первых, это производство на поверхности реагентов для закачки в пласты по известным технологиям. К этому классу веществ относятся биополимеры, диоксид углерода, некоторые ПАВ, растворители, эмульгаторы и т.д. И, во-вторых, использование для улучшения условий нефтевытеснения продуктов микробиологической жизнедеятельности, получаемых непосредственно в нефтеносной толще. Рассмотрим подробнее второе направление.

Известно, что встречающиеся в пластовых условиях и способные к поддержанию там активной жизнедеятельности микроорганизмы делятся на аэробные, для существования которых необходимо присутствие растворенного кислорода, и анаэробные, для которых кислород не обязателен. И те, и другие, используя остаточную нефть в качестве органического субстрата, продуцируют ряд веществ, полезных с точки зрения увеличения отдачи пласта (углекислоту, метан, жирные кислоты, спирты и другие растворители, биополимеры).

Кроме того, некоторые аэробы способны окислять нефть и таким образом превращать сложные углеводороды, входящие в состав нефти, в более простые. А некоторые органические вещества, образующиеся в результате окисления, представляют собой пенообразователи, дающие снижение межфазного натяжения на границе нефть- вода. Наряду со снижением вязкости это способствует более полному нефтевытеснению. Среди анаэробов следует особо отметить метанообразующие бактерии, поскольку дополнительное количество метана в пласте, в зависимости от условий, увеличивает запасы свободного или растворенного в нефти газа (при этом снижаются ее вязкость и плотность).

Понятно, что технология микробиологического воздействия должна быть ориентирована на целенаправленную активизацию тех микроорганизмов и в тех зонах пласта, которые могут дать наибольший эффект. Известны два принципиальных варианта такого воздействия. Это либо введение специально подобранной микрофлоры и веществ для поддержания ее жизнедеятельности извне, либо активация микроорганизмов, уже существующих в недрах. В обоих вариантах воздействие должно включать закачку в скважины пресной воды Дело в том, что общая численность бактерий и интенсивность процессов, связанных с их жизнедеятельностью, в опресненных водах заметно выше, чем в минерализованных пластовых.

Наиболее интенсивно аэробные микробиологические процессы протекают вблизи нагнетательных скважин. По мере удаления от призабойных зон содержание кислорода в закачанной жидкости быстро снижается, и реакции нефтеокисления сменяются анаэробными процессами. Отмечено, что продукты аэробной деструкции нефти, а также добавки аммония и фосфатов в условиях пониженной минерализации многократно активируют деятельность метанобразующих бактерий.

В настоящее время различные аспекты проблемы воздействия на нефтеносные пласты микроорганизмами находятся в стадии всестороннего изучения, и конкретных технологических рекомендаций пока не имеется. В то же время высказываются некоторые общие соображения. Так, на основании исследований, выполненных как в лабораторных условиях, так и при проведении опытного микробиологического воздействия в промысловых условиях, предложен следующий принципиальный подход к биотехнологии увеличения нефтеотдачи. На первой стадии через нагнетательные скважины в пласт вводятся микроорганизмы, причем закачивается пресная специально аэрированная вода с добавками солей азота и фосфора. Таким образом активируется аэробное окисление части остаточной нефти в призабойной зоне. Поступающая затем в более удаленные зоны пласта жидкость оказывается обогащенной такими продуктами, как диоксид углерода и водорастворимые органические соединения, и практически не содержит растворенного кислорода. На второй стадии воздействия активируются анаэробы, в частности, метанобразующие, в „бескислородных» удаленных зонах. Таким образом, увеличение нефтевытеснения достигается под комплексным воздействием всего многообразия веществ, образовавшихся в результате жизнедеятельности микроорганизмов, как введенных с поверхности, так и присутствовавших в пласте первоначально.

7.14 Вибросейсмическое воздействие на пласт

Методы вибросейсмического воздействия на призабойные зоны скважин известны уже более 30 лет, широко распространены и положительно себя зарекомендовали. В свою очередь, идея такого воздействия на нефтеносные горизонты в целом возникла вследствие отмеченной специалистами взаимосвязи между землетрясениями и последующим увеличением дебитов скважин на месторождениях, расположенных вблизи их эпицентров. В последние годы благодаря созданию мощных источников вибрации и теоретической разработке основ процессов локализации и накопления энергии в предусмотренных точках стало возможным приступить к созданию технологий увеличения нефтеотдачи пластов, особенно истощенных в процессе разработки традиционными методами.

Известны следующие предпосылки улучшения процесса разработки залежей нефти при воздействии на них сейсмических или упругих волн.

Один из основных эффектов, сопровождающих импульсное воздействие, - образование трещин в породе-коллекторе. Отмечено, что эффект тем выше, чем менее проницаема порода, а значение проницаемости может возрастать на несколько порядков. Для этого необходимо реализовать в пласте амплитуды давления импульса 15-20 МПа.

Прохождение сейсмических волн через насыщающую пласт жидкость может, при достаточной их амплитуде, приводить к многократному (даже в десятки раз) возрастанию скорости фильтрации. Это связано с проявлением нескольких эффектов. Под воздействием упругих колебаний разрушается структура вязкопластичных и вязко-упругих жидкостей, и они приобретают ньютоновские свойства (вязкопластичность течения в низкопроницаемых коллекторах характерна для большинства нефтей). Кроме того, экспериментально установлено, что при достижении амплитуды давления выше напряжения сдвига наблюдается разрушение структуры поверхностного слоя жидкости вблизи стенок поровых каналов. Таким образом, происходит одновременно переход к ньютоновскому характеру течения, снижение эффективной вязкости нефти и увеличение эффективного сечения пор. Имеются также данные о снижении при прохождении упругой волны межфазного натяжения на границе нефть-вода. После прекращения воздействия сейсмического поля свойства жидкости обратимо возвращаются в исходное состояние, причем это может происходить сразу или в течение некоторого времени.

В заводненном нефтяном пласте вибросейсмическое воздействие может, при условии существования свободной газовой фазы, значительно (на два-три порядка) ускорить процесс гравитационного разделения нефти и воды. Пузырьки газа всегда прочно фиксируются на стенках капель нефти, рассеянных в воде. В акустическом поле на газовые пузырьки действуют радиационные акустические силы, способствующие их более скорому всплыванию. Вследствие этого и капли нефти испытывают действие дополнительной подъемной силы. В результате, как показывают расчеты, гравитационное разделение может происходить на два-три порядка быстрее, что делает реально возможным искусственное переформирование залежей в обводненных пластах с целью последующей добычи нефти из повышенной, прикровельной части разреза. Исследователи отмечают высокую эффективность подобного процесса с точки зрения энергетических затрат на его осуществление.

Имеющиеся технические средства позволяют осуществлять воздействие целенаправленно на определенные участки пласта, охватывая весь его объем от призабойных зон скважин до наиболее Удаленных от них зон. Это возможно при одновременном использовании нескольких поверхностных и скважинных источников вибрации. Существуют источники, основанные на различных принципах создания вибрации и передачи ее земной толще.

Наиболее мощное вибровоздействие осуществляется при помощи наземных виброплатформ, а также закачкой через скважины и подрывом в пласте жидких взрывчатых веществ. Виброплатформы бывают двух основных типов: электрогидравлические и центробежные дисбалансные виброисточники. Разработаны скважинные приспособления для сжигания газообразных, жидких и твердых взрывчатых веществ и горючеокислительных составов, позволяющие получать как одиночные импульсы, так и серии импульсов давления. Известны и скважинные виброизлучатели длительного действия, главным образом механические, пневматические или гидравлические.

Известно, что поверхностные излучатели способны развивать большую мощность, но их КПД. относительно невысок из-за потерь энергии в толще, отделяющей продуктивные пласты от дневной поверхности. Скважинные же устройства имеют ограниченную мощность. Группирование наземных и скважинных генераторов вибрации позволяет фокусировать колебания и за счет интерференции осуществлять мощное воздействие в той или иной точке пласта. При этом недостатки тех и других генераторов как бы устраняются, а преимущества используются более полно, о чем свидетельствует имеющийся мировой опыт.

7.15 Критерии подбора объектов воздействия для повышения нефтеотдачи

На стадии промышленного испытания и промышленного внедрения методов повышения нефтеотдачи пластов возникает проблема их эффективного применения. Риск экономических потерь от применения методов увеличения нефтеотдачи весьма ощутим, так как затраты на их осуществление значительно выше, чем при обычном заводнении или разработке на режимах истощения. Для любого месторождения могут оказаться применимыми несколько методов. Чтобы выбрать наилучший метод, надо знать следующее:

* нефтенасыщенность пластов или степень их истощения, заводнения;

свойства нефти и пластовой воды- вязкость, содержание серы, парафина, асфальтенов, смол, солей;

коллектор и его свойства - песчаник, алевролит, известняк, проницаемость, толщину, неоднородность, прерывистость, расчлененность, глубину, удельную поверхность, вещественный состав, глинистость, солевой состав;

расположение и техническое состояние пробуренных скважин; наличие материально-технических средств, их качество, характеристику и стоимость;

отпускную цену на нефть;

потребность в увеличении добычи нефти.

Их совокупность создает многовариантную задачу, которая решается лишь при специальных конкретных изучении и технико-экономическом анализе с ограничениями, заданными заранее. Первые три качественных условия (физико-геологические свойства пластов, нефти и воды) очень сильно, но неоднозначно определяют целесообразный метод увеличения нефтеотдачи пластов (табл. 7.2).

На основе многочисленных лабораторных исследований и опытно-промышленных испытаний методов увеличения нефтеотдачи пластов, проведенных в нашей стране и за рубежом, накоплены достаточно обширные знания и представления о количественных критериях, характеризующих свойства пластовой нефти, воды и пластов, для успешного их применения (табл. 7.3 и 7.4).

Таблица 7.2 Методы увеличения нефтеоотдачи в зависимости от геологофизических условий

Нефть, вода

Пласт

Метод

Маловязкая, легкая нефть, вода с малым содержанием солей, особенно кальция и магния

Песчанный неистощенный, высокопроницаемый, слабопроницаемый, неоднородный

Заводнение, циклическое воздействие, водогазовая смесь, закачка ПАВ, применение газа высокого давления

Маловязкая нефть, вода с малым содержанием солей, особенно калия и магния

Карбонатный неистощенный, высокопроницаемый, трещиноватый, пористый

Песчаный истощенный (заводненный), высокопроницаемый,, монолитный

Карбонатный заводненный, высокопроницаемый, слаботрещинноватый, неоднородный

Заводнение, циклическое воздействие, применение щелочей, истощение

Мицеллярный раствор, углекислый газ, водогазовые смеси

Применение углекислого газа, циклическое воздействие

Средневязкая, смолистая (активная) парафинистая нефть, вода с малым содержанием солей, особенно калия и магния

Песчаный неистощенный, высокопроницаемый, слабопроницаемый

Карбонатный неистощенный, высокопроницаемый, слабопроницаемый, трещиновато-пористый

Песчаный заводненный, высокопрницаемый, монолитный, однородный

Заводнение (горячая вода), применение полимеров, закачка водогазовой смеси, щелочи

Заводнение (горячая вода), циклическое воздействие, закачка щелочи, углекислого газа

Применение углекислого газа, микроэмульсий, водогазовых смесей

Высоковязкая тяжелая нефть, вода пластовая с большим содержанием солей

Песчаный глубокозалегающий, высокопроницаемый, слабопроницаемый

Песчаный, высокопроницаемый, слабопроницаемый, неглубокозалегающий

Внутрепластовое горение

Закачка пара, пароциклические обработки

Таблица 7.3 Основные критерии для применения физико-химических агентов, увеличивающих нефтеотдачу

Параметры

Закачка СО2

Водогазовые смеси

Полимерное заводнение

Закачка ПАВ

Закачка мицеллярных растворов

Вязкость пластовой нефти, мПас

<15

<25

5-100

<25

<15

Нефтенасыщенность, %

>30

>50

>25

Пластовое давление, МПа

>8

Не ограничено

Температура пласта, С

Не ограничена

<70

<90

Проницаемость пласта, мкм2

Не ограничена

>0,1

Не ограничена

>0,1

Толщина пласта, м

<25

Не ограничена

<25

Трещинноватость

Неблагоприятна

Литология

Не ограничена

Песчаник

Песчаник и карбонаты

Песчаник

Соленость пластовой воды, мг/л

Не ограничена

<2

<5

Жесткость воды (наличие солей калия и магния)

Не ограничена

Неблагоприятна

Не ограничена

Неблагоприятна

Газовая шапка

неблагоприятна

Не ограничена

неблагоприятна

Плотность сетки скважин, га/скв

Не ограничена

<24

Не ограничена

<16

Их анализ позволяет отметить некоторые характерные, общие для всех методов критерии, ограничивающие или сдерживающие применение всех методов.

Трещинноватость пластов. Предельная неоднородность пластов в этом случае вызывает быстрый прорыв дорогостоящих рабочих агентов в добывающие скважины и их нерациональное использование.

Газовая шапка. Для всех методов весьма неблагоприятно наличие естественной или искусственной высокой газонасыщенности какой-либо части пласта, так как нагнетаемые рабочие агенты устремляются в газовую часть, обладающую в 20-100 раз более высокой проводимостью, чем нефтенасыщенная часть. В результате происходит неэффективный расход рабочих агентов.

Нефтенасыщенностъ пластов. Высокая водонасыщенность нефтяного пласта (более 70-75%) недопустима для применения всех известных методов увеличения нефтеотдачи по экономическим причинам, так как вытесняющая способность дорогостоящих агентов используется лишь на 25-30%, а остальная часть расходуется бесполезно на водонасыщенную часть пласта. Многие методы (внутрипластовое горение, вытеснение паром, заводнение с ПАВ) неприменимы при нефтенасыщенности пластов менее 50% просто из-за неокупаемости затраченных средств.

Таблица 7.4 Основные критерии для применения тепловых методов

Параметры

Внутрипластовое горение

Вытеснение паром

Пароциклическая обработка

Вытеснение горячей водой

Вязкость пластовой нефти, мПас

>10

>50

>100

>5

Нефтенасыщенность, %

>50

Пластовое давление, МПа

Не ограничено

Проницаемость, мкм2

>0,1

>0,2

Не ограничена

Толщина пласта, м

>3

>6

>3

Трещинноватость

Неблагоприятна

Литология

Не ограничена

Глубина, м

<1500

<1200

<1500

Содержание глины в пласте, %

Не ограничено

5-10

Плотность сетки скважин, га/скв

<16

<6

Не ограничена

4. Активный водонапорный режим. Когда нефтяная залежь разрабатывается при активном естественном водонапорном режиме (обычно это небольшие по размеру залежи с высокопродуктивными пластами и малой вязкостью нефти), то при этом достигаются высокий охват пластов заводнением и низкая остаточная нефтенасыщенность пласта (менее 25-30%) за счет вытесняющих свойств контурной или подошвенной пластовой воды. В этих условиях применение методов увеличения нефтеотдачи пласта осложняется тем, что либо достигаемая низкая остаточная нефтенасыщенность исключает применения многих методов, либо краевые зоны залежей, находящихся под активным водонапорным режимом, невозможно подвергнуть эффективному воздействию дорогостоящими рабочими агентами. Нагнетание их в законтурные скважины ведет к потере агентов, а во внутриконтурные скважины - к снижению эффективности.

5. Вязкость нефти. Этот фактор очень сильный и в большинстве случаев самый решающий по экономическим критериям. Все физико-химические методы, применяемые с обычным заводнением, экономически оправданы только при вязкости нефти менее 25-30 мПас. Полимерное заводнение допускает более высокую вязкость (до 100-150 мПа-с) в высокопроницаемых пластах. Термические методы целесообразно применять при более высокой вязкости нефти, так как в этом случае достигается больший эффект снижения ее вязкости при нагреве. Однако при вязкости нефти более 500-1000 мПас и тепловые методы с обычной технологией становятся нерентабельными. При такой высокой вязкости нефти требуется очень плотная сетка скважин (менее 1-2 га/скв), что связано с большими затратами, расходами энергии и не всегда экономически оправдывается.

6. Жесткость и соленость воды. Все физико-химические методы увеличения нефтеотдачи пластов резко снижают свою эффективность при высокой солености, и особенно при большом содержании солей кальция и магния в пластовой воде, используемой для приготовления растворов. Кроме того, для приготовления растворов любых химических продуктов из воды необходимо удалить кислород и биоорганизмы, чтобы устранить условия для образования сероводорода в пласте и последующей коррозии оборудования. При тепловых методах эти свойства воды не имеют значения, но для приготовления пара в парогенераторах также требуется чистая умягченная лишенная кислорода вода.

7. Глинистость коллектора. Высокое содержание глины в нефтеносных пластах (более 10%) противопоказано для всех методов увеличения нефтеотдачи пластов. При высоком содержании глины в пластах физико-химические методы снижают свою эффективность вследствие большой адсорбции химических продуктов. Адсобция химических реагентов пропорциональна удельной поверхности пористой среды, которая для алевролитов и полимиктовых коллекторов в 10-50 раз выше, чем для кварцевых песчаников. В результате этого химические продукты выпадают из растворов, оседают вблизи нагнетательных скважин, а в основной части пласта нефть вытесняется обедненными растворами. Применение тепловых методов в высокоглинистых коллекторах, когда глина служит цементирующим материалом зерен породы, приводит к нарушению консолидации пластов и большому выносу песка в добывающие скважины.

7.16 Потенциальные возможности методов увеличения нефтеотдачи пластов

Согласно методике оценки эффективности методов увеличения нефтеотдачи пластов, принятой в настоящее время, технологический эффект от реализации метода оценивается сравнением фактических результатов с базовым вариантом разработки рассматриваемого объекта (без применения метода увеличения нефтеотдачи). За базовый вариант при определении эффекта от тепловых видов воздействия обычно принимают режим истощения, физико-химических и газовых - заводнение. Возможность количественной оценки фактического технологического эффекта от применения метода увеличения нефтеотдачи пласта зависит от того, на какой стадии реализации находится промышленный эксперимент. Стадия эксперимента или степень его завершенности характеризуется, как правило, числом прокачанных поровых объемов рабочих агентов (оторочек химических реагентов, воды, газов) с начала испытания. Продолжительность промышленного эксперимента или обводненность добываемой продукции могут рассматриваться как факторы, характеризующие стадию реализации, только в совокупности с другими показателями разработки, так как длительность полного периода испытания определяется гидродинамическими условиями пласта, а обводненность продукции может зависеть от стадии заводнения объекта испытания к началу применения метода.

Все методы увеличения нефтеотдачи пластов характеризуются различной потенциальной возможностью увеличения нефтеотдачи пластов (от 1,5-2 до 25-35% от балансовых запасов) и различными критическими факторами их применения.

Таблица 7.5 Потенциальные возможности и критические факторы методов увеличения нефтеотдачи пластов

Рабочий агент

Увеличение нефтеотдачи, %

Критический фактор применения рабочего агента

Вода+газ

5-10

Гравитационное разделение. Снижение продуктивности

Полимеры

5-8

Соленость воды и пласта. Снижение продуктивности

Щелочи

2-8

Активность нефти

Мицеллярные растворы

8-20

Сложность технологий. Соленость воды и пласта. Снижение продуктивности

Двуокись углерода

8-15

Снижение охвата. Регенерация, коррозия

Пар

15-35

Потери теплоты. Малая глубина. Вынос песка. Технические проблемы

Внутрипластовое горение

15-30

Осложнения при инициировании. Охват горением. Технические проблемы. Охрана окружающей среды

Остаточную нефть из заводненных частей пластов могут эффективно вытеснять только мицеллярные растворы и углекислый газ, которые обеспечивают смешиваемость нефти с вытесняющим агентом, т. е. устраняют действие капиллярных сил, удерживающих эту нефть. Повышать охват заводнением неоднородно-слоистых и зонально-неоднородных пластов способны полимерные растворы, углекислый газ, водогазовые смеси, циклическое воздействие, изменение направления потоков жидкости, щелочи, уменьшающие подвижность воды и неоднородность потоков. С помощью пара и внутрипластового горения за счет снижения вязкости нефти одновременно увеличивается и вытеснение нефти, и охват пластов по сравнению с обычным заводнением только в случае высоковязкой нефти. Водорастворимые ПАВ и серная кислота обеспечивают повышение нефтеотдачи пластов в основном за счет увеличения работающей толщины пластов в скважинах, так как мало снижают межфазное натяжение.

Нефть, оставшуюся в обособленных линзах и пропластках, можно извлекать только с помощью специально пробуренных на них скважин или переведенных с других горизонтов. Исходя из потенциальных возможностей и назначения методов, можно отметить, что для наших нефтяных месторождений с маловязкой нефтью, разрабатываемой с использованием заводнения, к наиболее перспективным методам относятся применение:

1) двуокиси углерода;

2) водогазовых смесей;

3) мицеллярных растворов,

а для месторождений с высоковязкой нефтью:

1) пара;

2) внутрипластового горения.

Остальные методы будут использоваться в основном для интенсификации добычи нефти и регулирования процесса разработки с целью достижения проектных показателей, так как их потенциальные возможности ниже возможных погрешностей при расчетах эффективности заводнения.

Тема 8. Охрана окружающей среды и недр при разработке нефтяных и газовых месторождений. 8.1. Задачи охраны недр

Минеральная основа биосферы - земная кора - стремительно подвергается возрастающему вторжению человека. Она нуждается в охране. С добычей нефти и газа, как и с добычей полезных ископаемых, вообще, непосредственно связаны два рода проблем:

Охрана недр - рациональное использование минеральных ресурсов;

Охрана окружающей среды - земной поверхности в районах бурения и разработки нефтяных месторождений, включая восстановление (рекультивацию) земель, мероприятия по предотвращению загрязнения почв, водоемов, атмосферы.

Охрана недр и окружающей среды -- это комплекс требований и научно-технических мероприятий в процессе геологического изучения недр и добычи полезных ископаемых, направленных на рациональное изучение и комплексное использование недр, предотвращение потерь полезных ископаемых и исключения отрицательного воздействия на окружающую среду (поверхностные и подземные воды, почвы, леса и воздушный бассейн).

В соответствии с законом Российской Федерации "«О недрах» основными требованиями по охране недр при разработке нефтяных и газовых месторождений являются:

1) соблюдение установленного законодательством порядка предоставления недр в пользование и недопущение самовольного пользования недрами;

2) обеспечение полноты геологического изучения, рационального комплексного использования и охраны недр;

проведение опережающего геологического изучения недр, обеспечивающего достоверную оценку запасов полезных ископаемых или свойств участка недр, предоставленного в пользование в целях, не связанных с добычей полезных ископаемых;

проведение государственной экспертизы и государственного учета запасов полезных ископаемых, а также участков недр, используемых в целях, не связанных с добычей полезных ископаемых;

обеспечение наиболее полного извлечения из недр запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов;

достоверный учет извлекаемых и оставляемых в недрах запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов при разработке месторождений полезных ископаемых;

охрана месторождений полезных ископаемых от затопления, обводнения, пожаров и других факторов, снижающих качество полезных ископаемых и промышленную ценность месторождений или осложняющих их разработку;

предотвращение загрязнения недр при проведении работ, связанных с пользованием недрами, особенно при подземном хранении нефти, газа или иных веществ и материалов, захоронении вредных веществ и отходов производства, сбросе сточных вод;

соблюдение установленного порядка консервации и ликвидации предприятий по добыче полезных ископаемых и подземных сооружений, не связанных с добычей полезных ископаемых;

предупреждение самовольной застройки площадей залегания полезных ископаемых и соблюдение установленного порядка использования этих площадей в иных целях;

11) предотвращение накопления промышленных и бытовых отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого или промышленного водоснабжения.

Все работы по геологическому изучению недр, участки недр, предоставляемые для добычи полезных ископаемых, а также в целях, не связанных с их добычей, подлежат государственному учету и государственной регистрации по единой системе, установленной органом управления государственным фондом недр.

Для разработки федеральных и региональных программ геологического изучения недр, комплексного использования месторождений полезных ископаемых, рационального размещения предприятий по их добыче, ведется государственный кадастр месторождений и проявлений полезных ископаемых

Государственный кадастр месторождений и проявлений полезных ископаемых включает в себя сведения по каждому месторождению (количество и качество полезных ископаемых и содержащихся в них попутных компонентов; горно-технические, гидрогеологические, экологические и другие условия разработки месторождения; геолого-экономическая оценка месторождения по каждому проявлению полезных ископаемых).

С целью учета состояния минерально-сырьевой базы ведется государственный баланс запасов полезных ископаемых. Он содержит сведения о количестве, качестве и степени изученности запасов каждого вида полезных ископаемых по месторождениям, имеющим промышленное значение, об их размещении, степени промышленного освоения, о добыче, потерях и обеспеченности промышленности разведанными запасами полезных ископаемых.

Постановка на государственный учет запасов открытых, разведанных и эксплуатируемых залежей нефти и газа производится государственными органами по результатам государственной экспертизы.

Государственная экспертиза запасов может проводиться на любой стадии геологического изучения месторождений при условии, что представляемые на экспертизу геологические материалы позволяют дать объективную оценку количества и качества запасов полезных ископаемых, их народнохозяйственного значения, горнотехнических, гидрогеологических, экологических и других условий их добычи.

Государственные органы контролируют и списание запасов залежей нефти и газа добытых, потерянных в процессе эксплуатации, утративших промышленную ценность или не подтвердившихся в процессе дальнейшего изучения.

Контроль за соблюдением пользователями недрами законодательства о недрах, соблюдением определенных лицензией условий пользования недрами, полнотой изучения геологического строения недр, соответствием геологоразведочных работ регламентам, методическим руководствам и другим нормативным документам, имеющим обязательную силу для всех пользователей недр, полнотой и достоверностью исходных данных осуществляет Министерство природных ресурсов Российской Федерации.

Контроль за выполнением требований по охране недр при ведении геологоразведочных работ на нефть и газ проводит Государственный комитет по надзору за безопасным ведением работ в промышленности и горному надзору (Госгортехнадзор), задачей которого является, в частности, обеспечение соблюдения установленного порядка, пользования недрами, порядка учета и списания запасов, правильности консервации и ликвидации нефтяных и газовых скважин.

Государственный контроль за использованием природных ресурсов и осуществлением единой научно-технической политики в области охраны природы и рационального использования природных ресурсов проводит Министерство охраны окружающей среды и природных ресурсов.

8.2 Охрана окружающей среды при разработке нефтяных и газовых месторождений

Экологическая характеристика нефтегазодобывающего производства.

Первой характерной особенностью нефтегазодобывающего производства является повышенная опасность его продукции, т. е. добываемого флюида - нефти и газа. Эта продукция опасна с точки зрения пожароопасноти, для всех живых организмов опасна по химическому составу, гидрофобности, по возможности газа диффундировать через кожу внутрь организма, по абразивности высоконапорных струй. Газ при смешивании с воздухом в определенных пропорциях образует взрывоопасные смеси.

Второй опасностью нефтегазодобывающего производства является то, что оно способно вызывать глубокие преобразования природных объектов земной коры на больших глубинах. В процессе нефтегазодобычи осуществляются широкомасштабные и весьма существенные воздействия на пласты. При снижении пластового давления происходит перераспределение нагрузки - повышаются напряжения в поровом скелете пласта. Эти процессы могут приводить к землетрясениям. Иными словами, нарушается равновесие литосферы, т. е. нарушается геологическая среда. Закачка воды для поддержания пластового давления, особенно с различными химическими реагентами, может приводить к загрязнению водоносных горизонтов, используемых для питьевого водоснабжения. Загрязнение гидросферы происходит при бурении скважин, при аварийных перетоках между пластами и открытом фонтанировании.

Третьей особенностью нефтегазодобывающего производства является то, что практически все его объекты, применяемые материалы, оборудование, техника являются источниками повышенной опасности. Опасны трубопроводы с жидкостями и газами под высоким давлением, все электролинии, токсичны многие химреагенты и материалы.

Четвертой особенностью нефтегазодобывающего производства является то, что для его объектов необходимо изымать из сельскохозяйственного, лесохозяйственного или иного пользования соответствующие участки земли. Нефтегазодобывающее производство требует отвода больших участков земель на строительство объектов добычи нефти, дорог, коммуникаций, трубопроводов, ЛЭП.

Пятой особенностью нефтегазодобывающего производства является огромное количество транспортных средств, особенно автотракторной техники. Вся эта техника, так или иначе загрязняет окружающую среду.

По уровню отрицательного воздействия на окружающую природную среду нефтегазодобывающее производство занимает одно из первых мест среди различных отраслей промышленности. Оно загрязняет практически все сферы окружающей среды - атмосферу, гидросферу, причем не только поверхностные, но и подземные воды, геологическую среду, т. е. всю мощность вскрываемых скважиной пластов в совокупности с насыщающими их флюидами.

Характер воздействия на окружающую среду обусловлен тем, что все технологические процессы нефтегазодобычи - разведка, бурение, добыча, переработка, транспорт - оказывают отрицательное влияние на окружающую среду.

Охрана водных ресурсов.

Природные воды являются одним из объектов нефтяного загрязнения и испытывают техногенное воздействие при разведке и добыче углеводородов. При этом, в первую очередь, происходит снижение качества вод в результате загрязнения нефтью, промысловыми стоками, химреагентами, буровыми растворами. Присутствие нефти и нефтепродуктов в природных водах, превышающее ПДК, сокращает или полностью исключает практическое использование вод.

Случаи нефтяного загрязнения широко распространены во многих промышленно развитых странах, обычно на этот вид приходится 30-40% общего загрязнения подземных вод.

Существенное влияние на загрязнение поверхностных и подземных вод оказывают попутные воды, которые извлекаются из продуктивного пласта вместе с нефтью или газом. Наряду с высоким содержанием солей в этих водах присутствуют токсичные элементы и органические вещества.

Серьезную экологическую проблему составляет утилизация отработанных буровых растворов, объемы которых при проходке скважин могут достигать несколько тысяч кубических метров.

Наибольшую опасность для поверхностных и подземных вод представляют растворы, содержащие соединения хрома, нефть и нефтепродукты, электролиты, а также ПАВ.

Охрана земель и растительных ресурсов.

Глубина просачивания нефти зависит от механического состава почв. В супесчаных и песчаных почвах она превышает 1 м, а в суглинках и глинистых грунтах не достигает 50-70 см.

Реакция почвенно-растительного комплекса на углеводородное загрязнение носит избирательный характер. Ареалы распространения тяжелых фракций нефти приурочены к пониженным элементам рельефа и не образуют сплошных покровов. В почве наблюдается накопление железа, марганца и уменьшается содержание фосфора, калия и магния. Возрастает соотношение между количеством углерода и азота, увеличивается доля нерастворимого осадка в гумусе, что ослабляет стойкость почвенных экосистем к неблагоприятным внешним воздействиям, вызывает существенное изменение их характеристик и снижение плодородия. Кроме того, нефть производит выщелачивание и уменьшает гидролитическую кислотность почв. Особую опасность представляет поступление битуминозных веществ, которые обладают мутагенными и канцерогенными свойствами. Под их влиянием повышается фитотоксичность почвы, приводящая к нарушению физиологических процессов и ухудшению растительной продукции.

Скорость восстановления биопродуктивности нарушенного почвенного комплекса определяется количеством поступившей нефти и объемом рекультивационных работ. Экспериментально доказано, что период восстановления почвенно-растительных ресурсов после загрязнения их нефтью в количестве 12 л/м3 составляет от 10 до 15 лет в зависимости от климатических и ландшафтно-геохимических особенностей территории.

Возобновление древесных пород на месте погибшего фитоценоза практически не наблюдается, а формирующиеся растительные сообщества отличаются объединением видового состава.

С экологических позиций неприемлема ликвидация розливов нефти на поверхности земли путем их сжигания и захоронения. Сжигание нефти, разлитой на почве, сопровождается образованием канцерогенных веществ. При этом не только увеличивается токсичность почв, но и резко снижается их биологическая продуктивность.

Охрана воздушной среды.

Рассмотрим основные загрязняющие вещества, оказывающие негативное воздействие на качественный состав атмосферы в процессе добычи и переработки нефти и газа.

Сероводород. Данный газ является наиболее опасным с точки зрения воздействия на живые организмы. Даже при небольшой концентрации сероводород оказывает отравляющее воздействие. Может поступать в атмосферу при разработке газовых и газоконденсатных месторождений, содержащих в своем составе сероводород.

Сернистый ангидрит SO2 Поступает в атмосферу при сжигании высокосернистых нефтепродуктов. Предприятия нефтяной и нефтеперерабатывающей промышленности на 40 % определяют уровень загрязнения атмосферы этим соединением. Данный компонент оказывает общее токсичное воздействие, нарушает углеводный и белковый обмен. Токсичность сернистого ангидрита возрастает при одновременном воздействие с сероводородом, оксидом углерода, аммиаком и оксидами азота.

Углекислый газ. Может образовываться при бактериальном разложении органического вещества, нефти, бикарбонатов. Диоксид углерода присутствует в нефтяных попутных газах и в газах газовых месторождений.

Диоксид азота NO2. Является одним из главных загрязнителей атмосферы среди азотсодержащих газов. Образование связанного азота происходит в процессе сжигания топлива, причем оксид этого элемента неустойчив в природных условиях и переходит в диоксид при реакции с кислородом воздуха. Диоксид азота оказывает общее токсическое воздействие и поражает при высоких концентрациях центральную нервную систему.

Углеводороды. Поступают в атмосферу под влиянием антропогенной деятельности при испарении и неполном сгорании нефти и нефтепродуктов. Наиболее токсичными из углеводородных газов являются бутан и пентан. При сжигании жидких и твердых топлив выделяются ароматические углеводороды, которые обладают ярко выраженными канцерогенными и мутагенными свойствами. Пары жидких углеводородов тяжелее воздуха и при соединении с ним образуются взрывоопасные смеси, нижний предел воспламенения которых составляет около 1 %.

Синтезированные вторичные продукты горения выпадают на поверхность земли в виде кислотных дождей и представляют реальную опасность для биосферы. Существенный вклад в загрязнение воздушного бассейна вносит нефтяной газ, который сжигается в факелах. Следует учитывать высокую миграционную активность газообразных веществ, которые фиксируются не только у источника загрязнения, но и на значительном удалении от него. Максимальный ареал рассеивания (до 15 км) характерен для углеводородов, аммиака и оксидов углерода; сероводород мигрирует на расстояние 5-10 км, а оксиды азота и серный ангидрит отмечаются в пределах 1-3 км от очага загрязнения. Помимо химического воздействия при сжигании газа происходит и тепловое загрязнение угнетения растительности, а в радиусе 50-100 м - нарушение фонового растительного покрова.

8.3 Охрана недр при разработке нефтяных и газовых месторождений

Выполнение требований охраны и рационального использования недр при проведении геологоразведочных работ на нефть и газ достигается применением совершенных методик проектирования и проведения всех видов работ на всех стадиях поисково-разведочного процесса. На этапе региональных работ выбор направления (и рационального комплекса исследований) должен проводиться на основе научно обоснованной геологической модели изучаемого региона. На стадии выявления и подготовки к поисковому бурению основное внимание необходимо обращать на комплексирование различных методов (структурное бурение, сейсморазведка и др.), проводить поиски ловушек различного типа (как структурных, так и неантиклинальных).

На стадии поискового бурения полнота и рациональное изучение недр достигается вскрытием разреза осадочных пород на полную мощность или технически доступную глубину и изучением всех перспективных нефтегазоносных комплексов. С тем, чтобы избежать пропуска залежей в изучаемом разрезе, главным принципом проведения поисковых работ должен быть «принцип негативной оценки перспектив нефтегазоносности» -- т.е. всякий объект должен считаться перспективным, если отсутствуют доказательства его непродуктивности.

В процессе разведочных работ некомплексное проведение исследований и низкое качество интерпретации приводит к пропуску нефтегазоносных горизонтов, неправильному определению фильтрационно-емкостных параметров продуктивных пластов и положения ВНК, ГВК, ГНК. Это является причиной неправильной оценки народнохозяйственного значения залежи и больших потерь углеводородов в недрах. Поэтому разведка должна обеспечивать полноту изучения параметров, необходимых для подсчета запасов и составления технологической схемы или проекта опытно-промышленной эксплуатации.

Одной из проблем охраны недр является освоение не только сырья (нефти и природного горючего газа), но и попутных и рассеянных компонентов (этан, пропан, бутан, гелий, сера -- в газах, тяжелые металлы -- в нефти), и особенно в водах нефтяных месторождений. Общее количество минерализованных вод и рассолов, добываемых попутно с нефтью, составляет по Российской Федерации около 60 млн м3/год. Эти воды содержат литий, цезий, рубидий, стронций, магний, калийные соли, щелочи и др. По величине запасов промышленно-ценных компонентов попутные воды могут конкурировать с традиционными рудными источниками их добычи (например для лития). Утилизация полезной продукции из попутных вод месторождений наряду с очисткой менее минерализованных вод до уровня ПДК (предельно допустимых концентраций) будут способствовать сохранению окружающей среды.

Основным видом работ при поисках и разведке месторождений нефти и газа является бурение глубоких скважин, которое оказывает мощное технологическое воздействие как на недра, так и на окружающую природу и приводит к возникновению целого комплекса геоэкологических проблем.

Не допускается строительство скважин вблизи населенных пунктов, школ, детских учреждений, необходимо применять все меры по охране водоемов, лесных насаждений, сельскохозяйственных угодий, культурных ценностей. В зависимости от типа бурящейся скважины на период ее бурения производится отвод земельного участка, согласно техническим нормам, размером от 0,016 до 0,035 км2.

Загрязнителями окружающей среды при бурении скважин являются многочисленные химические реагенты, применяемые для приготовления буровых растворов. Разработаны и внедряются буровые растворы с менее токсичными компонентами, нефть и нефтепродукты, используемые в качестве реагентов для обработки растворов, заменяются кремнийорганическими соединениями.

При бурении поисковых и разведочных скважин происходит нарушение целостности массива горных пород, которое влечет за собой нарушение естественной разобщенности нефтегазоносных и водоносных горизонтов и пластов, а также возможность связи их с атмосферой. В результате такого взаимодействия в водоносные пласты могут попасть углеводороды, а нефтегазоносные пласты могут подвергнуться нежелательному и неконтролируемому обводнению. Межпластовые перетоки могут привести к загрязнению и нанести вред залежам других полезных ископаемых, присутствующих в разрезе месторождения нефти и газа (например калийных солей, пресных или целебных минеральных вод и др.).

К загрязнению поверхности и большим потерям приводит открытое фонтанирование скважин. Особую опасность оно представляет в случае наличия в нефти или газах сероводорода. Весьма опасными являются грифоны, образующиеся в результате прорыва газа по трещинам. Ликвидация последствий открытого фонтанирования -- весьма сложная техническая задача. Необходимо не только прекратить фонтанирование воды и газа через усгье, но и исключить возможные перетоки флюидов в открытом стволе или за колонной. Переливающие водой скважины приводят не только к потерям пластовых вод, которые как правило содержат целый комплекс полезных компонентов и часто являются целебными, но и к порче почв и угодий.

При разведке залежей с аномально низкими пластовыми давлениями (как естественными, так и искусственно созданными в результате интенсивной эксплуатации) необходимо применение облегченных растворов с тем, чтобы избежать поглощений бурового раствора. Залежи с аномально высокими пластовыми давлениями должны вскрываться с применением утяжеленных растворов, а устье должно быть оборудовано противовыбросовым устройством, а репрессия на пласт должна быть минимально возможной. Геофизические исследования в перспективных интервалах необходимо проводить в минимальные сроки (не позже, чем через 5 суток после вскрытия), интервал исследования при этом не должен превышать 200 м. Не допускается разрыв во времени между вскрытием продуктивного пласта в колонне и его испытанием, так как это приводит к кольматации (загрязнению) интервала опробования и искажению представлений об истинной продуктивности пласта.

Значительный ущерб может нанести интенсивная эксплуатация поисковых и разведочных скважин на газонефтяных и газоконденсатных месторождениях. На газонефтяных месторождениях снижение давления газовой шапки приводит к потерям при разработке нефтяной оторочки. На газоконденсатных залежах снижение давления ниже давления насыщения (давление конденсации) приводит к выпадению в жидкую фазу и потере тяжелых углеводородов.

Поисково-разведочное бурение должно производиться в строгом соответствии с геолого-техническим нарядом (ГТН), который составляется для каждой скважины до начала ее бурения и является основным документом, которым руководствуются во время работы. В ГТН приводятся интервалы глубин, в которых возможны осложнения в процессе бурения (обвалы ствола скважины, нефтегазопроявления, открытое фонтанирование, грифонообразование и др.) и меры по их предотвращению.

Геолого-техническим нарядом определяется конструкция скважины, которая позволила бы надежно изолировать друг от друга нефте-, газо- и водонасыщенные горизонты, обеспечила бы' герметичность колонны и высокое качество их цементирования.

Поисковые и разведочные скважины, если необходимо приостановить работы по их строительству или исследованию, могут временно консервироваться. К консервации скважин прибегают в том случае, когда из-за невозможности подъехать к буровой или из-за нарушения устья скважины невозможно продолжать бурение, или при получении промышленного притока для ожидания обустройства и ввода в опытную эксплуатацию. Во избежание аварий и осложнений после расконсервации такие скважины необходимо надлежащим образом обработать и оборудовать. Ствол скважины, которую собираются вводить в эксплуатацию после расконсервации, заливают глинистым раствором, который может быть обработан поверхностно-активными веществами, а верхняя часть ствола (до 30 м) заполняется нефтью.

По завершении работ скважины ликвидируются. Ликвидации подлежат следующие категории скважин. Первая -- опорные, поисковые, параметрические, разведочные, выполнившие свое назначение и оказавшиеся после бурения непродуктивными. Вторая группа -- эксплуатационные, нагнетательные и наблюдательные, пробуренные в неблагоприятных геологических условиях. В третью группу входят скважины, которые не могут использоваться по техническим причинам из-за низкого качества проводки или аварий в процессе бурения. К четвертой группе относятся эксплуатационные скважины, дальнейшее использование которых невозможно или нецелесообразно вследствие полного обводнения или падения дебита ниже предельно рентабельного.

Ликвидация скважин проводится с соблюдением всех норм и требований по охране недр. При ликвидации скважин в интервалах со слабопродуктивными или непродуктивными пластами устанавливают цементные мосты. Высота цементного моста должна быть равна мощности пласта плюс 20 м выше кровли и ниже подошвы пласта. Над кровлей верхнего пласта цементный мост устанавливается на высоту не менее 50 м.

...

Подобные документы

  • Основы увеличения нефте- и газоотдачи пластов. Физические и механические свойства горных пород нефтяных и газовых коллекторов. Методы анализа пластовых жидкостей, газов и газоконденсатных смесей. Характеристика природных коллекторов нефти и газа.

    презентация [670,8 K], добавлен 21.02.2015

  • Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат [1,1 M], добавлен 14.07.2011

  • Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

    учебное пособие [3,1 M], добавлен 09.01.2010

  • Понятие о нефтяной залежи, ее основные типы. Источники пластовой энергии. Пластовое давление. Приток жидкости к скважине. Условие существования режимов разработки нефтяных месторождений: водонапорного, упругого, газовой шапки, растворенного газа.

    презентация [1,0 M], добавлен 29.08.2015

  • Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа [101,6 K], добавлен 21.10.2014

  • Емкостные, фильтрационные и емкостные свойства коллекторов. Сжимаемость пород коллектора и пластовых жидкостей. Молекулярно-поверхностное натяжение и капиллярные явления. Реологические характеристики нефти. Подвижность флюидов в пластовых условиях.

    контрольная работа [288,3 K], добавлен 21.08.2016

  • Коллектор - горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Классификационные признаки коллекторов. Типы пород и залежей. Фильтрационные и емкостные свойства нефтяных и газовых пластов. Типы цемента.

    курсовая работа [2,0 M], добавлен 27.01.2014

  • Характеристика пластовых флюидов. Состояние разработки месторождения. Методы вскрытия продуктивного пласта. Техника и технология гидропескоструйной перфорации. Анализ технологической эффективности проведения ГПП на скважинах Смольниковского месторождения.

    дипломная работа [3,8 M], добавлен 11.03.2017

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Теоретические основы проектирования и разработки газовых месторождений. Характеристика геологического строения месторождения "Шхунное", свойства и состав пластовых газа и воды. Применение численных методов в теории разработки газовых месторождений.

    дипломная работа [4,8 M], добавлен 25.01.2014

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Образование нефти и газа в недрах Земли. Физические свойства пластовых вод, залежей нефти, газа и вмещающих пород. Геофизические методы поисков и разведки углеводорода. Гравиразведка, магниторазведка, электроразведка, сейсморазведка, радиометрия.

    курсовая работа [3,3 M], добавлен 07.05.2014

  • Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа [367,2 K], добавлен 22.01.2012

  • Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике [4,5 M], добавлен 23.10.2011

  • Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация [20,4 M], добавлен 10.06.2016

  • Выделение эксплуатационных объектов. Системы разработки в режиме истощения, с искусственным восполнением пластовой энергии. Разработка нефтяных залежей с газовой шапкой, закачкой газа в пласт и многопластовых месторождений. Выбор плотности сетки скважин.

    реферат [260,3 K], добавлен 21.08.2016

  • Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

    отчет по практике [2,0 M], добавлен 20.03.2012

  • Силы, действующие в залежи. Напряженное состояние пород в районе горных выработок. Особенности распределения напряжений в призабойной части выработки. Упругие изменения коллекторов в процессе разработки и эксплуатации нефтяных и газовых месторождений.

    курсовая работа [1,2 M], добавлен 12.05.2010

  • Расчет инженерно-технических решений по обустройству систем сбора и внутрипромыслового транспорта нефти, газа и пластовой воды. Особенности системы сбора газа и технологии подготовки газа. Определение технологических параметров абсорбционной осушки газа.

    курсовая работа [2,2 M], добавлен 16.11.2022

  • Строение горных пород, деформационное поведение в различных напряженных состояниях; физические аспекты разрушения при бурении нефтяных и газовых скважин: действие статических и динамических нагрузок, влияние забойных условий, параметров режима бурения.

    учебное пособие [10,3 M], добавлен 20.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.