Скорости и виды течения воды

Распределение скорости и течения воды по живому сечению. Изучение поперечных циркуляций реки и вихревых движений с вертикальной осью вращения. Закономерности структуры гидрографической сети. Процесс смывания почв поверхностным стоком. Склоновая эрозия.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 07.12.2013
Размер файла 900,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство транспорта Российской Федерации

Федеральное агентство морского и речного транспорта

Якутской институт водного транспорта (филиал)

«Новосибирская государственная академия водного транспорта»

Контрольная работа

Дисциплина: «Гидравлика»

Тема: «Скорости и виды течения воды»

Выполнил:

Гайдемская К.Ю.

Проверил:

Панков В.Ю.

Якутск - 2013 г.

1. Скорости течения воды и распределение их по живому сечению

Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине и по ширине живого сечения. На каждой отдельно взятой вертикали наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности.

Кривые изменения скоростей по вертикали называются годографами или эпюрами скоростей (рис. 1).

Рис. 1. Эпюры скоростей: а -- открытое русло, б -- перед препятствием, в -- ледяной покров, г -- скопление шуги.

На распределение скоростей по вертикали большое влияние оказывают:

- неровности в рельефе дна,

- ледяной покров,

- ветер,

- водная растительность.

По ширине потока скорости как поверхностная, так и средняя на вертикалях меняются довольно плавно, в основном повторяя распределение глубин в живом сечении: у берегов скорость меньше, в центре потока она наибольшая.

Линия, соединяющая точки на поверхности реки с наибольшими скоростями, называется стрежнем.

Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах -- линий, соединяющих в живом сечении точки с одинаковыми скоростями (рис. 2).

Область максимальных скоростей расположена обычно на некоторой глубине от поверхности. Линия, соединяющая по длине потока точки отдельных живых сечений с наибольшими скоростями, называется динамической осью потока.

Средняя скорость на вертикали вычисляется делением площади эпюры скоростей на глубину вертикали или при наличии измеренных скоростей в характерных точках по глубине (vпов, v0,2, v0,6, v0,8, vдон) по одной из эмпирических формул, например

Рис. 2. Изотахи в живом сечении речного потока.

2. Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези:

где Hср -- средняя глубина,

R - гидравлический радиус,

С -- скоростной коэффициент, зависящий от шероховатости русла и гидравлического радиуса,

i - уклон водной поверхности на участке реки.

Величина коэффициента С не является величиной постоянной. Для ее определения существует несколько эмпирических формул. Приведем две из них:

где п -- коэффициент шероховатости, находится по специальным таблицам. Переменный показатель в формуле Павловского определяется зависимостью:

Его еще можно вычислить по таким упрощенным формулам:

при R < 1 м

при R > 1 м

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

3. Поперечные циркуляции

Одной из особенностей движения воды в реках является непараллельно струйность течений. Она отчетливо проявляется на закруглениях и наблюдается на прямолинейных участках рек. Наряду с общим параллельным берегам движением потока в целом имеются внутренние течения в потоке, направленные под различными углами к оси движения потока и производящие перемещения водных масс в поперечном к потоку направлении.

На стрежне вследствие больших скоростей на поверхности воды происходит втягивание струй со стороны, в результате в центре потока создается некоторое повышение уровня. Вследствие этого в плоскости, перпендикулярной направлению течения, образуются два циркуляционных течения по замкнутым контурам, расходящиеся у дна (рис. 3а). В сочетании с поступательным движением эти поперечные циркуляционные течения приобретают форму винтообразных движений. Поверхностное течение, направленное к стрежню - сбойное, а донное расходящееся -- веерообразное.

Рис. 3. Циркуляционные течения на прямолинейном (а) и на изогнутом (б) участке русла (по Н.С. Лелявскому): 1 -- план поверхностных и донных струй, 2 -- циркуляционные течения в вертикальной плоскости, 3 -- винтообразные течения.

На изогнутых участках русла струи воды, встречаясь с вогнутым берегом, отбрасываются от него. Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек (рис. 3б).

Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах.

Рис. 4. Схема сложения сил, вызывающих циркуляцию: а -- изменение по вертикали центробежной силы P1, б -- избыточное давление, в -- результирующая эпюра действующих на вертикали сил центробежной и избыточного давления, г -- поперечная циркуляция.

У поверхности она больше, у дна меньше вследствие уменьшения с глубиной продольной скорости (рис. 4а). При перекосе водной поверхности возникает избыточное давление iпопg. где g -- вес единицы объема воды; iпоп -- поперечный уклон. Оно одинаково для каждой точки вертикали и направлено в противоположную сторону по отношению к центробежной силе инерции (рис. 4б, в). Вследствие неуравновешенности этих сил в отдельных точках по вертикали и возникает в потоке поперечная циркуляция (рис. 4г).

В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках.

При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми. Скорость поперечных течений обычно мала -- в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока -- верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено.

4. Вихревые движения

Помимо поперечных циркуляции, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 5). Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы. Вероятно, образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри -- смерчи.

Рис. 5. Схема вихрей с вертикальными осями (по К.В. Гришанину).

Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.

5. Основные закономерности структуры гидрографической сети. Густота речной сети

В зависимости от характера грунтов бассейна, рельефа местности, растительного покрова и количества выпадающих осадков русловая сеть обычно имеет различную разветвленность. В условиях легко проницаемых грунтов большая часть выпадающих осадков достигает речного русла подземным стоком, вследствие чего в этом случае русловая сеть менее развита. В горных районах, где осадков обычно больше, чем на равнине, а грунты менее проницаемы, густота русловой сети больше, чем в равнинных.

В лесных районах вследствие более благоприятных условий для фильтрации воды наблюдается несколько меньшая густота русловой сети, чем в безлесных.

Следует учитывать, что в изолированном виде трудно установить влияние какого-либо одного из указанных факторов; в большинстве случаев они совместно определяют условия развития русловой сети, хотя нередко какой-либо из них оказывает наибольшее воздействие. Так, например, в гидрологической литературе встречаются утверждения, что повышенное развитие речной сети наблюдается на заболоченных территориях, в озерных котловинах и в других местах, где грунтовые воды находятся близко к земной поверхности, в то же время отмечается, что рельеф местности сравнительно мало влияет на плотность русловой сети.

Густота русловой сети обычно определяется как отношение длины всех водотоков данной площади, выраженной в километрах, к величине этой площади, выраженной в квадратных километрах, т.е.

Из определения понятия густоты русловой сети ясно, что числовые значения густоты русловой сети будут сравнимы между собой для отдельных районов, если они получены по данным карт одних и тех же масштабов и съемкам одной и той же степени полноты. Действительно, на картах мелких масштабов очень малые водотоки не могут быть показаны и, следовательно, общая длина водотоков окажется меньше, чем в том случае, когда определение длин производилось по картам более крупных масштабов.

Чем крупнее масштаб, тем точнее определяется густота русловой сети.

Наиболее часто определение густоты русловой сети производится следующим образом: рассматриваемая территория разбивается на сеть равновеликих квадратов и измеряется суммарная длина водотоков, находящихся в пределах каждого квадрата.

Разделив найденное значение на площадь квадрата, получим густоту речной сети в пределах этого квадрата.

Иногда степень развитости русловой сети характеризуют расчлененностью рельефа, определяя величину площадей, ограниченных двумя соседними реками и линией, проводимой между их истоками.

Густота русловой сети характеризует и средние расстояния между смежными водотоками. Справедливость этого вытекает из следующих рассуждений.

Представим себе, что какая-то часть территории равномерно покрыта водотоками (в том числе и пересыхающими), причем на всей площади F число таких водотоков п и длина каждого L. Тогда можно считать, что к каждому водотоку длиной L будет примыкать площадка f=F/n.

Для густоты русловой сети d имеем

а отсюда

скорость вода гидрографический почва

Но отношение площади примыкающего к водотоку участка к длине участка равно ширине участка, т.е. расстоянию от данного водотока до ближайшего.

Для случая неравномерного распределения русловой сети величина l/d, очевидно, есть среднее расстояние между водотоками, а величина l/2d характеризует среднюю ширину склонов, с которых вода поступает в водотоки.

Учитывая, что тальвег водотока обычно начинается не от водораздела, а лишь на некотором расстоянии от него, среднюю ширину склона иногда рекомендуют вычислять по соотношению b = l/2,25d

Склоновая эрозия. Помимо основной гидрографической сети, образуемой системой ложбин, лощин, суходолов, малых рек, ручьев и реками средних и больших размеров, на поверхности земли имеется многочисленная сеть мельчайших борозд, промоин и ложбинок, распределенных в соответствии с микрорельефом местности. Поэтому поверхностный сток дождевых, ливневых и талых вод происходит обычно не сплошным слоем, а струями различной величины. Указанное струйчатое строение склонового стока обусловливает смывание верхнего слоя почвы. Этот процесс смывания почв поверхностным стоком носит название плоскостной эрозии.

При больших уклонах поверхности и на длинных склонах мельчайшие струйки сливаются в более крупные ручейки, которые создают более крупные струйчатые, или ручейковые, размывы-рытвины, или ложбины. Если глубина этих ложбин не препятствует обычной обработке почвы и ложбины могут быть сглажены при очередной вспашке, то эта стадия развития называется струйчатым подтипом плоскостной эрозии. В тех случаях, когда ложбины и размывы, созданные концентрированными потоками талых и ливневых вод, не могут быть сглажены обычной обработкой почвы, возникает новый тип водной эрозии -- овражная эрозия. Овражная эрозия является следующим этапом развития струйчатой эрозии.

Размещено на Allbest.ru

...

Подобные документы

  • Эрозия почв как глобальная проблема человечества. Понятие и виды эрозии почв. Анализ последствий почвенной эрозии и методы борьбы с ними. Результаты эрозийных процессов. Основные принципы проектирования почвозащитных севооборотов для склоновых земель.

    курсовая работа [57,6 K], добавлен 24.03.2015

  • Эрозия почв как процесс разрушения верхних, наиболее плодородных слоев почвы водой (водная эрозия) или ветром (дeфляция), причины ее возникновения и виды. Ирригационная эрозия, наблюдаемая в районах opoшаемого земледелия. Урон, наносимый эрозией.

    презентация [1,6 M], добавлен 28.12.2013

  • Принципы возникновения и внутригодовой режим. Формирование речных наносов. Определения и характеристики. Влекомые, взвешанные наносы. Распределение мутности по живому сечению реки. Сток взвешенных наносов. Изменение мутности и стока наносов по длине реки.

    реферат [24,2 K], добавлен 30.01.2009

  • Вывод уравнения для аналитического описания эпюры температуры воды. Изучение неоднородности температуры воды по глубине рек. Анализ распределения температуры воды по ширине рек. Оценка эффективности использования уравнения теплового баланса реки.

    дипломная работа [4,1 M], добавлен 22.12.2010

  • Пространственное и временное распределение и изменчивость скорости ветра. Основные воздушные течения в системе общей циркуляции атмосферы. Разрушительная деятельность ветра, перенос обломочного материала. Сведения о пустынях и причинах их формирования.

    курсовая работа [433,0 K], добавлен 02.06.2016

  • Вода в жидком, твердом и газообразном состоянии и ее распределение на Земле. Уникальные свойства воды. Прочность водородных связей. Круговорот воды в природе. Географическое распределение осадков. Атмосферные осадки как основной источник пресной воды.

    реферат [365,1 K], добавлен 11.12.2011

  • Построение и свойства кривой расходов воды. Выбор способа вычисления ежедневных расходов воды на основе анализа материалов наблюдений особенностей режима реки. Способы экстраполяция и интерполяции. Гидрологический анализ сведений о стоке воды и наносов.

    практическая работа [28,9 K], добавлен 16.09.2009

  • Движение воды в зонах аэрации и насыщения, водоносных пластах. Определение скорости движения подземных вод, установившееся и неустановившееся движение. Методы моделирования фильтрации. Приток воды к водозаборным сооружениям. Определение радиуса влияния.

    курсовая работа [340,2 K], добавлен 21.10.2009

  • Наблюдение за изменением содержания индикатора на забое скважины. Промысловый опыт определения пути движения закачиваемой воды по пласту, испытание роданистого аммония. Индикаторные исследования фильтрации нагнетаемой воды в нефтенасыщенных пластах.

    курсовая работа [6,4 M], добавлен 13.01.2011

  • Воды зоны многолетней мерзлоты как подземные воды, приуроченные к зоне многолетней мерзлоты. Типы водохранилищ, их заиление, водные массы и влияние на речной сток и окружающую среду. Термический и ледовый режим рек. Общая характеристика Оби и ее бассейна.

    контрольная работа [610,5 K], добавлен 03.05.2009

  • Физико-географическая и гидрологическая характеристика бассейна реки Дон. Антропогенное воздействие на Донской бассейн. Использование вод и структура планируемого водохозяйственного комплекса. Гидрологические данные гидрографа расходов воды в реке Дон.

    курсовая работа [424,8 K], добавлен 30.05.2009

  • В каких формах встречается вода в природе. Сколько воды на Земле. Понятие круговорота воды в природе. Сколько воды содержится в организме человека. Понятие испарения и конденсации. Три агрегатных состояния воды. Применение воды в деятельности человека.

    презентация [2,7 M], добавлен 19.02.2011

  • Характеристики гидрографической сети. Морфометрические характеристики бассейна. Физико-географические факторы стока: подстилающей поверхности, климатические. Сток и порядок его распределения. Анализ водного режима и определение типа питания реки.

    курсовая работа [70,6 K], добавлен 19.11.2010

  • Строение и происхождение солнечной системы. Строение Земли, вещественный состав. Эндогенные геологические процессы. Основные закономерности развития земной коры. Распределение воды на земном шаре. Классификация подземных вод и условия их залегания.

    учебное пособие [133,9 K], добавлен 23.02.2011

  • Физико-геологические основы сейсморазведки. Три типа объёмных сейсмических волн: одна продольная и две поперечных. Зависимость фазовой скорости распространения от частоты регистрации поперечных волн Лява. Запись гармоник поверхностных волн Лява.

    курсовая работа [452,1 K], добавлен 28.06.2009

  • Понятие круговорота воды в природе, водной оболочки Земли, их структура, значение. Сущность испарения и конденсации как физических процессов, условия их осуществления. Особенности и состав годового поступления воды. Источники движения воды на Земле.

    презентация [1,2 M], добавлен 23.11.2011

  • Формирование и распределение почв в горах, закон вертикальной зональности (поясности) В. Докучаева. Широтное размещение гор, его влияние на климат и почвообразование. Число и последовательность расположения поясов в горных системах, основные группы почв.

    реферат [16,4 K], добавлен 28.02.2011

  • Физико-географическая характеристика бассейна реки Тургай. Сокращенные способы измерения: интеграционные, с движущегося судна; измерение расходов воды с использованием физических эффектов; аэрогидрометрический метод; интерполяционно-гидравлическая модель.

    курсовая работа [2,3 M], добавлен 05.05.2009

  • Бурение хемогенных пород. Определение режима течения промывочной жидкости. Выбор диаметра цилиндровых втулок насоса. Исследование фильтрации газа и воды в пористых средах насыщенных трехфазной пеной. Расчет потерь давления в циркуляционной системе.

    курсовая работа [3,7 M], добавлен 05.06.2014

  • Изучение условий и особенностей процесса почвообразования горных почв, основные закономерности вертикальной плоскости. Развитие процессов склоновой денудации, формирование интенсивного бокового внутрипочвенного и подпочвенного геохимических оттоков.

    реферат [254,2 K], добавлен 02.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.