Геология нефти и газа

Породы коллекторы и флюдоупоры. Их характеристика. Классификация нефтяных и газовых залежей по различным признакам. Метод подсчета запасов нефти с помощью карт изобар. Методика их построения. Упруговодонапорный режим разработки нефтяных месторождений.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 08.06.2013
Размер файла 167,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

1) Породы коллекторы и породы флюдоупоры. Их характеристика и классификация

2) Классификация залежей УВ по различным признакам

3) Карта изобар. Решаемые задачи

4) Упруговодонапорный режим разработки нефтяных месторождений

Список использованной литературы

1. Породы коллекторы и породы флюдоупоры. Их характеристика и классификация

коллектор флюдоупор нефть месторождение

Породы-коллекторы. Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами. Абсолютное большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, алевриты, песчаники, алевролиты и некоторые глинистые породы), так и карбонатные (известняки, мел, доломиты) породы.

Из определения пород-коллекторов следует, что они должны обладать емкостью, т. е. системой пустот -- пор, трещин и каверн. Однако далеко не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т. е. коллекторами. Поэтому при изучении коллекторских свойств горных пород определяют не только их пустотность, но и проницаемость.

Проницаемость горных пород зависит от поперечных (к направлению движения флюидов) размеров пустот в породе. Все коллекторы по характеру пустот подразделяют на три типа: гранулярные или поровые (только обломочные горные породы), трещинные (любые горные породы) и каверновые (только карбонатные породы). Емкость порового коллектора называется пористостью. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры. По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (0,2 мкм).

Различают общую, открытую и эффективную пористость. Общая (полная, абсолютная) пористость - это объем всех пор в породе. Соответственно коэффициент общей пористости представляет собой отношение объема всех пор к объему образца породы V2:kn = Vi \V%.

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость - объем только тех пор, которые связаны, сообщаются между собой.

В нефтяной геологии наряду с понятиями общей и открытой пористости существует понятие эффективной пористости, которая определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости нефтесодержащей породы kn равен отношению объема пор V., через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления, к объему образца породы, коэффициент пористости обломочных пород в идеальном случае (когда зерна породы одинаковы по размеру и имеют шарообразную форму) не зависит от размеров зерен, а определяется их укладкой и однородностью по размеру.

При расположении шаров по вершинам куба пористость составляет 47,64 %, а по вершинам тетраэдра - 25,95 %, независимо от размера шаров. У пород, состоящих из неодинаковых по размеру обломков (конгломератов, глинистых песчаников), пористость резко снижается, так как мелкие зерна заполняют промежутки между крупными зернами, уменьшая тем самым объем порового пространства. Величина коэффициента пористости горных пород может достигать 40 %, например, для газоносных алевролитов (алевритов) место скоплений Ставрополья его значения составляют 30-40 %. Наиболее распространенные значения к нефтеносным песчаникам Русской платформы 17-24%.

Принципы количественной оценки емкостных свойств карбонатных (трещиноватых и кавернозных) пород такие же, как и обломочных. Проницаемость - важнейший показатель коллектора, характеризующий свойство породы пропускать жидкость и газ.

За единицу проницаемости (1 мкм) принимается проницаемость такой породы, при фильтрации через образец которой площадью 1 м2 и длиной 1 м при перепаде давления 0,1 МПа расход жидкости вязкостью 1 мПа с составляет 1 м3/с.

Проницаемость нефтеносных песчаников изменяется в широком диапазоне - от 0,05 до 3 мкм2, трещиноватых известняков - от 0,005 до 0,02 мкм2. Она зависит от размера и конфигурации пор (величины зерен), от плотности укладки и взаимного расположения частиц, от трещиноватости пород. Коллекторские свойства нефтегазоносных пластов очень часто резко изменяются на незначительных расстояниях в одном и том же пласте.

Даже в пределах небольшого образца породы размеры пор сильно различаются. Характер строения и размер пор оказывают большое влияние на движение жидкостей и газа в нефтяном пласте и на величину коэффициента извлечения нефти из недр. Практически по субкапиллярным порам жидкость не перемещается. В таких порах межмолекулярное притяжение настолько велико, что для перемещения жидкости требуется чрезмерно высокий перепад давления, отсутствующий в пластовых условиях. Благодаря межмолекулярному притяжению поверхность минеральных частиц обволакивается слоем крепко связанной воды.

Эта вода почти полностью закрывает просветы субкапиллярных поровых каналов. Породы с такими порами характеризуются проницаемостью менее 0,001 мкм2 и не имеют практического значения. При разработке месторождений применяют методы искусственного увеличения пористости и проницаемости путем гидроразрыва пласта и воздействия на него соляной кислотой, что приводит к разрушению перегородок между порами и расширению трещин. Существуют различные схемы классификации пород-коллекторов. П.П. Авдусин и М.А. Цветкова выделяют пять их классов по величине эффективной пористости, %: А - 20, В - 15-12, С - 10-15, D-5-10, Е - 5. Каждый из указанных классов в свою очередь подразделяется' На три группы по скорости движения фильтрата через породу.

В последнее время широко применяется классификация песчано-алевролитовых коллекторов, предложенная А.А. Ханиным.

Согласно этой классификации выделяются шесть классов коллекторов, различающихся по проницаемости и емкости. Изучение коллекторских свойств пластов проводится по образцам керна, материалам промыслово-геофизических исследований и по данным испытания скважин на приток.

Породы-флюидоупоры (покрышки). Сохранение скоплений нефти и газа в породах-коллекторах невозможно, если они не будут перекрыты непроницаемыми для флюидов (нефти, газа и воды) породами. Перекрывающие нефтяные и газовые залежи плохо проницаемые породы называют покрышками. Роль пород-нефтегазоводоупоров выполняют глины, соли, гипсы, ангидриты и некоторые разности карбонатных пород. Породы-покрышки различаются по характеру распространения, мощности, наличию или отсутствию нарушений сплошности, однородности сложения, плотности, проницаемости, минеральному составу. Различают региональные, субрегиональные, зональные и локальные покрышки. Региональные покрышки имеют широкое площадное распространение, характеризуются литологической выдержанностью и, как правило, значительной мощностью.

Обычно они прослеживаются в пределах отдельных регионов, таких, как Волго-Уральская, Западно-Сибирская провинции и т. д. Зональные покрышки выдержаны в пределах отдельной зоны поднятий (по площади распространения они уступают региональным). Реже встречаются локальные покрышки (в пределах местоскопления), которые обусловливают сохранность отдельных залежей. Наличие трещиноватости в породах-флюидоупорах снижает их экранирующие свойства. Например, в зонах региональных разломов первоначальные пластичные свойства глин и солей утрачиваются, они становятся хрупкими, с раскрытыми трещинами и могут пропускать флюиды. Важную роль в экранирующих свойствах покрышек играет степень их однородности: присутствие прослоев песчаников и алевролитов ухудшает их качество.

Алевролитовая примесь по мере увеличения ее содержания в глинах оказывает влияние на структуру порового пространства.

Более чистые разности глин уплотняются интенсивней и характеризуются преимущественно тонкими сечениями поровых каналов, а также низкой проницаемостью.

Наиболее широко распространены глинистые покрышки. Глины характеризуются пластичностью, зависящей от степени дисперсности слагающих, их минеральных частиц, химического состава и способности к ионному обмену этих частиц. Известно, например, что монтмориллонитовые глины обладают лучшими экранирующими свойствами по сравнению с каолинитовыми. Надежным экраном является каменная соль, которая благодаря своей пластичности деформируется без нарушения сплошности. Ангидриты значительно более хрупкие, чем соль, и не являются такими надежными экранами. Вместе с тем абсолютно непроницаемых для нефти и газа покрышек в природе не существует. В.П. Савченко на основе экспериментальных работ установил, что глинистая покрышка удерживает только такую залежь, избыточное давление в которой меньше перепада давлений, обусловливающего начало фильтрации флюидов сквозь эту покрышку. Чем больше мощность покрышки, тем выше ее изолирующие качества и способность удерживать залежи с большими высотами. На больших глубинах вследствие потери воды глинистые породы превращаются в хрупкие тела и могут стать породами-коллекторами.

2. Классификация залежей УВ по различным признакам

Как и любая классификация, классификация нефтяных и газовых залежей может осуществляться по разным их признакам (параметрам): по форме, размерам, фазовым соотношениям между нефтью и газом и др.

По соотношению в залежи запасов нефти, газа и конденсата Н.Е. Еременко (1968) выделил семь классов залежей:

1) Нефтяные залежи, мало насыщенные газом. Это так называемая "мертвая" нефть. В таких залежах давление насыщения во много раз ниже пластового давления и иногда близко к атмосферному. Газовые шапки в них отсутствуют.

2) Нефтяные залежи, недонасыщенные газом. В них давление насыщения также ниже пластового, но разница между ними незначительная. Газовая шапка отсутствует.

3) Нефтяные залежи, насыщенные газом. Давление насыщения близко к пластовому. Залежь газовой шапки не имеет, однако при снижении давления в процессе разработки в них могут возникнуть газовые шапки.

4) Газонефтяная залежь - залежь нефти с газовой шапкой, имеет газовую, газонефтяную и нефтяную части. Запасы нефти в залежи резко преобладает над запасами газа в газовой шапке.

5) Нефтегазовая залежь - залежь газа с нефтяной оторочкой. Имеет газовую, газонефтяную и нефтяную части. Запасы газа в переводе на условное топливо преобладает над запасами нефти в нефтяной оторочке. По энергоемкости 1 млн. тонн нефти приравнивается 1 млрд. м3 газа.

6) Газоконденсатная залежь - залежь полужирного, жирного газа, содержащего растворенную нефть легких фракций - конденсат в количестве свыше 25 см33. Содержание конденсата колеблется в значительных количествах. При падении давления в ходе разработки возможно появление жидкой - конденсатной фазы в виде оторочек в зоне ГВК. Некоторые газоконденсатные залежи содержат нефтяные оторочки значительных размеров. Такие залежи относятся к типу нефтегазоконденсатных.

Газовая залежь. Состоит из сухого (метанового) газа с низким конденсатным фактором (<25см33). Каждая залежь требует своих условий разработки, т.к. разные залежи обладают своими энергетическими ресурсами и разными режимами. Естественное продвижение нефти в направлении к забоям скважин осуществляется за счет следующих сил:

1) сил всплывания нефти над водой;

2) силы упругого напора;

3) силы расширения растворенного газа при снижении давления в пласте в процессе разработки залежи, расширения нефти, расширения сжатой воды, напора законтурных вод, упругого напора сжатых пород. Все эти силы срабатывают одновременно с момента начала снижения давления в пласте. Продолжительность их действия зависит от общего энергетического ресурса залежи и способов ее разработки.

Наиболее популярной в нефтегазовой геологии является классификация залежей нефти и газа по типу резервуаров, и ловушек, разработанная И.О. Бродом (1953). По этому показателю им выделяется три основные группы залежей: пластовые, массивные и литологически ограниченные. Позже (1963) в отдельные группы были выделены стратиграфически и тектонически экранированные залежи.

1) Пластовые залежи. Залегают в пластовых резервуарах. Скопление нефти и газа формируются в той части резервуара, где существует ловушка. Здесь нефть и газ могут накапливаться и сохраняться от разрушения. Ловушки в пластовых резервуарах образуются на участках структурных изгибов в виде брахиантиклинальных и куполовидных складок, в зонах тектонического экранирования разрывными нарушениями, литологического замещения коллекторов покрышками и стратиграфического экранирования. Соответственно различаются:

а) Пластовые сводовые залежи. Они образуются в пластовых резервуарах в сводовых частях антиклинальных складок.

б) Пластовые тектонически экранированные залежи, образуются в пластах, нарушенных разломами.

в) Пластовые литологически экранированные залежи, образуются в зонах литологического замещения пласта-коллектора.

г) Пластовые стратиграфически экранированные залежи, образуются в пластах, срезанных эрозией и несогласно перекрытых более молодыми отложениями.

Типичными представителями пластовых сводовых залежей являются залежи нефтяных месторождений Среднего Приобья в Западной Сибири. Примерами стратиграфически экранированных залежей являются залежи Шаимского нефтеносного района.

2) Массивные залежи. Образуются в резервуарах массивного типа под перекрывающими их флюидоупорами (покрышками). Различаются три разновидности массивных залежей:

а) Массивные сводовые (антиклинальные).

б) Массивные в погребенных рифовых массивах, состоящих из биогенных известняков.

в) Массивные в эрозионных выступах погребенного древнего рельефа, сложенных выветрелыми трещиноватыми породами-коллекторами.

Примерами массивных сводовых залежей являются залежи сеноманского газа в Западной Сибири, в том числе такие гигантские залежи, как Губкинское, Медвежье, Заполярное, Ямбургское, Уренгойское месторождения. Эти залежи образовались на глубине 800 - 1000м. под региональной глинистой покрышкой туронского яруса в сводовых частях антиклинальных складок валообразной и куполовидной форм, сложенных слабо уплотненными песчаниками и алевролитами.

3) Литологические залежи формируются в резервуарах литологически ограниченного типа. Такие резервуары состоят из песков, песчаников и имеют сложные, иногда весьма причудливые формы.

Образовались в прибрежных частях древних морей - в узких заливах, на пляжах, баровых островах, вокруг островов и др. Часто это песчаные отложения погребенных русел древних рек, пойм и подпойменных террас.

Залежи имеют формы пластов, линз, карманов, колец, полуколец, козырьков, рукавов, шнурков, полос и т.д. Шнурковые (рукавообразные) залежи широко развиты в Апшероно-Нижнекуринской провинции и на некоторых месторождениях Северной Америки.

Честь их открытия принадлежит академику И.М. Губкину (1911 год), который впервые их выявил и описал на примере месторождений нефти в Майкопском районе на Северном Кавказе.

3. Карта изобар. Решаемые задачи

Карта, показывающая распределение пластового динамического давления в разрабатываемой нефтяной залежи. Анализ карт изобар позволяет правильно ориентировать разработку залежи нефти путем ограничения и снижения отбора жидкости из участков пласта с наибольшей депрессией пластового давления. Сопоставление ряда карт, построенных для различных периодов эксплуатации залежи, позволяет находить зависимость между отбором жидкости из пласта и средневзвешенным пластовым давлением, знание которой помогает более рационально использовать пластовую энергию.

Метод подсчета запасов нефти с помощью карт изобар. Основан на установлении зависимости между отбором нефти из пласта и средним пластовым давлением на разные даты разработки пласта. Регистрация отбора нефти (и газа) не вызывает затруднений, однако определение среднего пластового давления на различные даты требует периодического и систематического замера забойных давлений по отдельным скважинам.

Полученные данные о распределении забойных давлений по скважинам на какую-то определенную дату позволяют перейти к построению карт истинных изобар и к вычислению по этим картам среднего пластового давления на принятую дату. Сопоставление вычисленных по картам изобар средних пластовых давлений с отбором жидкости из пласта позволяет вывести зависимость между дебитом и давлением.

При выводе указанной зависимости принимается либо текущий отбор (при водонапорном режиме), либо суммарный отбор жидкости с начала эксплуатации (при газовом режиме).

Методика построения карт изобар. На большинстве месторождений карта изобар, т.е. карта равных пластовых давлений, служащая одним из основных материалов для анализа разработки месторождения строится по результатам ежеквартальных измерений давления по площади залежи. В связи с этим важно отметить, что для достоверного построения карты замеры должны проводиться в одно время. Если же давления по скважинам измерялись в значительный промежуток времени, то их необходимо привести к единой дате.

Приведение пластовых давлений по скважинам на дату построения карты изобар проще всего (для ориентировочных расчетов) осуществлять графическим методом, сущность которого заключается в следующем.

Все замеры пластовых давлений на различные даты наносят в виде точек на график (рисунок 1). По полученным точкам строят среднюю (хронологическую) кривую падения давления. Затем, полагая, что указанный средний темп падения давления характеризует всю залежь, и, следуя этому темпу, приближенно определяют давление на искомую дату в любой скважине.

Например, требуется определить давление в скважине №1 и №2 на дату составления карты изобар (на январь соответствующего года). В этом случае, проводя из точек, соответствующих давлениям этих скважин, линии, параллельные средней кривой падения давления, находят искомые давления.

Совершенно очевидно, что предлагаемый метод является приближенным. Поэтому давления следует приводить к искомой дате лишь по близким скважинам, не используя для расчетов данные скважин, полученные задолго (например, за шесть месяцев) до даты, на которую приводятся давления для построения карты изобар.

При неравномерных замерах пластовых давлений по скважинам и сосредоточении фактических данных по отдельным локальными участкам пласта

более точные результаты при приведении давлений к одной дате достигаются использованием индивидуальных кривых изменения пластовых давлений по скважинам.

Метод приведения давлений на искомую дату по индивидуальным кривым отдельных скважин аналогичен вышеизложенному методу.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 1 - Схема приведения замеренных значений Рпл. в скважинах 1 и 2 к дате построения карты изобар

1 - средние значения пластового давления по площади по последним картам изобар;

2 - значения пластового давления по площади, полученные по скважинам в последнем квартале;

3 - приведенные значения пластового давления в скважинах 1 и 2.

С помощью карт изобар решают следующие задачи контроля за разработкой (рисунок 4) рассчитывают среднее пластовое давление как средневзвешенное по залежи. Для этого вычисляют площади между каждыми двумя смежными изобарами. Сумма произведений этих площадей на среднее давление между ними определяет среднее давление по залежи. Производя расчет давлений по картам изобар, кроме среднего пластового давления для всей залежи полезно вычислить средние давления для различных зон пласта: зоны отбора, периферийной части залежи и др.

Находят нейтральную линию, или линию минимальных давлений. Определив положение нейтральной линии, можно делать самостоятельный анализ разработки для участков по ту и другую сторону от нейтральной линии, так как перетоки жидкости через нейтральную линию будут минимальными и каждый из участков, которые она разделяет, можно анализировать как самостоятельный объект разработки.

Линии, нормальные к изобарам, - линии тока позволяют определить основное направление фильтрации флюидов по любому участку залежи.

Рассчитывают величину градиента пластового давления как отношение перепада давления Dp, между двумя точками залежи к расстоянию между этими точками. При ухудшении коллекторских свойств пласта для поддержания фильтрации флюида по пласту необходимо создание больших градиентов давлений.

Сравнительный анализ карт изобар, составленных на ряд смежных дат, позволяет выявить зоны залежи, слабо реагирующие на изменения режима закачки и отбора, что может быть связано с наличием геологических экранов - зон выклинивания или замещения продуктивных пород, а также наличием микросбросов. Выявив такие зоны по площади объекта разработки, можно внести коррективы в технологические схемы и проекты разработки с целью улучшения степени выработки запасов.

Рисунок 2 - Карта изобар

1 - изолинии приведенных давлений; скважины: 2 - действующие; 3) с замерами; 4) пьезометрические; 5) нагнетателъные; 6) зона отбора; 7) линия минимальных давлений (нейтральная); 8) линии тока; 9) зоны замещения коллектора.

4. Упруговодонапорный режим разработки нефтяных месторождений

В замкнутых ограниченных пластах и запечатанных залежах развивается упругий или упруго-замкнутый режим. При таком режиме (при снижении давления на 10 МПа) можно извлечь из пласта за счет упругих сил не более 1,5-2,5% содержащейся в залежи нефти, независимо от числа и размещения скважин.

Если нефтяная залежь хорошо связана с окружающей пластовой водонапорной системой, то развивается упруговодонапорный режим. Упруговодонапорный режим. При проявлении этого режима нефть из залежи вытесняется контурной или подошвенной водой без существенного снижения пластового давления.

При этом режиме коэффициент нефтеизвлечения может изменяться в широком диапазоне от 0,2-0,3 до 0,6-0,7 от балансовых запасов в зависимости от вязкости нефти, системы размещения скважин и других факторов.

Упругий режим.

Условие упругого режима - превышение пластового давления, точнее давления во всех точках пласта, над давлением насыщения нефти газом. Созданное в добывающей скважине возмущение давления (депрессия) распространяется с течением времени в глубь пласта (наблюдается первая фаза упругого режима). Вокруг скважины образуется увеличивающаяся депрессионная воронка. Приток нефти происходит за счет энергии упругости жидкости (нефти), связанной воды и породы -- энергии их упругого расширения. При снижении давления увеличивается объем нефти и связанной воды и уменьшается объем пор; соответствующий объем нефти поступает в скважины. Затем депрессионные воронки отдельных скважин, расширяясь, сливаются, образуется общая депрессионная воронка, которая по мере отбора нефти распространяется до границ залегания залежи.

Если залежь литологически или тектонически ограничена (замкнута), то в дальнейшем наступает вторая фаза упругого режима, в течение которой на контуре ограничения пласта, совпадающим с контуром нефтеносности, давление уменьшается во времени; уменьшается также давление в залежи. Упругий режим может быть продолжительным при значительном недонасыщении нефти газом. В противном случае этот режим быстро может перейти в другой вид. В объеме всего пласта упругий запас нефти составляет обычно малую долю (приблизительно 5--10%) по отношению к общему запасу, однако он может выражать довольно большое количество нефти в массовых единицах. В случае ограниченности залежи во второй фазе проявляется разновидность упругого режима -- замкнуто-упругий режим.

Если залежь не ограничена, то общая депрессионная воронка будет распространяться в законтурную водоносную область, значительную по размерам и гидродинамически связанную с залежью. Упругий режим будет переходить во вторую разновидность -- упруговодонапорный режим. Упруговодонапорный режим обусловлен проявлением энергии упругого расширения нефти, связанной воды, воды в водоносной области, пород пласта в нефтяной залежи и в водоносной области и энергии напора краевых вод в водоносной области.

Для замкнуто-упругого и упруговодонапорного режимов характерно значительное снижение давления в начальный период постоянного отбора нефти (или снижение текущего отбора при постоянном давлении). При упруговодонапорном режиме темп дальнейшего снижения давления (текущего отбора) замедляется. Это связано с тем, что зона возмущения охватывает увеличивающиеся во времени объемы водоносной области и для обеспечения одного и того же отбора нефти требуется уже меньшее снижение давления. Если внешняя граница водоносной области находится выше (на более высокой гипсометрической отметке), чем забой скважины, то кроме энергии упругости действует потенциальная энергия напора (положения) контурной воды.

Список использованной литературы

1) Основы промысловой геологии газа и нефти. Недра 1975 г. Жданов М.А. Гординский Е.В.

2) Бакиров В.Г. Геология нефти и газа. Недра 1990.

3) http://www.oil-lib.ru/razrabotka/razrabotka-neftanyh-mestorozdenij/lekcia-no-1 (28.05.2013);

4) Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. -- М.: Российский государственный университет нефти и газа им. И.М. Губкина. М.А. Мохов, Л.В. Игревский, Е.С. Новик. 2004.

Размещено на Allbest.ru

...

Подобные документы

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация [20,4 M], добавлен 10.06.2016

  • Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат [1,1 M], добавлен 14.07.2011

  • Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа [101,6 K], добавлен 21.10.2014

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа [367,2 K], добавлен 22.01.2012

  • Внешне оптимистичные и проблемные тенденции в разработке нефтяных месторождений. Нарушения проектных систем разработки. Методы и основные направления повышения эффективности разработки нефтяных месторождений и обеспечения стабильной добычи нефти.

    презентация [259,8 K], добавлен 30.03.2010

  • Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

    курсовая работа [273,2 K], добавлен 23.10.2013

  • Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике [4,5 M], добавлен 23.10.2011

  • Значение геологии в развитии нефтяной и газовой промышленности страны, геолого-промысловое обоснование технологических решений проектирования разработки. Особенности поисков и разведки нефтяных и газовых месторождений, водонапорный режим работы залежей.

    контрольная работа [25,1 K], добавлен 28.02.2010

  • Изучение методов системы разработки месторождений нефти и газа. Определение рациональной системы извлечения нефти из недр. Выбор оборудования для хранения нефти после добычи из залежей, а также для транспортировки. Описание основных видов резервуаров.

    курсовая работа [970,7 K], добавлен 11.11.2015

  • История возникновения и особенности развития нефтяных и газовых месторождений. Методы сбора, подготовки, способы транспортировки и хранение газа и нефти, продукты их переработки. Обеспечение технической и экологической безопасности при транспортировке.

    дипломная работа [162,1 K], добавлен 16.06.2010

  • Изучение основных методов подсчета запасов. Исследование степени геологической изученности и промышленного освоения. Российская классификация запасов нефти, газа и конденсата. Сравнение классификационных систем ресурсов нефти и газа различных стран.

    отчет по практике [1,2 M], добавлен 11.04.2019

  • Коллектор - горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Классификационные признаки коллекторов. Типы пород и залежей. Фильтрационные и емкостные свойства нефтяных и газовых пластов. Типы цемента.

    курсовая работа [2,0 M], добавлен 27.01.2014

  • Подсчет и пересчет запасов различными методами. Размещение месторождений нефти и газа в мире. Нетрадиционные ресурсы и возможности их реализации. Главные экономические критерии в новой классификации запасов и прогнозных ресурсов нефти и горючих газов.

    реферат [705,7 K], добавлен 19.03.2014

  • Извлечение нефти из пласта. Процесс разработки нефтяных и газовых месторождений. Изменение притока нефти и газа в скважину. Механические, химические и тепловые методы увеличения проницаемости пласта и призабойной зоны. Гидравлический разрыв пласта.

    презентация [1,8 M], добавлен 28.10.2016

  • Запасы, производство и потребление нефти по странам мира. Современные тенденции мирового рынка нефти. Организационно-экономические мероприятия, направленные на повышение эффективности разработки месторождений в условиях истощения нефтяных ресурсов.

    курсовая работа [147,3 K], добавлен 25.12.2013

  • Разработка нефтяной залежи при водонапорном и упруговодонапорном режиме. Разработка залежи в условиях газонапорного режима. Режим растворенного газа. Газовые и газоконденсатные месторождения, специфика их разработки. Смешанные природные режимы залежей.

    контрольная работа [293,3 K], добавлен 30.03.2012

  • Расчет инженерно-технических решений по обустройству систем сбора и внутрипромыслового транспорта нефти, газа и пластовой воды. Особенности системы сбора газа и технологии подготовки газа. Определение технологических параметров абсорбционной осушки газа.

    курсовая работа [2,2 M], добавлен 16.11.2022

  • Выделение эксплуатационных объектов. Системы разработки в режиме истощения, с искусственным восполнением пластовой энергии. Разработка нефтяных залежей с газовой шапкой, закачкой газа в пласт и многопластовых месторождений. Выбор плотности сетки скважин.

    реферат [260,3 K], добавлен 21.08.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.