Основы гидростатики

Гидростатика как раздел гидравлики (механики жидкости), изучающий покоящиеся жидкости. Физические свойства жидкости. Гидростатическое давление: понятие и критерии оценки, порядок расчета. Основное уравнение гидростатики. Определение избыточного давления.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 18.09.2013
Размер файла 270,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Гидростатика - это раздел гидравлики (механики жидкости), изучающий покоящиеся жидкости. Она изучает законы равновесия жидкости и распределения в ней давления. Основные величины, используемые в гидростатике - это давление p и напор H.

В гидравлике при изучении законов равновесия и движения широко пользуются различными физическими характеристиками жидкости (например, плотность, вязкость, удельный вес, удельный объём). Студенту нужно уметь определять основные физические характеристики жидкости, знать единицы этих характеристик. Следует также рассмотреть основные физические свойства капельных жидкостей: сжимаемость, тепловое расширение и др.

1. Физические свойства жидкости

Существуют следующие физические свойства жидкости:

1) Плотность -с это масса единицы объёма жидкости (кг/м3):

с = m/V,

где: m - масса, кг;

V - объём, м3.

Плотность воды при температуре +4°С равна 1000 кг/м3. Легко заметить, что плотность воды зависит от температуры незначительно. В большинстве гидравлических расчётов свойствами сжимаемости и температурного расширения жидкостей пренебрегают, например, для воды считают плотность постоянной и равной 1000 кг/м3.

2) Удельный вес - это вес единицы объёма жидкости (Н/м3):

g = G/V,

где: G - вес (сила тяжести), Н;

V - объём, м3.

Связаны удельный вес и плотность через ускорение свободного падения (g = 9,81» 10 м/с2) так:

g = r* g.

3) Коэффициент объёмного сжатия вW (Па-1) - это относительное изменение объёма жидкости при изменении давления на единицу:

где ДW - изменение объёма W;

Дr - изменение плотности r, соответствующее изменению давления на величину Дp.

Величина, обратная коэффициенту объёмного сжатия, называется модулем упругости жидкостей EЖ (Па):

ЕЖ = 1/вW.

Значение модуля упругости жидкостей зависит от давления и температуры. Если принять, что приращение давления Dp = p - p0, а изменение объёма DW=W-W0, то:

W=W0 · (1-вW ·Dp),

r =r0 · (1-вW ·Dp).

4) Коэффициент температурного расширения вt (0С)-1 выражает относительное изменение объёма жидкости при изменении температуры на один градус:

где ДW - изменение объёма W, соответствующее изменению температуры на величину Дt.

Коэффициент температурного расширения воды увеличивается с возрастанием температуры и давления; для большинства других капельных жидкостей bt с увеличением давления уменьшается. Если принять, что приращение температуры Дt = t - t0, а изменение объёма DW = W - W0, то:

W=W0 (1+вt -Дt),

r =r0 (1+вt ·Дt).

5) Вязкость - это свойство жидкости проявлять внутреннее трение при её движении, обусловленное сопротивлением взаимному сдвигу её частиц. В покоящейся жидкости вязкость не проявляется. Количественно вязкость может быть выражена в виде динамической или кинематической вязкости, которые легко переводятся одна в другую.

Вязкость динамическая m, Па· с = Н· с/м2. Динамический коэффициент вязкости µ не зависит от давления и от характера движения, а определяется лишь физическими свойствами жидкости и её температурой.

В практике для характеристики вязкости жидкости чаще применяют не коэффициент динамической вязкости, а коэффициент кинематической вязкости н (м2/с). Коэффициентом кинематической вязкости называется отношение коэффициента динамической вязкости к плотности жидкости:

Вязкость кинематическая , м2/с.

Вязкость проявляется в том, что при движении жидкости возникает сила внутреннего трения Т между перемещающимися один относительно другого слоями с площадью соприкосновения S. определяется законом Ньютона:

где S - площадь соприкасающихся слоёв, м2;

du - скорость смещения слоя «b» относительно слоя «a», м/с;

dy - расстояние, на котором скорость движения слоёв изменилась на du, м;

du/dy - градиент скорости, изменение скорости по нормали к направлению движения (с-1).

Если силу трения T отнести к единице площади соприкасающихся слоёв, то получим величину касательного напряжения ф, которую можно определить по формуле:

Вязкость жидкости определяют при помощи вискозиметра Энглера и выражают в градусах Энглера (0Е). Градус Энглера (0Е) есть отношение времени истечения испытуемой жидкости ко времени истечения дистиллированной воды. Для перехода от вязкости в градусах Энглера к коэффициенту кинематической вязкости н применяется формула Убеллоде:

Вязкость также определяют капиллярным вискозиметром Оствальда. Коэффициент кинематической вязкости определяют по формуле:

n = c ·Tж ·10-4,

где с - постоянная прибора;

Tж - время истечения жидкости, с.

2. Гидростатическое давление

Гидростатическое давление p - это скалярная величина, характеризующая напряжённое состояние жидкости. Давление равно модулю нормального напряжения в точке: p = /s /.

Давление в системе СИ измеряется в паскалях: Па = Н/м2.

Связь единиц давления в различных системах измерения такая:

100 000 Па = 0,1 МПа = 1 кгс/см2 = 1 ат = 10 м вод. ст.

Два свойства гидростатического давления:

1. Давление в покоящейся жидкости на контакте с твёрдым телом вызывает напряжения, направленные перпендикулярно к поверхности раздела.

2. Давление в любой точке жидкости действует одинаково по всем направлениям. Это свойство отражает скалярность давления.

Гидростатический парадокс

Суммарное давление на горизонтальное дно зависит только от глубины погружения дна h0 и величины площади последнего и не зависит от формы сосуда, а следовательно, и от веса налитой в эти сосуды жидкости. На рис. 1 показано несколько сосудов личных форм с плоским дном площадью глубиной жидкости в них h, одинаковыми для всех сосудов.

Рис. 1. Гидростатический парадокс

Различные формы стенок сосудов и различные веса жидкости в этих сосудах не оказывают никакого влияния на величину суммарного давления на их дно, равного для всех сосудов согласно:

p =h*щ.

Это кажущееся противоречие известно под названием гидростатического парадокса. Объясняется это явление тем, что разность между силой давления на горизонтальное дно.

Основное уравнение гидростатики

Основное уравнение гидростатики гласит, что полное давление в жидкости p равно сумме внешнего давления на жидкость p0 и давления веса столба жидкости pж, то есть

p=p0+ pж= p0+gh,

где h - высота столба жидкости над точкой (глубина её погружения), в которой определяется давление (рис. 2).

Из уравнения следует, что давление в жидкости увеличивается с глубиной и зависимость является линейной.

Рис. 2. Схема к основному уравнению гидростатики

Рис. 3. Изменение давления: 1 - открытый резервуар; 2 - пьезометр

В частном случае для открытых резервуаров, сообщающихся с атмосферой (рис. 3), внешнее давление на жидкость равно атмосферному давлению po = pатм = 101 325 Па1 ат. Тогда основное уравнение гидростатики принимает вид:

p = pатм+gh.

Открытые резервуары - это не только баки, ёмкости, сообщающиеся с атмосферой, но также любые канавы с водой, озёра, водоёмы и т.д.

Избыточное давление (манометрическое) есть разность между полным и атмосферным давлением. Из последнего уравнения получаем, что для открытых резервуаров избыточное давление равно давлению столба жидкости:

гидростатика давление жидкость покоящийся

pизб=pман= p - pатм = gh.

Размещено на Allbest.ru

...

Подобные документы

  • Гидравлический расчет приборов для измерения давления в жидкости. Определение силы и центра давления на плоские затворы. Расчет коротких трубопроводов при установившемся движении без учета вязкости жидкости. Истечение из отверстий при переменном напоре.

    курсовая работа [613,6 K], добавлен 27.12.2012

  • Механические методы воздействия в твердых породах. Проведение оценки давления гидроразрыва пласта. Расчет потерь давления на трение в лифтовой колонне при движении рабочей жидкости. Расчет скорости закачивания рабочей жидкости при проведении ГРП.

    курсовая работа [248,2 K], добавлен 11.11.2013

  • Распределение давления в газовой части. Уравнение Бернулли для потока вязкой жидкости. Графики зависимости дебита скважины и затрубного давления от проницаемости внутренней кольцевой зоны. Формула Дюпюи для установившейся фильтрации в однородном пласте.

    курсовая работа [398,4 K], добавлен 10.01.2015

  • Скорость перемещения штока гидроцилиндра. Определение внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчёт потерь давления в гидролиниях. Тепловой расчёт объемного гидропривода.

    курсовая работа [849,3 K], добавлен 06.05.2015

  • Определение параметров пластовой смеси. Теоретические основы для расчета распределения температуры по стволу газоконденсатной скважины. Расчет забойных давлений и температуры по стволу горизонтальной скважины с приемлемой для практики точностью.

    курсовая работа [1010,0 K], добавлен 13.04.2016

  • Основы теории фильтрации многофазных систем. Характеристики многофазной среды. Сумма относительных проницаемостей. Потенциальное движение газированной жидкости. Определение массовой скорости фильтрации капельно-жидкой фазы газированной жидкости.

    презентация [255,4 K], добавлен 15.09.2015

  • Геологическая характеристика разреза скважины, ее конструкция. Определение количества потребных материалов для приготовления промывочной жидкости с заданными свойствами. Анализ инженерно–геологических условий бурения скважины. Выбор буровой установки.

    курсовая работа [124,5 K], добавлен 05.12.2017

  • Гидравлический расчет линии нагнетания водопровода. Сумма коэффициентов местного сопротивления. Критерий Рейнольдса. Определение зависимости падения давления на участке 5 от расхода. Зависимость потери напора от расхода жидкости для подогревателя.

    курсовая работа [215,7 K], добавлен 13.02.2016

  • Сущность и особенности определения истечения жидкости из резервуара через отверстия и насадки. Понятие и виды степени сжатия струи. Основные характеристики насадков при турбулентных режимах течения. Описание экспериментальной установки напорного бака.

    реферат [747,1 K], добавлен 18.05.2010

  • Напорный приток к дренажной галерее. Приток к совершенной скважине, расположенной в центре кругового пласта. Время движения частицы жидкости, движущейся по радиусу от контура питания к скважине. Стоки и источники. Фильтрация неньютоновских жидкостей.

    курсовая работа [538,7 K], добавлен 03.04.2014

  • Сущность метода гидравлического разрыва пласта, заключаемого в нагнетании в проницаемый пласт жидкости при высоком давлении. Сопротивление горных пород на разрыв. Применяемые для ГРП жидкости. Определения ширины и объема вертикальной трещины пласта.

    презентация [1,0 M], добавлен 29.08.2015

  • Теория подъема жидкости в скважин. Эксплуатация фонтанных скважин, регулирование их работы. Принципы газлифтной эксплуатации скважин. Методы расчета промысловых подъемников. Расчет кривой распределения давления в подъемных трубах газлифтной скважины.

    курсовая работа [1,5 M], добавлен 07.05.2015

  • Промывочные жидкости, применяемые при промывке скважин, условия их применения, назначение и классификация. Очистка скважины при бурении от разбуренной породы и вынос ее на поверхность. Продувка скважин воздухом. Промывочные жидкости на водной основе.

    реферат [1,5 M], добавлен 06.04.2014

  • Определение максимальных нагрузок и расходов рабочей жидкости. Построение характеристики трубопровода. Определение давления насоса, необходимого для обеспечения функционирования гидроцилиндра. Расчёт гидравлических потерь в магистралях гидросистемы.

    курсовая работа [1,6 M], добавлен 09.04.2016

  • Физико-механические свойства горных пород. Давление и температура по разрезу скважины, возможные осложнения при бурении. Бурение с аэрацией промывочной жидкости. Выбор тампонажных материалов и буферных жидкостей; расчет промежуточной и обсадной колонны.

    дипломная работа [2,4 M], добавлен 04.07.2013

  • Глубина максимального количества залежей нефти. Физические свойства и химический состав этой горючей маслянистой жидкости тёмно-коричневого цвета. Место полезного ископаемого в топливно-энергетическом балансе. Его доля в общем потреблении энергоресурсов.

    презентация [420,8 K], добавлен 23.04.2011

  • Бурение хемогенных пород. Определение режима течения промывочной жидкости. Выбор диаметра цилиндровых втулок насоса. Исследование фильтрации газа и воды в пористых средах насыщенных трехфазной пеной. Расчет потерь давления в циркуляционной системе.

    курсовая работа [3,7 M], добавлен 05.06.2014

  • Понятие о нефтяной залежи, ее основные типы. Источники пластовой энергии. Пластовое давление. Приток жидкости к скважине. Условие существования режимов разработки нефтяных месторождений: водонапорного, упругого, газовой шапки, растворенного газа.

    презентация [1,0 M], добавлен 29.08.2015

  • Аномально-высокое пластовое давление. Горное, гидростатическое, пластовое приведенное пластовое давление. Геотермический градиент. Соляной диапиризм. Аномально высокие пластовые давления в породах, богатых органическим веществом. Грязевые вулканы.

    курсовая работа [306,3 K], добавлен 11.12.2015

  • Разработка и проектирование системы водоснабжения внутренних сетей. Определение расчетных расходов воды. Расчет внутренней канализации жилого дома, скорости движения сточной жидкости и наполнение для гидравлического расчета канализационных трубопроводов.

    реферат [321,7 K], добавлен 18.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.