Изучение минералов

Изучение минералогического состава почвы. Обзор кристаллохимической классификации минералов по классам, происхождению и химическому составу. Характеристика и виды распространенных в почвах и породах силикатов. Структура породообразующих минералов.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 05.05.2013
Размер файла 32,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Минералы

2. Классификация минералов

3. Первичные минералы

4. Вторичные минералы

Заключение

Введение

Твердая фаза составляет основу почвы, которую характеризуют минеральная и органическая части.

Минералогический состав почвы - это основа породы, на которой она образовалась. Поэтому минералогический, химический, гранулометрический состав, физические свойства породы передаются почве.

Около 50-60 % объёма и до 90-97 % массы почвы составляют минеральные компоненты.

1. Минералы

Минерал (нем. Мinеrаl или фр. minйral, от позднелат. (аеs) minerale - руда) - природное тело с определённым химическим составом и упорядоченной атомной структурой (кристаллической структурой), образующееся в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами. Является составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия. В настоящее время установлено около 4900 минеральных видов, более 4660 из которых было одобрено Международной минералогической ассоциацией (IMA). Однако лишь несколько десятков минералов (около 100) пользуются широким распространением. Они входят в состав горных пород и называются породообразующими.

Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам.

Минералами считаются также некоторые природные вещества, представляющие собой в обычных условиях жидкости (например, самородная ртуть, которая приходит к кристаллическому состоянию при более низкой температуре). Воду, напротив, к минералам не относят, рассматривая её как жидкое состояние (расплав) минерала лёд.

Некоторые органические вещества - нефть, асфальты, битумы - часто ошибочно относят к минералам, либо выделяют их в особый класс «органические минералы», целесообразность чего весьма спорна.

Некоторые минералы находятся в аморфном состоянии и не имеют кристаллической структуры. Это относится главным образом к т. наз. метамиктным минералам, имеющим внешнюю форму кристаллов, но находящимся в аморфном, стеклоподобном состоянии вследствие разрушения их изначальной кристаллической решётки под действием жёсткого радиоактивного излучения входящих в их собственный состав радиоактивных элементов (U,Th, и тд.). Различают минералы явнокристаллические, аморфные - метаколлоиды (например, опал, лешательерит и др.) и метамиктные минералы, имеющие внешнюю форму кристаллов, но находящиеся в аморфном, стеклоподобном состоянии.

2. Классификация минералов

Существует много вариантов классификаций минералов. Большинство из них построено по структурно-химическому принципу.

По распространённости минералы можно разделить на породообразующие - составляющие основу большинства горных пород, акцессорные - часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.

Общепринятая в настоящее время кристаллохимическая классификация минералов подразделяет все их на КЛАССЫ и выглядит следующим образом:

I. Раздел Самородные элементы.

II. Раздел Сульфиды, сульфосоли и им подобные соединения.

1. класс Сульфиды и им подобные соединения.

2. класс Сульфосоли.

III. Раздел Галоидные соединения (Галогениды).

1. класс Фториды.

2. класс Хлориды, бромиды и иодиды.

IV. Раздел Оксиды и гидроксиды.

1. класс Оксиды.

2. класс Гидроксиды.

V. Раздел Кислородные соли (оксисоли).

1. класс Нитраты.

2. класс Карбонаты.

3. класс Сульфаты.

4. класс Хроматы.

5. Класс Вольфраматы и молибдаты.

6. Класс Фосфаты, арсенаты и ванадаты.

7. Класс Бораты.

8. Класс Силикаты.

А. Островные силикаты.

Б. Цепочечные силикаты.

В. Ленточные силикаты.

Г. Слоистые силикаты.

Д. Каркасные силикаты.

VI. Раздел Органические соединения.

Также существует классификация минералов по происхождению.

Согласно ей минералы подраделяются на первичные и вторичные. К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы.

К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гранит или сера в кратерах вулканов.

Также амфиболы, пироксены и полевые шпаты.

Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие выветривания, при осаждении и кристаллизации солей из водных растворов или в результате жизнедеятельности живых организмов. Это: глинистые минералы, оксиды алюминия, железа и простые соли.

3. Первичные минералы

Наибольшее распространение в почвах и породах имеют силикаты: кварц, полевые шпаты, амфиболы (роговые обманки и пироксены), слюды. В составе магматических пород преобладают полевые шпаты (около 60%), амфиболы и пироксены (около 17%), кварц (12%), слюды (около 4%), прочие (около 7%). В осадочных породах и почвах (рис. 12.1) преобладает кварц (40-60% и более), как наиболее устойчивый к выветриванию, затем идут полевые шпаты (до 20%), слюды (3-7%).

Кварц (нем. Quarz) - один из самых распространённых минералов в земной коре, породообразующий минерал большинства магматических и метаморфических пород. Свободное содержание в земной коре 12 %. Входит в состав других минералов в виде смесей и силикатов. В общей сложности массовая доля кварца в земной коре более 60 %. В крови и плазме человека концентрация кремнезёма составляет 0,001 % по массе.

Химическая формула: SiO2 (диоксид кремния).

Слово «кварц» произошло от немецкого слова Quarz, происходящего от средневерхненемецкого twarc, что значит «твёрдый». По другим данным от нем. Querklьfterz, Quererz - «руда секущих жил».

Относится к тригональной кристаллической системе, но гексагональной сингонии, точечная группа D3 (в обозначении Шёнфлиса) или 32 (в международном обозначении). Кристаллы - шестигранные призмы, с одного конца (реже с обоих) увенчанные шести- или трёхгранной пирамидальной головкой, сочетающей грани двух ромбоэдров. Часто по направлению к головке кристалл постепенно сужается. На гранях призмы характерна поперечная штриховка. Монокристаллы кварца могут иметь правую и левую формы.

В магматических и метаморфических горных породах кварц образует неправильные изометричные зёрна, сросшиеся с зёрнами других минералов, его кристаллами часто инкрустированы пустоты и миндалины в эффузивах.

В осадочных породах - конкреции, прожилки, секреции (жеоды), щётки мелких короткопризматических кристаллов на стенках пустот в известняках и др. Также обломки различной формы и размеров, галька, песок.

В чистом виде кварц бесцветен или имеет белую окраску из-за внутренних трещин и кристаллических дефектов. Элементы-примеси и микроскопические включения других минералов, преимущественно оксидов железа, придают ему самую разнообразную окраску. Имеет много разновидностей, среди которых - почти чёрный морион, фиолетовый аметист, жёлтый цитрин и т. д. Причины окраски некоторых разновидностей кварца имеют свою специфическую природу.

Часто образует двойники.

Растворяется в плавиковой кислоте и расплавах щёлочей.

Температура плавления 1713-1728 °C (из-за высокой вязкости расплава определение температуры плавления затруднено, существуют различные данные).

Диэлектрик и пьезоэлектрик.

Относится к группе стеклообразующих оксидов, то есть может быть главной составляющей стекла.

Однокомпонентное кварцевое стекло из чистого оксида кремния получают плавлением горного хрусталя, жильного кварца и кварцевого песка.

Диоксид кремния обладает полиморфизмом. Стабильная при нормальных условиях полиморфная модификация - б-кварц (низкотемпературный).

Соответственно в-кварцем называют высокотемпературную модификацию. Кварц имеет несколько полиморфных модификаций, являющихся самостоятельными минеральными видами:

- кристобалит.

- тридимит.

- коэсит.

- стишовит (образуется при очень высоком давлении, впервые получен искусственно, затем обнаружен в Аризонском метеоритном кратере).

Разновидности:

- Авантюрин - желтоватый или мерцающий буровато-красный кварцит (в связи с включениями слюды и железной слюдки).

- Агат - слоисто-полосчатая разновидность халцедона.

- Аметист - фиолетовый.

- Бингемит - иризирующий кварц с включениями гётита.

- Волосатик - горный хрусталь с включениями тонкоигольчатых кристаллов рутила, турмалина и/или других минералов, образующих игольчатые кристаллы.

- Горный хрусталь - кристаллы бесцветного прозрачного кварца.

- Кремень - тонкозернистые скрытокристаллические агрегаты кремнезёма непостоянного состава, состоящие в основном из кварца и в меньшей степени халцедона, кристобалита, иногда с присутствием небольшого количества опала.

Обычно находятся в виде конкреций или гальки, возникающей при их разрушении.

- Морион - чёрный.

- Празем - зелёный (из-за включений актинолита).

- Празиолит - луково-зелёный, получается искусственно прокаливанием жёлтого кварца.

- Раухтопаз (дымчатый кварц) - светло-серый или светло-бурый.

- Розовый кварц - розовый.

- Халцедон - скрытокристаллическая тонковолокнистая разновидность.

Полупрозрачен или просвечивает, цвет от белого до медово-жёлтого.

Образует сферолиты, сферолитовые корки, псевдосталактиты или сплошные массивные образования.

- Цитрин - лимонно-жёлтый.

- Сапфировый кварц - синеватый, грубозернистый агрегат кварца.

- Кошачий глаз - белый, розоватый, серый кварц с эффектом светового отлива.

- Соколиный глаз - окварцованный агрегат синевато-серого амфибола.

- Тигровый глаз - аналогичен соколиному глазу, но золотисто-коричневого цвета.

Амфибмолы (от др.-греч. ?мцЯвплпт - двусмысленный, неясный - из-за сложного переменного состава) - группа породообразующих минералов подкласса ленточных силикатов. Общая формула:

R7[Si4O11]2(OH)2

Где R = Ca, Mg, Fe.

Амфиболы имеют вытянутый, вплоть до игольчатого, реже короткостолбчатый облик кристаллов, совершенную призматическую спайность, псевдогексагональную форму поперечного сечения разных кристаллов.

Для многих амфиболов характерны асбестовидные агрегаты. Могут образовывать также плотные массы (например, нефрит).

Разновидности:

- Fe-Mg-Mn группа.

- Ромбические: антофиллит, жедрит, холмквистит.

- Моноклинные: ряд куммингтонита, клинохолмквистит.

- Группа Ca-амфиболов.

- Тремолит-актинолитовый ряд, магнезиальная и железистая роговая обманка, паргасит, гастингсит, эденит.

- Na-Ca группа.

- Тарамиты, катафориты, барруазиты, винчиты, рихтериты.

- Группа щелочных амфиболов.

- Глаукофаны, рибекиты, эккерманиты, арфведсониты, кроссит, коцулит.

Слюды - группа минералов-алюмосиликатов, обладающих слоистой структурой и имеющих общую формулу:

R1(R2)3 [AlSi3O10](OH, F)2

Где R1 = К, Na; R2 = Al, Mg, Fe, Li.

Слюда - один из наиболее распространённых породообразующих минералов интрузивных, метаморфических и осадочных горных пород, а также важное полезное ископаемое.

Структура.

Основной элемент структуры слюды представляет собой трёхслойный пакет из двух тетраэдрических слоёв, между которыми находится октаэдрический слой из катионов R2. Два из шести атомов кислорода октаэдров замещены гидроксильными группами (ОН) или фтором. Пакеты связаны в непрерывную структуру через ионы К+ (или Na+) с координационным числом 12. По числу октаэдрических катионов в химической формуле различают диоктаэдрические и триоктаэдрические слюды. В первых катионы Al3+ занимают два из трёх октаэдров, оставляя один пустым; во вторых катионы Mg2+, Fe2+ и Li+ с Al3+ занимают все октаэдры.

Слюды кристаллизуются в моноклинной (псевдотригональной) системе и образуют столбчатые или пластинчатые кристаллы. Относительное расположение шестиугольных ячеек поверхностей трёхслойных пакетов обусловлено их поворотами вокруг оси c на различные углы, кратные 60°, в сочетании со сдвигом вдоль осей a и b элементарной ячейки. Это предопределяет существование нескольких полиморфных модификаций (политипов) слюды, обладающих, как правило, моноклинной симметрии.

По химическому составу выделяют следующие группы слюды:

1. Алюминиевые слюды:

- мусковит KAl2,

- парагонит NaAl2,

2. Магнезиально-железистые слюды:

- флогопит KMg,

- биотит K (Mg, Fe)3,

- лепидомелан KFe3;

3. Литиевые слюды:

- лепидолит,

- циннвальдит,

- тайниолит,

Разновидности.

Встречаются ванадиевая слюда - роскоэлит KV2AISi3O10](OH)2, хромовая слюда - хромовый мусковит, или фуксит, и др. В слюде широко проявляются изоморфные замещения: К+ замещается Na+, Ca2+, Ba2+, Rb+, Cs+ и др.; Mg2+ и Fe2+ октаэдрического слоя - Li+, Sc2+, Jn2+ и др.; Al3+ замещается V3+, Cr3+, Ti4+, Ga3+ и др.

Пироксены - обширная группа цепочечных силикатов. Многие пироксены - породообразующие минералы.

Структура:

Главным мотивом структуры пироксенов являются цепочки SiO4 тетраэдров, вытянутые по оси с. В пироксенах тетраэдры в цепочках поочередно направлены в разные стороны. У других цепочечных силикатов период повторяемости цепочки обычно больше.

В структуре имеется две неэквивалентные позиции - М1 и М2. Позиция М1 по форме близка правильному октаэдру и в ней располагаются мелкие катионы.

Позиция М2 менее правильная и при вхождении в неё крупных катионов (особенно Ca) она приобретает 8-ную координацию, кремниекислородные цепочки смещаются относительно друг друга и структура минерала становится моноклинной.

Генезис.

Пироксены являются исключительно распространенными минералами. Они слагают примерно 4 % массы континентальной земной коры. В океанической коре и мантии их роль значительно больше.

В поверхностных условиях пироксены неустойчивы. При метаморфизме пироксены появляются в эпидот-амфиболитовой фации. С увеличением температуры они устойчивы вплоть до полного плавления пород. С увеличением давления меняется состав пироксенов, но не убывает их роль в горных породах. Они исчезают лишь на глубинах больше 200 км.

Пироксены встречаются почти во всех типах земных пород. Одно из объяснений этого факта заключается в том, что средний состав земной коры близок к составу авгитового пироксена.

Полевыме шпамты - группа широкораспространённых, в частности - породообразующих минералов из класса силикатов (Feldspat - от нем. фельд - поле и др.-греч. спате - пластина, из-за способности раскалываться на пластины по спайности).

Большинство полевых шпатов - представители твёрдых растворов тройной системы изоморфного ряда:

Где, конечные члены которой соответственно - ортоклаз (Or), альбит (Ab), анортит (An). Выделяют два изоморфных ряда: альбит (Ab) - ортоклаз (Or) и альбит (Ab) - анортит (An).

Минералы первого из них могут содержать не более 10 % An, а второго - не более 10 % Or. Лишь в натриевых полевых шпатах, близких к Ab, растворимость Or и An возрастает. Члены первого ряда называются щелочными (К-Na полевые шпаты), второго - плагиоклазами (Са-Na полевые шпаты). Непрерывность ряда Ab-Or проявляется лишь при высоких температурах, при низких - происходит разрыв смесимости с образованием пертитов. Наряду с санидином, являющимся высокотемпературным, выделяются низкотемпературные калиевые полевые шпаты - микроклин и ортоклаз. Полевые шпаты - наиболее распространенные породообразующие минералы, они составляют около 50 % от массы земной коры.

Полевые шпаты относятся к силикатам с кристаллической структурой каркасного типа, это ажурные постройки из кремнекислородных тетраэдров, в которых кремний иногда замещён алюминием. Они образуют довольно однообразные кристаллы моноклинной или триклинной сингоний, в виде немногочисленных комбинаций ромбических призм и пинакоидов. Характерны простые или, в особенности, полисинтетические двойники. Спайность совершенная в двух направлениях, по (001) и (010). Кристаллы без примесей белые или бесцветные, от просвечивающих до полупрозрачных и прозрачных. Но чаще содержат много примесей и включений, придающих им любые окраски. Плотность 2,54-2,75 г/смі. Твёрдость 6 (один из эталонных минералов шкалы Мооса). Все полевые шпаты хорошо травятся HF, плагиоклазы разрушаются также под действием HCl.

Плагиоклазы:

Плагиоклазы имеют общую формулу (Ca, Na)(Al, Si):

- Альбит,

- Олигоклаз,

- Андезин,

- Лабрадор,

- Битовнит,

- Анортит.

4. Вторичные минералы

Вторичные минералы содержатся только в осадочных породах и в почвах.

Они представлены в основном глинистыми минералами, оксидами железа, алюминия и простыми солями.

Глинистые минералы. Минералы этой группы относятся к слоистым алюмосиликатам. Их название связано с тем, что они, как правило, преобладают в составе глин. К глинистым минералам относятся минералы групп каолинита, гидрослюд, монтмориллонита, смешаннослоистых минералов, хлорита. Глинистые минералы обладают рядом общих свойств: 1) высокая дисперсность; 2) поглотательная, или обменная способность по отношению к катионам; 3) содержат химически связанную воду, которая выделяется при температурах в несколько сотен градусов; 4) имеют слоистое строение, сочетающее тетраэдрические и октаэдрические слои. Различают двух-, трех- и четырехслойные минералы.

Минералы группы каолинита.

Каолинит - глинистый минерал из группы водных силикатов алюминия.

Содержит 39,5 % Al2O3, 46,5 % SiO2 и 14 % H2O.

Образует землистые массы, в которых при больших увеличениях под электронным микроскопом обнаруживаются мелкие шестигранные кристаллы. Кристаллизуется в моноклинной сингонии. В основе кристаллической структуры каолинита лежат бесконечные листы из тетраэдров Si-O4, имеющих три общих кислорода и связанных попарно через свободные вершины алюминием и гидроксилом. Эти листы соединены между собой слабыми связями, что обусловливает весьма совершенную спайность каолинита и возможность различного наложения одного слоя на другой, что, в свою очередь, ведёт к некоторому изменению симметрии всей кристаллической постройки.

Слоистая структура каолинита придаёт минералам на его основе (глинам и каолинам) свойство пластичности.

Твёрдость по минералогической шкале 1; плотность 2540-2600 кг/мі; жирен на ощупь. При нагревании до 500-600 °C каолинит теряет воду, а при 1000-1200 °C разлагается с выделением тепла, давая вначале силлиманит, а затем муллит; реакция эта составляет основу керамического производства.

Каолинит - основной компонент многих глин. Образуется при каолинизации (выветривании и гидротермальном изменении полевошпатовых пород).

Использование.

Около 50 % от всего добываемого каолинита используется при производстве бумаги для мелования и в качестве наполнителя.

В керамической промышленности он используется для создания ангоба и глазури.

Каолинит также применяется в фармацевтике, в качестве пищевой добавки, в зубных пастах (в качестве лёгкого абразивного материала), в косметике (под названием «белая глина») и многих других областях.

Минералы группы монтмориллонита:

Монтмориллонит (от местности Монморийон (фр. Montmorillon) во французском департаменте Вьенна) (иначе - наноглина) - глинистый минерал, относящийся к подклассу слоистых силикатов, основной компонент бентонита. Данный минерал обладает способностью к сильному набуханию благодаря своему строению и имеет ярко выраженные сорбционные свойства.

Строение:

Пакет трёхслойный (2:1): два слоя кремнекислородных тетраэдров, обращённые вершинами друг к другу, с двух сторон покрывают слой алюмогидроксильных октаэдров. В связи с этим связь между пакетами слаба, межпакетное расстояние велико и в него могут попадать ионы и молекулы воды.

Из-за этого минерал при смачивании сильно набухает. Наличие изоморфных замещений, огромная удельная поверхность (до 600-800 м2/г) и лёгкость проникновения ионов в межпакетное пространство обуславливает значительную ёмкость катионного обмена (80-150 ммоль экв/100 г).

Монтмориллонит является типичным продуктом выветривания алюмосиликатов. Он является одним из главных минералов во многих почвах, основным компонентом бентонита (образуется при выветривании вулканических пород - туфов и пеплов), обнаруживается во многих осадочных породах. Была экспериментально показана возможность синтеза монтмориллонита в почвах с обогащённым Si и Mg почвенным раствором в нейтральных или слабощелочных условиях.

Практическое значение:

Благодаря своим высоким адсорбционным свойствам, монтмориллонит используется в нефтяной, текстильной и мыловаренной промышленности как активный компонент отбеливающих и сукновальных глин. В связи с этим долгое время бентонитовые глины именовались сукновальными.

Модифицированный монтмориллонит, используется в качестве наполнителя для полимерных нано композитов, которые в свою очередь используются в следующих отраслях:

- нефтегазовая промышленность (Применение в очистке и крекинге нефти. В этом процессе они играют одновременно роль катализатора, ускоряющего процесс расщепления тяжёлых углеводородов на крекинг-бензин, и адсорбентов, задерживающих на своей поверхности вредные примеси. Они также используются для очистки нефтепродуктов.).

- пищевая промышленность (В масложировой, винодельческой и др. применяется в качестве адсорбента. Отбеливающие глины состоят в основной массе из глинистых минералов (ММТ) и в виду большой удельной поверхности имеют ярко выраженные сорбционные свойства.).

- косметическая и фармакологическая промышленность (Применение в производстве препаратов, материалов для ортопедии (антимикробные покрытия на поверхности медицинских полимеров), травматологии (вместо гипса), стоматологии).

- строительная отрасль (Применение в производстве композиций для склеивания изделий из дерева, стекла, линолеума, облицовочных плиток, производства шпатлевок, грунтовок, бетонных смесей на водной основе (альтернатива ПВА). Герметики, лаки, краски, латексы.).

Иллит.

Иллит - одна из разновидностей глин, содержащихся в керамограните, наряду с каолинитом, очень пластичная. Свойства иллита: класс - силикаты; химическая формула: (Al(OH)2((Si,Al)2O5))xK(H2O); сингония - гексагональная; цвет - белый, бледно-желтый, бледно-зеленый; блеск - перламутовый; спайность - очень слабая; твердость; 1-2.

Заключение

почва кристаллохимический минерал

Минералогический состав почвы - это основа породы, на которой она образовалась. Поэтому минералогический, химический, гранулометрический состав, физические свойства породы передаются почве.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение механических свойств пород и явлений, происходящих в породах в процессе разработки месторождений полезных ископаемых. Классификация минералов по химическому составу и генезису. Кристаллическая решетка минералов. Структура и текстура горных пород.

    презентация [1,6 M], добавлен 24.10.2014

  • Метод классификации минералов по химическому принципу (типы соединений и характер связи) с обязательным учётом их структурных особенностей. Кристаллохимические и морфологические особенности основных групп минералов. Понятие изоморфизма и полиморфизма.

    курсовая работа [379,3 K], добавлен 28.04.2011

  • Характеристика природных химических соединений, представляющих собой обособления с кристаллической структурой. Исследование механических, оптических, физических и химических свойств минералов. Изучение шкалы твердости Мооса, групп силикатных минералов.

    презентация [1,7 M], добавлен 27.12.2011

  • Физические свойства минералов и их использование в качестве диагностических признаков. Понятие о горных породах и основные принципы их классификации. Охрана природы при разработке месторождений полезных ископаемых. Составление геологических разрезов.

    контрольная работа [843,1 K], добавлен 16.12.2015

  • Кристаллическая структура и химический состав как важнейшие характеристики минералов. Осадочное происхождение минералов. Классификация диагностических свойств минералов. Характеристика природных сульфатов. Особенности и причины образования пегматитов.

    контрольная работа [2,2 M], добавлен 07.10.2013

  • Изучение ореолов рассеяния с высоким содержанием минералов, поступающих из разрушающихся в гипергенных условиях тел полезных ископаемых и околорудно-измененных пород. Зависимость химического состава растений от содержания элементов в почвах и породах.

    презентация [804,8 K], добавлен 07.08.2015

  • Классификация, химический состав и кристаллическая структура минералов, изоморфизм и полиморфизм. Физические процессы, определяющие рост кристаллов. Эволюционные закономерности построения минералов, их значение для познания биологической эволюции.

    реферат [2,2 M], добавлен 30.08.2009

  • Морфология минералов, их свойства, зависимость состава и структуры. Развитие минералогии, связь с другими науками о Земле. Формы минералов в природе. Габитус природных и искусственных минералов, их удельная плотность и хрупкость. Шкала твёрдости Мооса.

    презентация [2,0 M], добавлен 25.01.2015

  • Принцип действия поляризационного микроскопа. Определение основных показателей преломления минералов при параллельных николях. Изучение оптических свойств минералов при скрещенных николях. Порядок макроскопического описания магматических пород.

    контрольная работа [518,6 K], добавлен 20.08.2015

  • Понятие и место в природе минералов, их строение и значение в организме человека, определение необходимых для здоровья доз. История исследования минералов от древних времен до современности. Классификация минералов, их физические и химические свойства.

    реферат [36,2 K], добавлен 22.04.2010

  • Понятие и особенности минеральных видов, их признаки. Полиморфные модификации веществ, свойства минеральных индивидов. Нахождение минералов в природе. Характеристика физических, оптических, механических свойств минералов. Наука минералогия, ее задачи.

    реферат [161,3 K], добавлен 09.12.2011

  • Геологическая характеристика и анализ состава минералов Верхнекамского месторождения калийных солей. Определение соотношения чисел минералов разных химических элементов. Описание минералов-микропримесей нерастворимого остатка соляных пород месторождения.

    курсовая работа [5,2 M], добавлен 27.06.2015

  • Оптические и электрические свойства минералов, направления использования минералов в науке и технике. Характеристика минералов класса "фосфаты". Обломочные осадочные породы, месторождения графита, характеристика генетических типов месторождений.

    контрольная работа [32,4 K], добавлен 20.12.2010

  • Морфология минералов как кристаллических и аморфных тел, шкала Мооса. Свойства минералов, используемые в макроскопической диагностике. Выветривание горных пород. Источник энергии, факторы, виды выветривания, геологический результат: кора выветривания.

    контрольная работа [764,1 K], добавлен 29.01.2011

  • Классификация и характеристика минералов группы полевых шпатов, их разновидности, территории распространения, особенности. Отличительные признаки калиевых полевых шпатов от плагиоклазов. Практическое значение минералов данной группы полевых шпатов.

    контрольная работа [150,5 K], добавлен 02.12.2010

  • Изучение свойств минералов. Возможности использования их в промышленности. Структурное исследование кристалла. Применение рентгеноструктурного анализа в нефтяной геологии. Диагностика глинистых минералов, определение их содержания в полиминеральной смеси.

    курсовая работа [871,0 K], добавлен 04.12.2013

  • Генерация минералов, относительный возраст. Примеры разновозрастных генераций минералов и последовательности минералообразования. Методика построения генетических моделей. Кристаллы кварца, барита. Составление графических моделей минеральных агрегатов.

    контрольная работа [5,1 M], добавлен 20.03.2016

  • Петрологические методы исследования минералов и текстур в полевых условиях. Изучение минералогического состава пород проводится с использованием шлифов или полированных тонких разрезов. Петрографический анализ проб тяжелых металлов, флюидные включения.

    реферат [3,4 M], добавлен 06.08.2009

  • Классификация и структурные особенности глинистых минералов. Электронографический и электронно-микроскопический метод. Подготовка образцов к анализу. Особенности структуры минералов группы каолинита. Определение структурных характеристик монтмориллонита.

    курсовая работа [1,1 M], добавлен 09.06.2015

  • Электропроводность как способность минералов проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц. Диэлектрическая проницаемость минералов, пластовых флюидов, газов. Потери проводимости в полупроводящих веществах.

    курсовая работа [117,2 K], добавлен 23.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.