История развития геодезии
История формирования и развития геодезии в Египте и Древней Греции. Необходимость ее использования при землеизмерении и изучении поверхности. Роль методов геодезии при решении различных инженерных задач. Разработка первых картографических проекций.
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 10.09.2013 |
Размер файла | 19,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Республики Казахстана
Казахская Головная Академия Строительства и Архитектуры
Реферат
На тему: История развития геодезии
Выполнила: Соловьева П. А.
Проверила: Омиржанова Ж.Т.
г. Алматы 2013г.
Археологические раскопки подтверждают, что истоки геодезический знаний теряются в глубокой древности, они на протяжении всей истории совершенствовались с развитием производства и потребностей общества. Из Египта геодезические работы перешли в Грецию, а потом в Древний Рим, где получили теоретическое обоснование и начало геодезии как науки.
Геодезия возникла в глубокой древности, когда появилась необходимость землеизмерения и изучения земной поверхности для хозяйственных целей. В Древнем Египте еще в 18 в. до н.э. существовало руководство по решению арифметических и геометрических задач, связанных с землеизмерением и определением площадей земельных участков. Геодезия развивалась в тесной связи с задачами составления планов и карт земной поверхности. Планами и картами отдельных местностей и даже больших стран также пользовались в глубокой древности. Имеются сведения, что в Китае уже около 10 в. до н.э. существовало особое учреждение для топографии, съёмок страны. В 7 в. до н.э. в Вавилоне и Ассирии на глиняных дощечках составлялись общегеографические и специальные карты, на которых давались сведения также и экономического характера. Методы геодезии уже на ранней ступени её развития получили применение при решении различных инженерных задач. В 6 в. до н.э. существовали такие инженерные сооружения, как канал между Нилом и Красным морем, оросительные системы в долине Нила и т.д. Эти сооружения не могли быть осуществлены без соответствующих геодезических измерений, явившихся началом инженерной геодезия. В 6 в. до н.э. появились предположения о шарообразности Земли, а в 4 в. до н.э. были высказаны и некоторые из известных нам доказательств, что Земля имеет форму шара. В это время геодезия получила своё современное название и стала выделяться в самостоятельную науку о методах измерения земной поверхности и определения размеров земного шара. Знание размеров Земли было необходимо для составления географических карт, в которых нуждались торговля, мореплавание, военное дело и вообще развивающаяся хозяйственная и культурная жизнь народов.
Представление о поверхности Земли измерялось по мере развития геодезии. Около двух с половиной тысячелетий назад первобытное понятие плоской Земли сменила мысль о шарообразной Земле, и появилась задача определения радиуса Земли. Первое в истории науки определение размеров Земли, как шара, было произведено в Древнем Египте греч. учёным Эратосфеном в 3 в. до н.э. Оно было основано на правильном геометрическом методе, который получил название градусных измерений. В связи с постановкой и решением задачи определения вида и размеров Земли, как планеты, геодезия вступила в тесный контакт с астрономией, возникшей задолго до этого из практической необходимости измерения времени и предсказания смены времён года. Астрономы и математики еще во 2 в. до н.э. установили понятия о географической широте и долготе места, разработали первые картографические проекции, ввели сетку меридианов и параллелей на картах, предложили первые методы определения взаимного положения точек земной поверхности из астрономических наблюдений и тем самым создали один из методов картографических работ. Со времен Исаака Ньютона (1643-1727), под фигурой Земли понимали сжатый эллипсоид вращения, а задачей геодезии стало определение его параметров - большой полуоси и сжатия. В конце 18 - начале 19 века, в работах многих астрономов и геодезистов появилась мысль об отличии уровенной поверхности земного поля силы тяжести от поверхности эллипсоида. Задачу геодезии стали отождествлять с задачей изучения одной уровенной поверхности, близкой к поверхности Мирового океана, которую позднее назвали геоидом.
Применение геодезии и выполнение геодезических работ в России относится к глубокой древности. Еще в 1068г. по приказанию князя Глеба было измерено расстояние между городами Тамань и Керчь по льду Керченского залива. В сборнике законов Древней Руси "Русская Правда", относящемся к 11 - 12 вв., содержатся постановления о земельных границах, которые устанавливались путём измерений на местности. Одна из первых карт Московского государства "Большой чертёж", время составления которой неизвестно (оригинал и сделанная в 1627 копия не сохранились), основывалась на маршрутных съёмках и опросных данных. В царствование Ивана IV служилые люди были обязаны производить съёмку и составлять описание тех местностей, куда они направлялись. Таким образом был собран большой описательный и картографический материал для создания карт Московского государства и прилегающих к нему территорий.
Развитие современной геодезии и методов геодезических работ началось только в 17 в. В начале 17 в. была изобретена зрительная труба, которая имела большое значение для геодезических работ. В то же время была изобретена триангуляция, превратившаяся впоследствии в один из основных методов определения опорных геодезических пунктов для топографических съёмок. Появление угломерного инструмента, называемого теодолитом, и сочетание его со зрительной трубой, снабжённой сеткой нитей, сильно повысило точность угловых измерений, ставших важнейшей частью работ по триангуляции. В середине 17 в. был изобретён барометр, явившийся одним из инструментов для определения высоты точек земной поверхности. Были разработаны графические методы топографической съёмки, упростившие задачи составления топографических карт. На рубеже 16 и 17 вв. было установлено, что на Земле действуют силы, которые позднее получили название сил тяготения, или гравитационных сил. Во второй половине 17 в. была открыта центробежная сила и обнаружена зависимость периода колебания физического маятника от его длины и ускорения силы тяжести. К этому же времени относится установление фактов изменения длины секундного маятника с изменением широты места. Обобщение и объяснение этих явлений и фактов привело к открытию закона всемирного тяготения и обоснованию взгляда о сфероидичности Земли, т.е. сплюснутости её в направлении полюсов.
Исходя из теории тяготения и некоторых гипотез о внутреннем строении Земли, во второй половине 17 в И. Ньютоном и X. Гюйгенсом были сделаны два определения величины сжатия земного сфероида чисто теоретическим путём. Эти определения дали сильно различающиеся друг от друга результаты, вызвавшие сомнения не только в сплюснутости фигуры Земли, но и в обоснованности закона всемирного тяготения, который в то время имел много противников. Поэтому для проверки сплюснутости фигуры Земли в конце 17 и начале 18 вв. во Франции было произведено ученным Д. Кассини градусное измерение по меридиану от Парижа к северу до Дюнкерка и от Парижа к югу до Коллиура на границе с Испанией. Но оно привело к выводу, что Земля вытянута в направлении полюсов, и вызвало в этом вопросе большой спор, длившийся почти до середины 18 в. Спор был окончательно решён результатами работ двух геодезических экспедиций, организованных Парижской академией наук и выполнивших в 1735-42 градусные измерения в Перу и Лапландии. Результаты градусных измерений окончательно подтвердили сплюснутость Земли в направлении полюсов и дали ещё одно доказательство обоснованности закона всемирного тяготения. Указанные геодезические экспедиции, кроме полученного ими научного результата громадной важности, разработали основные принципы организации и исполнения астрономо-геодезических работ и внесли усовершенствования в методы и инструменты для астрономических определений и геодезических измерений.
К середине 18 в. были произведены первые исследования по теории фигуры Земли. Французский математик А. Клеро вывел линейное дифференциальное уравнение 2-го порядка, связывающее плотность и сжатие внутренних сфероидальных слоев Земли, и разъяснил противоречие между указанными выше теоретическими выводами сжатия земного эллипсоида. Это дифференциальное уравнение, впоследствии надлежащим образом уточнённое, служит теперь для определения сжатия Земли на основании данных о её внутреннем строении. Эти исследования привели к открытию закона распределения силы тяжести на поверхности земного эллипсоида и установили связь между сжатием земного эллипсоида и распределением силы тяжести на его поверхности, т.е. были созданы теоретические основы определения сжатия Земли по измерениям силы тяжести.
Эпоха открытия закона всемирного тяготения и указанных геодезических экспедиций явилась эпохой окончательного становления геодезии как самостоятельной науки о фигуре Земли и методах её изучения.
Развитие геодезии и геодезических работ в России усилилось при Петре I. В 1701 он основал в Москве одну из первых в России астрономических обсерваторий и Школу математических и навигационных наук, готовившую астрономов, геодезистов, географов, гидрографов и навигаторов. В 1715 такая же школа, названная Морской академией, была открыта в Петербурге. В 1703 была издана "Арифметика" Л.Ф. Магницкого, в которой содержались основные сведения по геодезии и астрономии. На рубеже 18 и 19 вв. возросли запросы и требования на топографические карты. Войны того периода показали значение и ценность топографических карт для военного дела. Во многих странах Европы были созданы военно-географические институты и военно-топографические управления, производившие основные астрономо-геодезические и съёмочные работы на территории своих государств и колоний. При выполнении этих работ совершенствовались методы и инструменты геодезических измерений.
В 1-й половине 19 в. стал применяться теодолит с микроскопами-микрометрами, сильно повысивший точность измерения углов, и были сконструированы различные типы жезловых базисных приборов. К этому же времени относится разработка современных методов измерения углов в триангуляции.
Советскими геодезистами разработаны новые методы решения геодезических задач на поверхности эллипсоида при неограниченно больших расстояниях между опорными пунктами (А.М. Вировец и др.). В СССР с 1928 применяется система прямоугольных координат в проекции Гаусса, теория которой в исследованиях советских геодезистов получила исчерпывающую разработку. Для вычисления геодезических и прямоугольных координат созданы фундаментальные таблицы геодезических величин.
С 1932 по постановлению Совета Труда и Обороны началась общая гравиметрическая съёмка территории СССР и прилегающих морей. Развитие гравиметрических работ в СССР способствовало созданию новых методов решения научных и практических задач геодезии. М.С. Молоденский предложил методы интерполирования наблюдённых астрономо-геодезических уклонений отвеса с учётом нелинейной части их изменения по гравиметрическим данным и обосновал метод астрономо-гравиметрического нивелирования, являющийся теперь лучшим методом изучения фигуры геоида. В результате исследований А.А. Михайлова, М.С. Молоденското и др. сложился новый раздел геодезических знаний - геодезическая гравиметрия, рассматривающая теории и методы изучения фигуры Земли и решения др. задач геодезии путём совместного использования астрономо-геодезических и гравиметрических данных.
В СССР работы по триангуляции, нивелированию и гравиметрической съёмке получили широкое развитие. К 1950г. протяжённость рядов триангуляции I класса составила около 75000 км, причём по этим рядам определено около 800 пунктов Лапласа. Протяжённость линий нивелирования I и II классов достигает 150000 км. Общее количество гравиметрии, определений составляет 20000. В пределах значительной части территории СССР созданы сплошные сети триангуляции. Результаты этих работ, явившиеся выдающимся событием 20 в. в области геодезии, не имеют себе равных в мире. Они представляют огромный и ценнейший материал для изучения фигуры Земли в отношении вида и размеров, а также для решения других научных проблем.
По градусным измерениям СССР и других стран Ф.Н. Красовский и его ученики определили новые размеры Земли, более обоснованные, чем ранее имевшиеся. Результаты этих исследований послужили для установления размеров земного эллипсоида, удовлетворяющего требованиям геодезических и картографических работ, проводимых в СССР. Позднее А.А. Изотов определил элементы ориентировки земного эллипсоида в теле Земли для установления исходных геодезических дат СССР, а М.С. Молоденский выполнил исследование фигуры геоида в пределах более половины территории СССР. В 1942-45 под руководством Д.А. Ларина было произведено общее уравнивание образовавшейся к тому времени астрономо-геодезической сети СССР методом проектирования. В 1946 завершена работа по упорядочению всей государственной опорной геодезической сети СССР и введению единой системы координат и высот. Все эти исследования и работы явились первым в мире опытом проведения такого рода научных мероприятий в области геодезии. Они создали необходимые основы для правильной постановки всех видов геодезических работ на территории СССР.
Топографические съёмки и картографические работы в СССР развивались по общему государственному плану и в тесной связи с нуждами народного хозяйства и обороны страны. Проведение таких крупнейших народнохозяйственных мероприятий, как создание угольно-металлургической базы на Урале и в Зап. Сибири, нефтяной базы между Волгой и Уралом, сопровождалось сложным комплексом геодезических и съёмочных работ. С 1925 в топографических съёмках стала применяться аэрофотосъёмка, которая ныне является наиболее совершенным методом картографирования территории и изучения земной поверхности в различных хозяйственных и инженерных целях. Методы аэросъёмки и фотограмметрической обработки аэроснимков, а также фотограмметрические приборы разработаны советскими учёными (Ф.В. Дробышев, М.Д. Коншин, Г.В. Романовский).В 1945 завершилась работа по созданию многолистной государственной топографич. карты всей территории СССР в масштабе 1: 1000 000. Эта карта является крупнейшим картографическим произведением, подводящим итоги географического изучения Советского Союза и служащим основой для составления различных специальных карт (геологических, почвенных, геоботанических и др.).
геодезия египет землеизмерение картографический
Использованная литература
1. Книга «Инженерная геодезия», под редакцией проф. Л.С. Хренова.
2. «Высшая геодезия», часть 3, теоретическая геодезия, Огородова Л.В.
Размещено на Allbest.ru
...Подобные документы
Становления геодезии как самостоятельной науки о Земле. Значение работ К. Птолемея. Эпоха Великих географических открытий (последние годы XV века – вторая половина XVI века). История развития топографии. Начало современного периода развития геодезии.
реферат [35,1 K], добавлен 09.02.2014Нормативно-правовое регулирование в области инженерной геодезии. Характеристика органов, контролирующих работу топографо-геодезических служб и их полномочия. Лицензирование их деятельности. Тенденции и перспективы развития геодезии и картографии.
курсовая работа [347,3 K], добавлен 31.05.2014Предмет и задачи геодезии, понятия о форме и размерах Земли. Системы координат, принятые в геодезии. Система плоских прямоугольных координат Гаусса-Крюгера. Изображение рельефа на топографических картах и планах. Решение инженерно-геодезических задач.
курс лекций [2,8 M], добавлен 13.04.2012Сущность, порядок производства и выполнения тахеометрической и мензульной съемок, их основные достоинства и недостатки, характеристика применяемых приборов. Постоянные и временные маркшейдерские знаки и марки, практическое их применение в геодезии.
контрольная работа [21,5 K], добавлен 22.10.2009Понятие и содержание геодезии как научной дисциплины, предмет и направления ее исследования, структура и основные элементы. Топографические планы и карты. Угловые и линейные измерения на местности, методика их реализации и необходимое оборудование.
презентация [8,7 M], добавлен 11.10.2013Понятие и содержание геодезии как научной дисциплины. Система географических координат. Ориентирование линий в геодезии. Топографические карты и планы. Плановые и высотные геодезические сети. Линейные измерения. Работы, связанные со строительством.
курс лекций [1,7 M], добавлен 05.02.2014Геодезия как наука о Земле, измерениях, проводимых для определения ее формы и размеров с целью изображения на плоскости. Основные разделы геодезии и их задачи. Характеристика геодезических понятий. Методы и средства определения формы и размеров Земли.
презентация [61,8 K], добавлен 22.08.2015Общая характеристика физической поверхности Земли. Понятие уровенной поверхности, земного эллипсоида и геоида в геодезии. Определение положения точки с помощью системы географических координат и высот. Рассмотрение правил использования масштаба.
презентация [404,6 K], добавлен 25.02.2014Исследования, поверки и юстировка теодолитов. Проведение съемки из космоса. Рекогносцировка участка. Закрепление точек теодолитного хода. Влияние почвенного покрова на организацию территории. Формирование землепользования крестьянского хозяйства.
курсовая работа [131,6 K], добавлен 02.10.2014Геометрические свойства аэроснимков. Исследования, поверки и юстировка теодолитов. Влияние почвенного покрова на организацию территории. Рекогносцировка участка, закрепление точек теодолитного хода. Формирование землепользования крестьянского хозяйства.
реферат [335,2 K], добавлен 13.10.2014Характеристика и применение основных видов измерительных приборов, способы измерения высот и расстояния на участке местности. Изучение геодезии как науки о производстве измерений. Роль, сущность и значение измерений на местности в различных сферах жизни.
курсовая работа [819,5 K], добавлен 30.03.2018История картографии и генерального межевания земель в России. Изменение в предмете и методе геодезии, основные задачи землепользования. Топографические, картографические и измерительные приборы; подготовка военных и гражданских геодезических кадров.
реферат [44,2 K], добавлен 09.01.2011Геодезические методы определения деформаций инженерных сооружений. Виды деформаций и причины их возникновения, исполнительные съемки. Геодезические знаки, применяемые при выполнении наблюдений за деформациями. Определение горизонтальных смещений.
контрольная работа [1,0 M], добавлен 10.05.2015Определение положения точек земной поверхности: астрономические, геодезические, прямоугольны, полярные координаты. Картографическая проекция Гаусса. Конструктивные элементы геодезических измерительных приборов. Номенклатура топографических карт и планов.
учебное пособие [6,2 M], добавлен 05.10.2012Причины создания части геодезических приборов – компенсаторов, их современное применение в приборах, устройство и принцип работы. Необходимость применения компенсаторов угла наклона и основные элементы жидкостного уровня. Поверки и исследования нивелиров.
курсовая работа [920,4 K], добавлен 26.03.2011Решение геодезических задач на масштабы, чтение топографического плана и рельефа по плану (карте), ориентирных углов линий, прямоугольных координат точек, линейных измерений. Изучение и работа теодолита, подготовка топографической основы для планировки.
практическая работа [4,1 M], добавлен 15.12.2009- История поиска путей учета рефракционных искажений в высокоточных инженерно-геодезических измерениях
История геодезии. Явление рефракции. Изучение рефракционных искажений в инженерно-геодезических измерениях. Геометрическое нивелирование или нивелирование горизонтальным лучом. Современные инструменты высокоточных инженерно-геодезических измерений.
реферат [604,8 K], добавлен 25.02.2009 Особенности строения и основное назначение лазерных геодезических приборов. Лазерные нивелиры, электронные теодолиты и тахеометры. Использование спутниковых технологий в инженерной геодезии. Принцип работы геодезического приемника ГЛОНАСС/GPS ГЕО-161.
реферат [389,4 K], добавлен 25.07.2011Определение средней квадратической ошибки угла, измеренного одним полным приемом при помощи теодолита Т-30. Оценка точности коэффициента дальномера зрительной трубы. Уравновешивание результатов нивелирования системы ходов способом косвенных измерений.
контрольная работа [99,6 K], добавлен 17.05.2010Основные задачи геодезии. Физические основы измерений расстояния на длинные дистанции. Принципы действия лазерного и оптического дальномеров. Особенности их конструкции. Виды и применение приборов. Измерение нитяным дальномером наклонного расстояния.
курсовая работа [645,6 K], добавлен 03.12.2014