Общие сведения и классификация горных машин
Общая классификация горных машин, утвержденная Комитетом технической терминологии АН России. Условия эксплуатации и требования, предъявляемые к горным машинам. История создания и тенденции развития машин, виды их производительности, показатели качества.
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 13.10.2013 |
Размер файла | 31,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Реферат
Общие сведения и классификация горных машин
Горные машины и оборудование -- один из основных курсов в программе подготовки горного инженера, готовящегося к работе в области технологии вскрытия и разработки месторождений полезных ископаемых. Успешная работа современного горного инженера-технолога немыслима без глубокого знания основ механизации и автоматизации горного производства, эксплуатационных и технических данных горных машин, элементов их конструкции, принципа действия и технических возможностей, а также освоения основ теории, расчета и технической эксплуатации горных машин и комплексов.
Курс Горные машины и оборудование является одним из первых инженерных курсов. Впервые наиболее полно курс «Горные машины» был систематизирован и издан в 1934 г. под названием «Горные машины при выемке пластовых полезных ископаемых» проф. А. М. Терпигоревым, читавшим многие годы в Московском горном институте курс по механизации добычи и доставки горной массы, и доц. М. М. Протодьяконовым. Учебник выдержал несколько переизданий.
Предмет горные машины содержит информацию по всем средствам механизации очистных и подготовительных работ, принципам создания и работы машин, методам расчета основных параметров оборудования. Курс охватывает сведения, начиная с наиболее простых машин (ручные сверла, перфораторы), механизирующих лишь отдельные операции, до комплексов и агрегатов, обеспечивающих решение механизации всего технологического цикла ведения горных работ, включая и автоматизацию работы оборудования. Большое конструктивное разнообразие горных машин диктуется требованиями технологии и различием условий эксплуатации оборудования. Содержание курса непосредственно связано с технологией подземной разработки месторождений полезных ископаемых, курсами транспорта горной массы по выработкам, технологии металлов и конструкционных материалов, физики горных пород, а также такими общетехническими предметами, как теория машин и механизмов, детали машин, стандартизация и взаимозаменяемость и др. Основные закономерности, закладываемые в расчеты и принципы работы горных машин, базируются на фундаментальных общеинженерных дисциплинах: теоретическая механика, физика, математика и др.
Курс горных машин по принципу функционального назначения оборудования делится на:
-- машины и оборудование для механизации процессов бурения шпуров и скважин;
-- машины для механизации процессов выемки полезных ископаемых, включающие врубовые машины, очистные комбайны и струговые установки;
-- машины и оборудование для механизации проведения подготовительных и нарезных выработок;
-- выемочные комплексы и автоматизированные агрегаты;
-- машины для механизации вспомогательных операций технологического цикла.
Приведенная классификация является укрупненной, облегчающей рассмотрение отдельных разделов предмета, исходя из прямого назначения отдельных групп машин. Внутри каждого раздела курса и его подразделов дается более углубленная и детализированная классификация горных машин, облегчающая изучение каждой машины и предмета в целом.
Общая классификация горных машин утверждена Комитетом технической терминологии АН России.
Требования условий эксплуатации диктуют не только большое разнообразие конструкций горных машин, но и возможность использования того или иного вида энергии. Большинство горных машин работает на электроэнергии, но в ряде случаев требования технологии определяют необходимость использования гидравлической энергии либо дизельных приводов, а жесткие требования техники безопасности -- применение только пневмоэнергии. Все это дополнительно усложняет конструкцию горных машин, а в ряде случаев и ограничивает технические возможности их рационального использования. Так, при работе машин в условиях гидрошахт рационально и более безопасно использовать один вид энергии -- воду под высоким давлением. Мобильность самоходного бурового оборудования выдвигает требование иметь изолированный источник энергии. В этом случае применяют дизельные приводы с очисткой выхлопных газов до требований санитарных норм. Отработка сверхкатегорных пластов по газу и пыли исключает возможность использования электроэнергии. В этих случаях единственно возможными техническими решениями являются пневматические приводы с крайне низким КПД и ограниченной мощностью.
Знание курса «Горные машины и оборудование» позволяет обоснованно выбрать оборудование для конкретных условий эксплуатации, рассчитать параметры машин и их технические возможности, тем самым обеспечив решение вопроса механизации основных процессов технологического цикла, снижение трудоемкости и получение оптимальных технико-экономических показателей работы оборудования.
При изложении материала особое внимание уделяется следующим вопросам:
назначению, классификации и области применения машин; принципу действия, конструкции и управлению горными машинами; основам теории работы машин с определением их производительности и энергоемкости процесса; выбору рациональных режимов работы горных машин и анализу путей повышения производительности; основным положениям эксплуатации, ремонта и техники безопасности, а также перспективам дальнейшего развития и совершенствования рассматриваемых горных машин.
Условия эксплуатации и требования, предъявляемые к горным машинам
Специфические условия работы в подземных выработках сказываются на конструкции горных машин, предъявляя к основным их узлам ряд особых требований. Так, одной из специфических особенностей работы горных машин является стесненность рабочего места, обусловленная небольшими поперечными размерами горных выработок. В связи с этим возникает необходимость в строгом ограничении габаритов горных машин, придании последним удобной формы с целью повышения маневренности и улучшения транспортабельности их узлов. Уменьшение размеров основных узлов горных машин с одновременным сохранением их высокой работоспособности достигается применением последних достижений науки и техники в области машиностроения.
Значительная влажность рудничной атмосферы и агрессивность шахтных вод приводят к значительному ускорению коррозии, резко уменьшающей срок службы горных машин. В связи с этим детали горных машин должны изготовляться из антикоррозионных материалов или подвергаться специальному покрытию горячим цинкованием, лаками, полимерными материалами и др.
Большая запыленность рудничной атмосферы, проникающей внутрь машин, резко снижает долговечность трущихся пар (шестерен, подшипников и др.) и заставляет, помимо борьбы с пылеобразованием, надежно защищать элементы горных машин от попадания пыли и грязи.
Высокие абразивность и твердость руды и породы приводят к быстрому износу элементов горных машин, что требует выполнения их из особо прочных и износостойких материалов, заставляет изыскивать специальные схемы работы элементов исполнительных органов и предусматривать возможность быстрой замены деталей, подверженных особо быстрому износу.
Тяжелые, резко усложняющиеся условия работы горных машин с внезапными перегрузками, возникающими от обрушения горной массы, попадания крупных кусков, а иногда и заклинивания исполнительного органа твердыми включениями, приводят к необходимости проектировать детали горных машин с достаточными запасами прочности, а приводы их оборудовать специальными предохранительными муфтами.
Рабочее место многих горных машин, особенно предназначенных для очистных и проходческих работ, непрерывно меняется, в связи с чем такие машины должны обладать особенно хорошей маневренностью и оборудоваться специальными устройствами, облегчающими перемещение их при работе и переводе с одного рабочего места на другое.
Перечисленными выше специфическими условиями не исчерпывается все многообразие вопросов, учитываемых при проектировании, выборе и эксплуатации горных машин. Так, при проектировании, выборе или технической эксплуатации горных машин необходимо всегда исходить из требований безопасности и удобства их обслуживания, облегчения управления, простоты монтажа и демонтажа. Особое внимание должно уделяться изоляции токоведущих частей, заземлению корпусов и защите обслуживающего персонала от движущихся элементов. Это диктуется стесненностью рабочего места, необходимостью изменения положения обслуживающего персонала относительно машин, трудностью использования защитной спецодежды и неудобством работы в ней в условиях горных выработок, т. е. в условиях, при которых возрастает опасность травмирования обслуживающего персонала.
Условия эксплуатации машин под землей, где из-за недостаточной освещенности, запыленности и стесненности рабочего места ремонт практически невозможен, а выдача всей машины на поверхность сильно затруднена, требуют чтобы она состояла из отдельных быстро и легко заменяемых узлов.
Все перечисленные требования должны учитываться при выборе горных машин для механизации и автоматизации рассматриваемого процесса применительно к конкретным условиям работы горных машин и физико-механическим свойствам конкретных горных пород.
История создания и тенденции развития горных машин
Горная промышленность обеспечивает добычу полезных ископаемых, являющихся основным сырьем для всех остальных отраслей промышленности. Главным сырьевым звеном системы является топливная промышленность, обеспечивающая необходимые условия жизнедеятельности человека и энерговооруженности его труда. Д.И.Менделеев отмечал, что «...первое место между ископаемыми принадлежит каменным углям ... они составляют питательное средство всей промышленности». Еще в 1724-25 гг по заданию Петра I проводилась разведка угля в Донецком, Подмосковском и других бассейнах. Интерес к углям особенно возрос в XVIII веке в связи с интенсивным строительством чугунолитейных заводов.
Добыча и переработка руд были издавна известны в России. Уже в XII-XIII вв. в центральных русских областях достигло высокого развития кустарное производство железа из болотных руд. Начало развития железорудной промышленности Урала относится к 1631 г, когда был основан Ницинский завод. Уже во второй половине XVIII века по выплавке чугуна Россия обогнала западноевропейские страны, а вывоз железа стал крупной статьей русского экспорта. В XIX веке Россия экспортировала около 4 тыс. тонн меди в год. Большое значение в России уделялось добыче благородных и драгоценных металлов.
При сравнительно больших масштабах развития горнорудной промышленности в России уровень механизации работ был крайне низок. Лишь в начале XX века на ряде рудников начали применять перфораторы, которые являлись единственным средством механизации проведения шпуров и скважин.
Ударно-поворотный способ бурения, к которому относятся перфораторы, был известен в Китае свыше 2 тысяч лет назад. Этим способом бурили скважины с помощью бамбуковых штанг для добычи поваренной соли. В России бурение первых скважин отмечалось в IX веке, так же при добыче соли в Старой Руссе. В середине XIX века ударное бурение с помощью ручных приспособлений стало вытесняться портативными механическими станками. В 1859 г Г.Д.Романовский в качестве привода бурового станка использовал паровую машину. В середине XIX века при бурении на нефть использовалась конная тяга. В 1901 году на Бакинских нефтепромыслах появились первые электрические двигатели, заменившие паровые машины. В 1924 г инженерами М.А.Канемошниковым, С.М.Волох и Н.А.Кореневым был сконструирован первый турбобур, положивший начало бурению скважин на большие глубины до 1000 и более метров.
Морская скважина впервые была пробурена в Тихом океане (США) в 1897 г. В России шельфовое бурение было начато в 1924 г в Каспийском море. В настоящее время добыча нефти и газа из под воды является одним из перспективных направлений разработки месторождений полезных ископаемых.
Машинное бурение шпуров впервые было предложено в 1683 г немецким механиком Г.Гутманом. Поршневые бурильные машины для ударного бурения скважин были созданы инженером Соммейе и успешно использовались при проведении тоннеля в Альпах, на много сократив его строительство. Вращательный способ бурения стал широко внедряться на горных предприятиях лишь в начале XX века. Шарошечный способ впервые появился в 1937 году на карьерах США. В России он получил широкое распространение с начала 60-х годов. В настоящее время это один из основных способов бурения взрывных скважин на карьерах. С 50-х годов при бурении скважин находят применение погружные перфораторы и пневмоударники.
Алмазное бурение было предложено в 1862 году швейцарским часовщиком Ж.Лешо. Этот, один из возможных и производительных способов бурения в условиях весьма крепких пород, широко используется и при разведочном бурении.
Различные способы бурения лишь частично механизируют процесс ведения буровзрывных работ. Для повышения эффективности этого процесса была необходима подрубка полезного ископаемого, проведение щелевого вруба -- дополнительной плоскости обнажения забоя. Первая врубовая машина была изготовлена в 1852 году в Великобритании, она имела исполнительный орган в виде вращающегося диска, армированного резцами. Еще раньше в 1761 году Майклом Мензис была создана врубовая машина, работающая по принципу кайла, приводящаяся в движение кривошипно-шатуным механизмом от усилий рук человека. В 1864 г была изготовлена первая цепная врубовая машина с баром,которая явилась прототипом современных машин. В 1873-74 гг. на Грушевском руднике работало две паровых врубовых машины. Серийный выпуск машин был освоен Горловским машиностроительным заводом в 1927 г. Уже в 1928 г на шахтах бывшего СССР работало более 500 врубовых машин, обеспечивающих существенный рост механизации процесса ведения очистных работ.
Врубовые машины явились основой для создания первого в мировой практике очистного комбайна. Комбайн был создан в 1931 году нашим соотечественником инж. А.И.Бахмутским. Угольный комбайн механизировал наиболее трудоемкие операции в очистном забое -- выемку и погрузку угля. Серийное производство комбайнов было начато в 40-х годах. Процесс механизации выемки широкозахватными комбайнами был непродолжительным. Уже в 60-е годы наметился переход от широкозахватной к узкозахватной технологии выемки угля с созданием принципиально нового очистного оборудования.включающего в себя узкозахватные комбайны и механизированные крепи.
Впервые идея механизированной передвижной крепи была предложена инженером И.А.Журавлевым в 1932 году. Аналогичная идея была выдвинута и реализована на стенде в 1938 году А.Д.Гридиным, А.А.Пичугиным и Ф.И.Барановским. Отечественная война прервала начатые работы, но уже в 1946 году был изготовлен и испытан в Кузнецком бассейне первый в мировой практике выемочный агрегат «Кузбасс» с передвижной механизированной крепью. Несколько позже были созданы механизированные крепи типа Щ («Щекинская») и агрегаты типа А. В 1958 г прошла успешные испытания механизированная крепь «Тула» с узкозахватным комбайном КУ-60, которые явились основой для серийного выпуска комплексов типа ОМКТ и ОКП. Основные идеи, заложенные в конструкции этих комплексов, послужили основой для широкого применения механизированных комплексов и щитовых крепей как у нас в стране, так и за рубежом. В настоящее время комплексная механизация является основным средством выемки угля.
Высокие темпы подвигания очистных забоев, оснащенных средствами комплексной механизации, вызывали необходимость механизации процессов проведения подготовительных выработок. Проходческие комбайны появились несколько позже очистного оборудования. Лишь в 50-е годы был начат серийный выпуск проходческих комбайнов типа ПК-2М, ШБМ и ПК-3. Они явились основой для разработки в последующем мощного проходческого оборудования нового поколения.
В настоящее время комплексная механизация является превалирующей как при разработке угольных, так и рудных месторождений полезных ископаемых. Механизация процессов буровзрывных работ базируется на широком использовании мобильного самоходного оборудования, существенно снижающего трудоемкость работ при бурении, погрузке и транспорте полезного ископаемого. Более 90 % добычи угля подземным способом производится выемочными комбайнами и комплексами с механизированными крепями. При проведении подготовительных выработок, наряду с высокопроизводительными проходческими комбайнами, также нашли применение проходческие комплексы оборудования. Комплексная механизация и автоматизация основных технологических процессов в ряде случаев исключает необходимость присутствия людей в очистных и подготовительных забоях.
Виды производительности горных машин
Производительность горной машины - определяется количеством производимой ею продукции в единицу времени (час, смену, год) и выражается в единицах: весовых (т/ч), объемных (м3/ч), квадратных (м2/ч) или линейных (м/ч). Различают теоретическую, техническую и эксплуатационную производительность горных машин.
Теоретической (или конструктивной) производительностью - считают расчетную производительность Qp горной машины при максимальном использовании всех ее конструктивных возможностей. Теоретическая производительность определяется за час непрерывной работы машины при расчетных параметрах и фиксируется в паспорте и заводской характеристике горной машины.
Техническая производительность - горной машины QT определяется в данных конкретных условиях работы машины при совершенной организации всех смежных процессов. Она вычисляется аналогично теоретической, но с учетом коэффициентов неполноты использования теоретических параметров. При этом, например, для погрузочных машин исходят из возможного фактического числа циклов работы машины (n) с учетом коэффициентов наполнения ковша (kн), т. е. отношения теоретической емкости ковша (V, м3) к действительному объему зачерпываемой породы и коэффициента разрыхления породы (kр):
, м3/ч
Эксплуатационная производительность Qэ -- это действительная производительность, которая фактически достигается горной машиной в конкретных условиях. Эксплуатационная производительность определяется аналогично технической, по с учетом коэффициента использования машины во времени kи -- в течение часа, смены, года:
где Т -- длительность смены, ч.
Коэффициентом использования машины во времени учитывают неравномерность ее работы, включая подготовительно-заключительные операции и различного рода простои по организационным причинам. Этот коэффициент определяется отношением чистого времени работы горной машины за рассматриваемый период к длительности этого периода (час, смена, год). Эксплуатационная производительность при благоприятных условиях работы и применении передовых методов эксплуатации оборудования может превышать теоретическую.
При эксплуатации горных машин должно быть обеспечено бесперебойное снабжение их энергией, топливом, водой, смазочными и обтирочными материалами. Наряду с этим горные машины должны периодически осматриваться и ремонтироваться, чтобы гарантировать их исправную работу и минимальный износ деталей. Ремонт горных машин производится в соответствии с инструкциями завода-изготовителя и графиками планово-предупредительных ремонтов (ППР), разрабатываемыми для каждого типа горных машин. Это даст возможность заранее изготовлять необходимые запасные части и материалы, а также производить расчет необходимых трудовых затрат для ремонта и планировать исключение из работы горных машин на время ремонта. Различают межремонтные осмотры, текущий и капитальный ремонты.
Межремонтные осмотры и смазка производятся систематически в процессе эксплуатации горных машин. При этом проверяются крепление основных узлов и исправность оборудования, производится замена отдельных деталей, не требующая длительного простоя оборудования, выполняются несложная регулировка механизмов, а также смазка соответствующих узлов и деталей.
Текущий ремонт является наиболее простым видом ремонта и обычно производится непосредственно на месте работы горной машины через межремонтный период, определяемый графиком планово-предупредительных ремонтов (ППР). При этом горная машина разбирается лишь частично для очистки ее и замены отдельных износившихся деталей заранее изготовленными запасными деталями.
Капитальный ремонт машины является наиболее сложным видом ремонта и производится в условиях специализированных мастерских или завода. При этом горная машина или комплекс должны быть отремонтированы так, чтобы они по своим качествам полностью соответствовали вновь изготовленным. Время между капитальными ремонтами называется ремонтным циклом и исчисляется в часах рабочего времени, включая полностью время всех рабочих смен.
Основные показатели качества и надежности горных машин
горная машина производительность
Для обеспечения безаварийной работы с минимальными простоями горные машины должны обладать высоким качеством, т. е. совокупностью свойств, обусловливающих их пригодность удовлетворять определенные потребности в соответствии с их назначением. Количественную характеристику одного или нескольких свойств горных машин, составляющих их качество, рассматриваемую применительно к определенным условиям эксплуатации, называют показателем качества.
Основными показателями качества горных машин являются надежность, технологичность, транспортабельность, стандартизация и унификация, безопасность, эргономика, экологика и эстетика.
Надежность машины -- это свойство сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. Надежность является сложным свойством, которое состоит из сочетаний свойств: безотказности, ремонтопригодности, долговечности и сохраняемости.
Безотказность -- свойство горной машины сохранять работоспособность (выполнять заданные функции) в течение некоторой наработки (продолжительности работы) без вынужденных перерывов. Показателем безотказности является вероятность p(t) безотказной работы машины в течение заданного времени t:
p(t) = е-лt
где л=1/Tот -- интенсивность отказов (событий, вызывающих нарушение работоспособности), ч-1;
Тот -- наработка на отказ, определяющая среднее значение наработки машины между отказами, r:
Тот = t/n,
где t -- время работы машины, ч;
п -- число отказов за это время.
Ремонтопригодность -- свойство машины к предупреждению и обнаружению причин возникновения повреждений и поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов. Ремонтопригодность характеризуется средней продолжительностью восстановления отказа Твоc (время устранения неисправности). Коэффициент ремонтопригодности kрем=Твос/(Тот+Твос).
Долговечность -- свойство горной машины сохранять работоспособность до наступления предельного состояния при принятой системе технического обслуживания и ремонтов. К показателям долговечности относятся срок службы между капитальными ремонтами и срок службы до списания машины.
Сохраняемость -- свойство горной машины сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение хранения и (или) транспортирования и после.
Комплексным показателем надежности является коэффициент готовности kг, который характеризует две ее составляющие-- безотказность и ремонтопригодность:
kг = Т от/(Т от + Твос).
Эргономические показатели характеризуют взаимосвязь человек -- машина и учитывают комплекс гигиенических, антропологических, физиологических и психологических свойств человека, проявляющихся в производственных процессах.
Эстетические показатели определяют информационную выразительность, рациональность формы и другие критерии.
Показатели стандартизации и унификации характеризуют насыщенность машины стандартными и унифицированными частями, узлами и целыми агрегатами, что позволяет комплектовать машины различных типоразмеров из однотипных частей и агрегатов, повысить надежность машины, снизить трудоемкость изготовления и стоимость ремонта.
Показатели безопасности характеризуют особенности горной машины, обусловливающие при ее эксплуатации безопасность обслуживающего персонала.
Горные машины оценивают комплексным показателем качества, который характеризует несколько их свойств (параметров). Относительную характеристику качества машин, основанную на сравнении комплексных показателей с соответствующими базовыми показателями, называют уровнем качества.
Базовый показатель качества эталона-машины, имеющей наиболее высокие достигнутые параметры, -- это такой показатель, который принят за исходный при сравнительных оценках качества. Если уровень качества эталона-машины с базовыми показателями принять равным единице, то уровень качества сравниваемых практически существующих машин будет меньше единицы.
Показатели качества могут быть заданы абсолютными или относительными величинами. Абсолютные величины показателей качества выражают количественно в натуральных единицах измерения (т, м3, кВт). Они приемлемы при сравнении машин, сходных по конструкции и с одинаковыми основными параметрами. Относительные величины показателей качества выражают отношение абсолютных показателей к значению основного параметра сравниваемых машин одного вида (например, вместимость кузова вагонетки, мощность двигателя привода). Использование относительных показателей качества позволяет сравнивать однотипные горные машины с различными значениями основных параметров, но различных типоразмеров.
Основные физико-механические свойства горных пород. Методы и способы их оценки
Знание физико-механических свойств горных пород является главным и необходимым условием при выборе типа горной машины, расчете и обосновании оптимальных режимных параметров её работы. К основным физико-механическим характеристикам горных пород, определяющим условия и возможности работы горных машин, относятся прочность, крепость, твердость, вязкость, абразивность и др. Кроме того, применительно к разрушению углей исполнительным органом комбайна имеется комплексный показатель оценки их прочностных свойств -- сопротивляемость резанию.
Прочность -- свойство горных пород воспринимать воздействие механических, термических, электрических и других нагрузок, не разрушаясь. Основными показателями, характеризующими прочность горных пород, являются пределы прочности на сжатие дсж , растяжения др и сдвиг дсдв. Эти показатели применительно к углю имеют примерно следующие соотношения дсж : др : дсдв = 1 : 0.3 : 0.1. Наиболее выгодно с позиции энергоемкости разрушения в подрезцовом пространстве создавать напряжения растяжения или сдвига, нежели сжатия. Это осуществляется выбором соответствующей формы резца, оптимального угла резания, конструкции резца и исполнительного органа. Так, при углах резания меньших 90° в подрезцовом пространстве формируются в основном напряжения сдвига и растяжения, увеличение угла влечет за собой переход к напряжению сжатия. Прочность углей при одноосном сжатии колеблется в значительных пределах -- от 1 МПа у бурых углей до 35 МПа -- у антрацитов. При объемном напряженном состоянии прочность угля значительно возрастает.
Крепость -- сопротивляемость горных пород объемному разрушению. В горной практике наиболее широко используется классификация пород по крепости, предложенная проф. М.М.Протодьяконовым (старшим). Все горные породы разделяются на 10 категорий и оцениваются коэффициентом крепости f от 0.3 (плывуны) до 20 (крепкие и вязкие базальты). Коэффициент крепости -- относительная величина. За единицу крепости (f=l) была принята порода, временное сопротивление одноосному сжатию которой составляет 10 МПа. При оценке крепости М.М.Протодьяконов исходил из условия, что разрушение происходит в основном посредством преодоления сопротивляемости пород на сжатие. М.М.Протодьяконовым (младшим) был предложен экспериментальный метод определения коэффициента крепости, основанный на относительной оценке работы на дробление пород (ГОСТ 21153.1-75). В целом метод оценки крепости пород по М.М.Протодьяконову не учитывает разнообразия разрушающих способов воздействия на забой и формируемых в подрезцовом пространстве напряжений, влияние давления боковых пород и отжима угля, насыщенности угля газом и ряда других факторов. Поэтому, наряду с коэффициентом крепости, в горной практике используется показатель трудности разрушаемости пород, учитывающий сжимающие, растягивающие и скалывающие усилия, показатели буримости, дробимости, экскавируемости и т.п. Для оценки крепости угля при разрушении его режущим инструментом необходим специальный и более точный показатель, учитывающий влияние всех побочных факторов.
Твердость -- свойство пород оказывать сопротивление при местном контактном воздействии. Имеются методы оценки твердости по Бринеллю, Роквеллу, Шору и т.д. Применительно к горным породам чаще используются показатели контактной прочности, которые определяются по методу Л.И.Барона и Л.Б.Глатмана путем вдавливания в породу цилиндрического индентера диаметром 2-5 мм. По величине контактной прочности (Рк), измеряемой в МПа, горные породы разделяются на шесть категорий: слабые (до 400 МПа), ниже средней крепости (400-650 МПа), средней крепости (650-1250 МПа), крепкие (1250-2450 МПа), очень крепкие (2450-4500 МПа), крепчайшие (более 4500 МПа). Показатели твердости наиболее часто применяются при оценке возможности использования буровых машин, шарошечного инструмента и т.д.
Таблица 1. Классификация пород по контактной прочности
Категория |
Контактная прочность, МПа |
Породы |
|
I |
<400 |
Глинистые сланцы, аргиллиты, филлнтовые сланцы, слабые песчаники, алевролиты, каиниты, сильвиниты |
|
II |
400650 |
Песчанистые сланцы, песчаники крупнозернистые, известняки, алевролиты, аргиллиты |
|
III |
650--1250 |
Крепкие сланцы, песчаники среди из и мелкозернистые, мрамор, крепкие известняки |
|
IV |
1250--2450 |
Многие металлические руды, апатитные руды, диабазы, сидериты, скарнлрованные породы, джеспилиты, березиты |
|
V |
2450--4500 |
Граниты, кварциты, скарны, гранодиориты, пироксениты, альбиты, эгириниты |
|
VI |
>4500 |
Монцониты, крепчайшие скарны и гранодиориты, роговики, железисто-карбонатные породы |
Хрупкость -- способность горных пород разрушаться без предварительной пластической деформации. В основе явления хрупкости лежит неоднородность структуры материала и возможность развития в нем хрупкой трещины, на остром кончике которой формируются значительные концентрации напряжений, поэтому разрушение, как правило, происходит мгновенно при сравнительно невысоком уровне нагрузок. Хрупкость пород можно оценить коэффициентом хрупкости Кхр, определяемым как отношение удельной энергии упругой деформации к величине удельной энергии разрушения пород при одноосном сжатии. Идеально пластичные и хрупкие породы имеют соответственно 1 коэффициент хрупкости, равные Кхр =0 и Кхр =1.0. Более просто хрупкость углей и пород можно оценить по величине развала борозды при проведении в массиве единичного пробного реза. Больший угол развала борозды, измеряемый от вертикали до плоскости фактического ее значения, характеризует большую хрупкость угля. Этот показатель используется при формировании схемы набора резцов в исполнительном органе, при расчетах нагрузки на исполнительном органе комбайна. Большинству углей свойственна повышенная хрупкость. При разрушении хрупких углей можно использовать более разряженные схемы набора резцов в исполнительном органе комбайна, тем самым снижая энергозатраты на разрушение.
Абразивность -- способность породы изнашивать контактирующие с породой твердые тела (индентеры). Зависит в основном, от прочности, размеров и формы минеральных зерен, слагающих породу, и является основным показателем, по которому нормируется расход породоразрушающего инструмента. Существует методика оценки абразивности, разработанная Л.И.Бароном и А.В.Кузнецовым. В основу оценки степени абразивности положена потеря массы прутка стали-серебрянки, вращающегося с частотой 400 мин-1 в контакте с испытуемой породой (при усилии прижатия в 150 Н). Оценка показателя абразивности породы производится в мг за время испытания продолжительностью в 10 мин. Установлено 8 классов абразивности пород: малоабразивные -- до 5 мг (мрамор, глинистые сланцы), в высшей степени абразивные -- более 90 мг (корундосодержащие породы, порфит, кварцит, гранит и др.).
Сопротивляемость угля резанию -- наиболее обобщенный показатель оценки крепости углей, используемый для выбора возможности применения определенного типа комбайна и расчета нагрузок на рабочем органе машины. Определяется непосредственно в забое специальным режущим инструментом с учетом влияния на крепость углей дополнительных факторов таких, как отжим угля, насыщение его газом и т.д. Методика разработана в ИГД им А.А.Скочинского А.И.Бероном и Е.З.Позиным. Возможна оценка сопротивляемости резанию с помощью струговой установки ДКС, либо динамометрического сверла СДМ-1.
Литература
1.Абрамов Л. Г., Кочерова Я. Д. Исследование процессов пучения грунтов. -- Вестник ВНИИ железнодорожного транспорта, 2006.
2.Ананьев, В. П. Инженерная геология : учеб. для строит. спец. вузов / В. П. Ананьев, А. Д. Потапов. - 5-е изд., стер. - М. : Высш. шк., 2007. - 575 с.
3.Беляев К. И. Предотвращение пучинистых деформаций грунтов.-- Строительная промышленность, 2007.
4.Бесков Г. Пучины и их образование. -- Морозообразование и морозо-поднятие, 2006.
5.Черкашин В. А. Опыт борьбы с выпучиванием малонагруженных фундаментов с районе распространения вечномерзлых грунтов. -- Основания фундаменты и механика грунтов, 2007.
Размещено на Allbest.ru
...Подобные документы
Проектирование взрывных работ при проведении горизонтальных выработок. Расчет проветривания тупиковых горных выработок. Определение производительности бурильных машин и погрузочного оборудования. Технико-экономические показатели горнопроходческих работ.
курсовая работа [2,4 M], добавлен 21.12.2013Классификация горных крепей, предъявляемые к ним требования и применение. Выбор конструкций, материалов, параметров, расчет и проектирование крепи. Мероприятия, обеспечивающие безопасность работ по посадке кровли. Способы нанесения набрызга-бетона.
реферат [231,8 K], добавлен 25.04.2015Производительность рудника по бурению шпуров. Обоснование способа отделения горной массы от массива. Выбор способа бурения. Требования, предъявляемые к буровому и погрузочно-доставочному оборудованию. Эксплуатация гидросистем самоходных горных машин.
курсовая работа [76,6 K], добавлен 07.04.2011Общая характеристика осадочных горных пород как существующих в термодинамических условиях, характерных для поверхностной части земной коры. Образование осадочного материала, виды выветривания. Согласное залегание пластов горных пород, типы месторождений.
курсовая работа [2,6 M], добавлен 08.02.2016Классификация водоносных горизонтов. Состав и гидрогеологические свойства пластов водопроницаемых горных пород. Условия залегания водоносной породы. Изучение и учет дебита источников из горных выработок в районах развития склоновых процессов, карста.
реферат [35,5 K], добавлен 08.12.2014Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.
презентация [949,2 K], добавлен 13.11.2011Вода как одно из самых распространенных веществ на Земле. Классификация и категории воды в горных породах, ее разновидности и отличительные особенности, значение в природе. Анализ и оценка влияния химического состава воды на свойства горных пород.
контрольная работа [17,2 K], добавлен 14.05.2012Особенности процесса бурения скважины, шпура или шахтного ствола. Использование бурильных машин и механизмов для выполнения технологических операций, связанных с проводкой скважины. Безопасность условий труда во время эксплуатации буровой установки.
контрольная работа [25,6 K], добавлен 12.02.2013Классификация горных выработок по назначению, времени функционирования, расположению, размеру и форме. Подземная обслуживающая горная выработка. Вертикальные, горизонтальные, наклонные и специальные выработки. Общее понятие про околоствольный двор.
курсовая работа [613,5 K], добавлен 19.05.2012Технологические операции при буровзрывном способе прохождения горных выработок. Основные достоинства комбайнового способа выработок. Классификация проходческих комбайнов. Расчет технической и эксплуатационной производительности проходческого комбайна.
курсовая работа [131,8 K], добавлен 24.06.2011Элементарные тектонические структуры. Слоистая структура осадочных горных пород. Складчатые и трещинные структуры. Классификация разрывов со смещениями. Классификация тектонических движений. Геотектонические гипотезы. Схема образования горных цепей.
курсовая работа [4,3 M], добавлен 23.04.2014Подготовка горных пород к выемке. Вскрышные работы, удаление горных пород, покрывающих и вмещающих полезное ископаемое при открытой разработке. Разрушение горных пород, буровзрывные работы, исторические сведения. Методы взрывных работ и способы бурения.
реферат [25,0 K], добавлен 19.03.2009Виды воды в горных породах, происхождение подземных вод, их физические свойства и химический состав. Классификация подземных вод по условиям образования, газовый и бактериальный состав. Оценка качества технической воды, определение ее пригодности.
презентация [92,8 K], добавлен 06.02.2011Организация работ в очистном забое. Перевозка полезных ископаемых по подземным горным выработкам. Охрана, ремонт и поддержание горных шахтных выработок. Основные составные части и примеси рудничного воздуха. Рудничная пыль, проветривание выработок.
контрольная работа [38,7 K], добавлен 23.08.2013Понятие о геологическом времени. Дегеологическая и геологическая стадии развития Земли. Возраст осадочных горных пород. Периодизация истории Земли. Общие геохронологическая и стратиграфическая шкалы. Методы определения изотопного возраста горных пород.
реферат [26,1 K], добавлен 16.06.2013Классификация пор горных пород. Виды поляризации и ее характеристики. Диэлектрическая проницаемость пород-коллекторов. Абсорбционная емкость диэлектриков. Диэлектрические характеристики образцов кернов ковыктинского месторождения в зависимости от частоты.
курсовая работа [1,3 M], добавлен 22.05.2013Общая характеристика и геолого-геофизическая изученность района: тектоника, гидрология, нефтегназоносность. Физические свойства горных пород, сейсмогеологические условия. Комплекс полевой аппаратуры Sercel-428XL. Методы приема сейсмических колебаний.
отчет по практике [54,1 K], добавлен 10.06.2014Группы горных пород литосферы по структуре слагающего вещества. Алгоритмы второго порядка определения для обломочных, глинистых, кристаллических и аморфных пород. История разработки классификаций горных пород. Пример общей генетической классификации.
монография [315,4 K], добавлен 14.04.2010Комплект устройств, монтируемый на устье фонтанирующей скважины для его герметизации и управления потоками продукции. Условия эксплуатации и виды фонтанной арматуры. Конструктивные особенности, устройство машин и оборудования для добычи нефти и газа.
презентация [596,6 K], добавлен 17.02.2015Сущность технологического потока, его типы и параметры. Классификация комплексов оборудования. Основные виды горнотранспортных машин по технологическим потокам и производственным процессам при открытой разработке месторождений полезных ископаемых.
лекция [221,0 K], добавлен 26.08.2013