Виды воды в почвах (водные свойства)

Категории почвенной воды: твердая, парообразная, сорбированная, прочносвязанная, пленочная, свободная. Основные почвенно-гидрологические константы: максимальная гигроскопичность, влажность завядания и разрыва капилляров, наименьшая и полная влагоемкость.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 11.12.2013
Размер файла 217,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Виды воды в почвах (водные свойства)

Вода играет огромную роль в жизни Земли - без нее нет жизни. Вода обладает большой подвижностью, передвигается даже в твердом состоянии. В жидком состоянии вода двигается под действием силы тяжести, в парообразном - за счет диффузии и пассивно с воздухом. Благодаря большой подвижности и способности переносить различные вещества вода играет большую роль в обмене веществ.

Воды как поверхностные так и грунтовые, играют огромную роль в процессах почвообразования. Эта роль заключается в первую очередь в формировании окислительно-восстановительного режима почвы. При глубоком залегании грунтовых вод и отсутствии застоя поверхностных вод в почвенном профиле создаются аэробные условия и протекают окислительные явления, которые сопровождаются интенсивной минерализацией органического вещества. В таких условиях формируются автоморфные почвы, не имеющие признаков заболачивания. Автоморфные почвы всегда содержат значительно меньше гумуса, различия их с полугидроморфными могут достигать 2 раз. Например, в автоморфных дерново-подзолистых легкосуглинистых почвах на лессовидных суглинках обычное содержание гумуса составляет 1,5-2,0%, а в глееватых и глеевых - 3,0-4,0%. В дерново-подзолистых песчаных эти показатели составляют соответственно 1,0-1,5 и 2,0-2,5 %.

При избыточном увлажнении, обусловленном близким залеганием грунтовых вод и застоем поверхностных вод в пониженных элементах рельефа, развивается болотный процесспочвообразования. Особенностью болотного процесса почвообразования являются анаэробные условия и восстановительные процессы. В анаэробных условиях уменьшается активность окислительных процессов, что приводит к ослаблению минерализации органического вещества. На поверхности почвы накапливаются полуразложившиемся органические останки в виде торфа, которому свойственна высокая гидрофильность и влагоемкость, а также низкая аэрация при избыточном увлажнении, ведет к дальнейшему развитию процессов заболачивания.

Почвенная влага - основной ресурс для построения тела растений и важнейший фактор, определяющий условия существования сельскохозяйственных культур и обработки почвы. Вода необходима для растений в значительно больших количествах, чем другие средства питания растений. Необходимо отметить, что значительная часть элементов питания усваивается растениями, а характерной особенностью воды является ее непрерывное, одностороннее передвижение из почвы через корни растений вверх по стеблю к листовой поверхности, где она испаряется в атмосферу.

Растения, произрастающие на влажной почве, в условиях влажного климата, перемещают воду из почвы в клетки быстрее, чем испаряют ее. В условиях высокой транспирации, обусловленной сильным солнечным освещением или высокой температурой воздуха, или горячими иссушающими ветрами, или ограниченными запасами влаги в почве корни растений не могут перемещать влагу из почвы в сосудистую систему с такой же скоростью, с какой ее испаряет листовая поверхность. В таком случае содержание влаги в листьях заметно снижается, вследствие чего листья растений многих видов утрачивают тургор и увядают.

Роль воды в почве определяется ее особым двойственным положением в природе: с одной стороны, вода -- это особая физико-химическая весьма активная система, обеспечивающая многие физические и химические процессы в природе, с другой -- это мощная транспортная геохимическая система, обеспечивающая перемещение веществ в пространстве. Воде принадлежит главенствующая роль в почвообразовании: процессы выветривания и новообразования минералов, гумусообразование и химические реакции совершаются только в водной среде; формирование генетических горизонтов почвенного профиля, динамика протекающих в почве процессов также связаны с водой. Вода в почве выступает и как терморегулирующий фактор, определяя в значительной степени тепловой баланс почвы и ее температурный режим. Исключительно велика ее роль в плодородии почвы, в обеспечении условий жизни растений, поскольку почва является главным, а во многих случаях и единственным источником воды для произрастающих на ней растений.

Категории (формы) и состояния почвенной воды

Вода в почвах неоднородна. Разные ее порции имеют разные физические свойства (термодинамический потенциал. теплоемкость, плотность, вязкость, удельный объем, химический состав, подвижность молекул, осмотическое давление и т. д.), обусловленные характером взаимного расположения и взаимодействия молекул воды между собой и с другими фазами почвы -- твердой, газовой, жидкой. Порции почвенной воды, обладающие одинаковыми свойствами, получили названиекатегорий или форм почвенной воды.

В истории почвоведения было предложено много классификаций категорий воды, содержащейся в почве. Наиболее современной и полной является классификация, разработанная А. А. Роде (1965), которая приводится ниже. Согласно этой классификации в почвах можно различать следующие пять категорий (форм) почвенной воды.

Твердая вода -- лед. Твердая вода в почве -- это лед, являющийся потенциальным источником жидкой и парообразной воды, в которую он переходит в результате таяния и испарения. Появление воды в форме льда может иметь сезонный (сезонное промерзание почвы) или многолетний ("вечная" мерзлота) характер. Поскольку почвенная вода -- это всегда раствор, температура замерзания воды в почве ниже 0°С.

Химически связанная вода (включает конституционную и кристаллизационную). Первая из них представлена гидроксильной группой ОН химических соединений (гидроксиды железа, алюминия, марганца; органические и органоминеральные соединения; глинистые минералы); вторая -- целыми водными молекулами кристаллогидратов, преимущественно солей (полугидрат - CaS04*?Н2O, гипс - CaS04*2H20, мирабилит -- Na2S04*10H20). Конституционную и кристаллизационную воду иногда объединяют общим понятием гидратной или кристаллогидратной воды.

Эта вода входит в состав твердой фазы почвы и не является самостоятельным физическим телом, не передвигается и не обладает свойствами растворителя.

Парообразная вода

Эта вода содержится в почвенном воздухе порового пространства в форме водяного пара. Одна и та же почва может поглощать различное количество паров воды из атмосферного воздуха, что зависит от упругости пара: чем она больше, т. е. чем ближе припочвенный воздух к состоянию насыщения водяным паром, тем больше количество парообразно поглощенной воды в почве. Вообще говоря, почвенный воздух практически всегда близок к насыщению парами воды, а небольшое понижение температуры почвы приводит к его насыщению и конденсации пара, в результате чего парообразная вода переходит в жидкую; при повышении температуры имеет место обратный процесс. Парообразная вода в почве передвигается в ее поровом пространстве от участков с высокой упругостью водяного пара к участкам с более низкой упругостью (активное движение), а также вместе с током воздуха (пассивное движение).

Физически связанная, или сорбированная, вода

К этой категории относится вода, сорбированная на поверхности почвенных частиц, обладающих определенной поверхностной энергией за счет сил притяжения, имеющих различную природу. При соприкосновении почвенных частиц с молекулами воды последние притягиваются этими частицами, образуя вокруг них пленку. Удержание молекул воды происходит в данном случае силами сорбции.

Молекулы воды могут сорбироваться почвой как из парообразного, так и из жидкого состояния. Благодаря тому, что молекулы воды не являются энергетически нейтральными, а представляют собой диполи, они обладают способностью притягиваться полюсами друг с другом. Прочность их фиксации наибольшая у границ почвенных частиц. В зависимости от прочности подразделяется на прочносвязанную и рыхлосвязанную.

Прочносвязанная вода. Прочносвязанная вода -- это вода, поглощенная почвой из парообразного состояния. Свойство почвы сорбировать парообразную воду называют гигроскопичностью почв, а поглощенную таким образом воду -- гигроскопической (Г). Таким образом, прочносвязанная вода -- это вода гигроскопическая. Она удерживается у поверхности почвенных частиц очень высоким давлением -- порядка (1-2) * 109 Па, образуя вокруг почвенных частиц тончайшие пленки. Высокая прочность удержания обусловливает полную неподвижность гигроскопической воды. По физическим свойствам прочносвязанная (гигроскопическая) вода приближается к твердым телам. Плотность ее достигает 1,5--1,8 г/см3, она не замерзает, не растворяет электролиты, отличается повышенной вязкостью и не доступна растениям.

Количество водяного пара, сорбируемого почвой, находится в тесной зависимости от относительной влажности воздуха, с которым соприкасается почва (рис. 16). Чем она больше, тем большее количество воды сорбируется почвой. При низкой относительной влажности воздуха (порядка 20--40%) имеет место сорбция воды непосредственно почвенными частицами с образованием моно -- бимолекулярного слоя. Дальнейшее увеличение относительной влажности воздуха обусловливает возрастание толщины водной пленки. Предельное количество воды, которое может быть поглощено почвой из парообразного состояния при относительной влажности воздуха, близкой к 100% (94--98%), называют максимальной гигроскопической водой (МГ). При влажности почвы, равной МГ, толщина пленки из молекул воды достигает 3--4 слоев. На гигроскопичность почв и МГ оказывают существенное влияние свойства твердой фазы почв, и в первую очередь те из них, с которыми связана удельная поверхность почвенных частиц (гранулометрический и минералогический состав почв, степень их гумусированности). Чем выше в почве содержание илистой и особенно коллоидной фракции, тем выше будет гигроскопичность почв и МГ. Ниже приведена максимальная гигроскопичность различных фракций покровных глин (по П.Ф.Мельникову, 1949):

Размер частиц, мм МГ °/о

0,01--0,005 0,4

0,005--0,004 1,1

0,004--0.003 1,5

0,003--0,002 1,9

0,002--0.001 5,1

0,001--0,0005 25,4

Гумус также увеличивает гигроскопичность почвы. Поэтому почвы с более высоким содержанием гумуса при одном и том же гранулометрическом составе всегда характеризуются большим значением МГ. В почвах минеральных максимальная гигроскопичность колеблется от 0,5--1% в слабогумусированных песках и супесях до 15--16% в сильногумусированных суглинках и глинах, а в торфах может достигать 30--50%.

Рыхлосвязанная (пленочная) вода

Сорбционные силы поверхности почвенных частиц не насыщаются полностью даже в том случае, если влажность почвы достигнет МГ. Почва не может поглощать парообразную воду сверх МГ, но жидкую воду может сорбировать и в большем количестве. Вода, удерживаемая в почве сорбционными силами сверх МГ, -- это вода рыхлосвязанная, или пленочная. Сила, с которой она удерживается в почве, измеряется значительно меньшим давлением (по сравнению с водой прочносвязанной) -- порядка (1--10)* 105 Па.

Рыхлосвязанная вода также представлена пленкой, образовавшейся вокруг почвенной частицы, но пленкой полимолекулярной. Толщина ее может достигать нескольких десятков и даже сотен диаметров молекул воды. По физическому состоянию рыхлосвязанная вода очень неоднородна, что обусловлено различной прочностью связи молекул различных слоев. Поэтому можно сказать, что она находится в вязкожидкой форме, т. е. занимает промежуточное положение между водой прочносвязанной и свободной. Рыхлосвязанная (пленочная) вода в отличие от прочно-связанной может передвигаться в жидкой форме от почвенных частиц с более толстыми водяными пленками к частицам, у которых она тоньше, т. е. передвижение этой воды возможно при наличии некоторого градиента влажности и происходит оно очень медленно, со скоростью несколько десятков сантиметров в год. Содержание пленочной воды в почве определяется теми же свойствами почв, что и содержание максимальной гигроскопической. В среднем для большинства почв оно составляет 7--15%, иногда в глинистых почвах достигает 30--35 и падает в песчаных до 3-5%.

Свободная вода

Вода, которая содержится в почве сверх рыхлосвязанной, находится уже вне области действия сил притяжения со стороны почвенных частиц (сорбционных) и является свободной. Отличительным признаком этой категории воды является отсутствие ориентировки молекул воды около почвенных частиц. В почвах свободная вода присутствует в капиллярной и гравитационной формах.

Капиллярная вода. Она удерживается в почве в порах малого диаметра -- капиллярах, под действием капиллярных или, как их еще называют, менисковых сил. Возникновение этих сил обусловлено следующими явлениями. Поверхностный слой жидкости по своим свойствам отличается от ее внутренних слоев. Если на каждую молекулу воды внутри жидкости равномерно действуют силы притяжения и отталкивания со стороны окружающих молекул, то молекулы, находящиеся в поверхностном слое жидкости, и испытывают одностороннее, направленное вниз притяжение только со стороны молекул, лежащих ниже поверхности раздела вода -- воздух. Силы, действующие вне жидкости, относительно малы и ими можно пренебречь. Таким образом, поверхностные молекулы жидкости находятся под действием сил, стремящихся втянуть их внутрь жидкости. По этой причине поверхность любой жидкости стремится к сокращению, так как любая система стремится к компенсации свободной энергии (к форме сферы). Наличие у поверхностных молекул жидкости, ненасыщенных, неиспользованных сил сцепления является источником избыточной поверхностной энергии, которая также стремится к уменьшению. Это влечет за собой образование на поверхности жидкости как бы пленки, которая обладает поверхностным натяжением, или поверхностным давлением (давлением Лапласа), которое представляет собой разницу между атмосферным давлением и давлением жидкости.

Значение поверхностного натяжения зависит от формы поверхности жидкости и радиуса капилляра. Поверхностное давление, развивающееся под плоской поверхностью жидкости, называется нормальным. Для воды оно равно 1,07*109Па. Давление уменьшается, если поверхность жидкости вогнутая, и увеличивается, в случае поверхности выпуклой.

Согласно уравнению Лапласа, когда давление жидкости меньше атмосферного и поверхность имеет вид вогнутого мениска, поверхностное давление (P1) будет меньше нормального (Ро) и равно:

Р1=Ро - a(1/R1+1/R2),

или приближенно Р1=Ро - 2a/R

где a-- поверхностное натяжение, равное для воды 75,6-10-3 Н/м при 0°С; R1+R2 - радиусы кривизны поверхности жидкости.

В противоположном случае, т. е. при давлении жидкости больше атмосферного и выпуклой поверхности жидкости,

Р1=Ро + a(1/R1+1/R2),

Как видно из приведенных формул, поверхностное давление жидкости зависит от радиуса искривленной поверхности жидкости. Чем он меньше, т. е. чем уже почвенные капилляры, тем давление больше. В капиллярах с вогнутым мениском как бы возникает вакуум, который и поднимает за пленкой столбик воды в капилляре.

Вода обладает свойством хорошо смачивать твердые тела. Поэтому при соприкосновении воды с почвенными частицами в порах-капиллярах образуются мениски тем большей кривизны, чем меньше диаметр пор. Явление смачивания обуславливает образование в почвах только вогнутых менисков, так как при взаимодействии воды с твердой фазой энергия выше, чем между молекулами воды.

При погружении капилляра в резервуар с водой вода под действием добавочного давления DР=Р1-Ро подымается на такую высоту, чтобы уравновесить силу тяжести, т.е. rgh=2a/R, откуда h= 2a/Rgr;иными словами высота обратнопропорциональна радиусу капилляра.

В почвах менисковые (капиллярные) силы начинают проявляться в порах с диаметром менее 8 мм, но особенно велика их сила в порах с диаметром от 100 до 3 мкм. В порах крупнее 8 мм капиллярные свойства не выражены, так как сплошной вогнутый мениск здесь не образуется; большая часть поверхности остается плоской, искривление ее наблюдается только у стенок. Поры же мельче 3 мкм заполнены в основном связанной водой, и мениски здесь также не образуются. Более 10 м подъема быть не может еще и по той причине, что этой величине соответствует атмосферное давление. Скорость капиллярного поднятия является функцией V=f*R/to. Чем выше капиллярный подъем, тем меньше его скорость (за счет трения о стенки капилляра).

R, мм

5

2

1

0,5

0,1

0,01

0,001

0,1мкм

H, мм

3

7

15

30

149

1,49м

14,9м

149м

Система пор, имеющихся в почвах, представляет собой сложную мозаику капилляров самого разного сочетания и размеров, в которых образуются мениски различной кривизны. В результате этого в почвах существует разность давлений не только под мениском и плоской поверхностью пленки натяжения, но и между поверхностью менисков разной кривизны. Разность поверхностных давлений называют отрицательным капиллярным давлением. С появлением этого давления связывают способность почв удерживать определенное количество влаги в почве и подъем воды в капиллярных порах.

Капиллярная вода по физическому состоянию жидкая. Она высокоподвижна, способна обеспечить восполнение запасов воды в поверхностном горизонте почвы при интенсивном потреблении ее растениями или при испарении, свободно растворяет вещества и перемещает растворимые соли, коллоиды, тонкие суспензии. Все мероприятия, направленные на сохранение воды в почве или пополнение ее запасов (при орошении), связаны с созданием в почве запасов именно капиллярной воды с уменьшением ее расхода на физическое испарение.

Капиллярная вода подразделяется на несколько видов: капиллярно-подвешенную, капиллярно-подпертую, капиллярно-посаженную.

Капиллярно-подвешенная вода заполняет капиллярные поры при увлажнении почв сверху (после дождя или полива). При этом под промоченным слоем всегда имеется сухой слой, т. е. гидростатическая связь увлажненного горизонта с постоянным или временным горизонтом подпочвенных вод отсутствует. Вода, находящаяся в промоченном слое, как бы "висит", не стекая, в почвенной толще над сухим слоем. Поэтому она и получила название подвешенной. В природных условиях в распределении капиллярно-подвешенной воды по профилю почв всегда наблюдается постепенное уменьшение влажности с глубиной.

Схема развития отрицательного давления под вогнутыми менисками в капиллярах

Подвешенная вода удерживается в почвах достаточно прочно, но до определенного предела, обусловленного разностью давлений, создаваемой в менисках верхней и нижней поверхностей водного слоя. Если этот предел разницы давлений превышен, начинается стекание воды. Капиллярно-подвешенная вода может передвигаться как в нисходящем направлении, так и вверх, в направлении испаряющейся поверхности. При активном восходящем движении воды в почвах близ поверхности происходит накопление веществ, содержащихся в растворенном виде в почвенном растворе. Засоление почв в поверхностных горизонтах обязано во многом данному явлению. Происходит это в том случае, если в почвах в пределах промачиваемого с поверхности слоя имеется горизонт скопления легкорастворимых солей или если полив почв осуществляется минерализованными водами.

В суглинистых почвах количество капиллярно-подвешенной воды и глубина промачивания почвы за счет этой формы воды могут достигать значительных величин. В песчаных почвах эти показатели значительно ниже.

Таблица. Распределение капиллярно-подвешенной воды в однородных по гранулометрическому составу грунтах

Грунт

Влажность (%) на различной глубине

0-10

10-20

20-30

30-40

40-50

50-60

60-70

Тяжелый суглинок

40

39

35

34

33

32

31

Средний суглинок

30

28

28

28

28

27

26

Супесь

24

23

22

21

20

17

15

Рис.20. Водная манжета (стыковая вода) между шарообразными частицами

Капиллярно-подвешенная вода в почвах сохраняется длительное время, являясь доступной для растений. Поэтому эта форма воды с экологической точки зрения представляет особую ценность. Скорость передвижения капиллярно-подвешенной воды к поверхности и, следовательно, скорость ее испарения, т. е. потери воды из почвы, определяются главным образом структурностью почв. В структурных почвах этот процесс идет медленнее и вода дольше сохраняется. Одной из разновидностей капиллярно-подвешенной воды, встречающейся главным образом в песчаных почвах, является вода стыковая капиллярно-подвешенная (рис. 20). Возникновение ее в почвах легкого механического состава обязано тому, что в этих почвах преобладают поры, размер которых превышает размер капилляров. В данном случае вода присутствует в почвах в виде разобщенных скоплений в местах соприкосновения -- стыка _ твердых частиц в форме двояковогнутых линз ("манжеты"), удерживаемых капиллярными силами.

Капиллярно-подпертая вода образуется в почвах при подъеме воды снизу от горизонта грунтовых вод по капиллярам на некоторую высоту, т. е. это вода, которая содержится в слое почвы непосредственно над водоносным горизонтом и гидравлически с ним связана, подпираемая водами этого горизонта.

Капиллярно-подпертая вода встречается в почвенной-грунтовой толще любого гранулометрического состава. Слой почвы или грунта, содержащий капиллярно-подпертую воду непосредственно над водоносным горизонтом, называют капиллярной каймой. В почвах тяжелого механического состава она обычно больше (от 2 до 6 м), чем в почвах песчаных (40--60 см). Содержание воды в кайме уменьшается снизу вверх. Изменение влажности в песчаных почвах при этом происходит более резко. Мощность капиллярной каймы при равновесном состоянии воды характеризует водоподъемную способность почвы.

Капиллярно-посаженная вода (подперто-подвешенная) образуется в слоистой почвенно-грунтовой толще, в мелкозернистом слое при подстилании его слоем более крупнозернистым, над границей смены этих слоев. В слоистой толще из-за изменения размеров капилляров на поверхности раздела тонко- и грубодисперсных горизонтов возникают дополнительные нижние мениски, что способствует удержанию некоторого количества капиллярной воды, которая как бы "посажена" на эти мениски.

Поэтому в слоистой толще распределение капиллярной воды имеет свои особенности. Так, на контакте слоев различного гранулометрического состава наблюдается повышение влажности, в то время как в однородных почвогрунтах влажность равномерно убывает либо вниз по профилю (при капиллярно-подвешенной воде), либо вверх по профилю (при капиллярно-подпертой воде). Влажность слоистой почвенно-грунтовой толщи при прочих равных условиях всегда выше влажности толщи однородной.

Гравитационная вода. Основным признаком свободной гравитационной воды является передвижение ее под действием силы тяжести, т. е. она находится вне влияния сорбционных и капиллярных сил почвы. Для нее характерны жидкое состояние, высокая растворяющая способность и возможность переносить в растворенном состоянии соли, коллоидные растворы, тонкие суспензии. Гравитационную воду делят на просачивающуюся гравитационную и воду водоносных горизонтов (подпертая гравитационная вода).

Просачивающаяся гравитационная вода передвигается по порам и трещинам почвы -сверху вниз. Появление ее связано с накоплением в почве воды, превышающей удерживающую силу менисков в капиллярах.

Вода водоносных горизонтов -- это грунтовые, почвенно-грунтовые и почвенные воды (почвенная верховодка), насыщающие почвенно-грунтовую толщу до состояния, когда все поры и промежутки в почве заполнены водой (за исключением пор с защемленным воздухом). Эти воды могут быть либо застойными, либо, при наличии разности гидравлических напоров, стекающими в направлении уклона водоупорного горизонта. Удерживаются они вследствие малой водопроницаемости подстилающих грунтов. Присутствие значительных количеств свободной гравитационной воды в почве -- явление неблагоприятное, свидетельствующее о временном или постоянном избыточном увлажнении, что способствует созданию в почвах анаэробной обстановки и развитию глеевого процесса. Осушительные мелиорации направлены, как правило, на уменьшение запасов свободной гравитационной воды в почвах.

Разграничивая содержащуюся в почве воду на отдельные категории, следует иметь в виду, что любое разделение является условным, так как вода в почве практически всегда находится одновременно под действием нескольких сил с преобладающим влиянием силы какого-либо одного вида.

Почвенно-гидрологические константы. Несмотря на то, что разделение почвенной воды на категории (формы) условно и ни одна из них не обладает абсолютной значимостью, можно выделить определенные интервалы влажности, в пределах которых какая-то часть влаги обладает одинаковыми свойствами и степенью доступности ее для растений. Граничные значения влажности, при которых количественные изменения в подвижности воды переходят в качественные отличия, называют почвенно-гидрологическими константами. Основными почвенно-гидрологическими константами являются: максимальная гигроскопичность, влажность завядания, влажность разрыва капилляров, наименьшая влагоемкость, полная влагоемкость. Почвенно-гидрологические константы широко используются в агрономической и мелиоративной практике, характеризуя запасы воды в почве и обеспеченность растений влагой.

Максимальная гигроскопичность (МГ) - характеризует предельно-возможное количество парообразной воды, которое почва может поглотить из воздуха, почти насыщенного водяным паром. Характеристика этого вида воды была дана выше. Максимальная гигроскопичность почв является важной почвенно-гидрологической характеристикой, величиной, достаточно постоянной. почвенный вода гидрологический гигроскопичность

Вода, находящаяся в почве в состоянии максимальной гигроскопичности, не доступна растениям. Это "мертвый запас влаги". По максимальной гигроскопичности приближенно рассчитывают коэффициент завядания растений - нижнюю границу физиологически доступной для растений воды.

Влажность устойчивого завядания, или влажность завядания (ВЗ) - влажность, при которой растения проявляют признаки устойчивого завядания, т. е. такого завядания, когда его признаки не исчезают даже после помещения растения в благоприятные условия. Численно ВЗ равна примерно 1,5 максимальной гигроскопичности. Эту величину называют также коэффициентом завядания.

Содержание воды в почве, соответствующее влажности завядания, является нижним пределом доступной для растений влаги.

Влажность завядания определяется как свойствами почв, так и характером растений. В глинистых почвах она всегда выше, чем в песчаных. Заметно возрастает она и в почвах засоленных и содержащих большое количество органических веществ, особенно неразложившихся, растительных остатков (торфянистые горизонты почв). Так, в глинах ВЗ составляет 20-30%, в суглинках -- 10-12, в песках - 1-3, у торфов -- до 60-80%. Засухоустойчивые растения завядают при меньшей влажности, чем влаголюбивые.

Влажность разрыва капилляров (ВРК). Капиллярно-подвешенная вода при испарении передвигается в жидкой форме к испаряющей поверхности в пределах всей промоченной толщи по капиллярам, сплошь заполненным водой. Но при определенном снижении влажности, характерном для каждой почвы, восходящее передвижение этой воды прекращается или резко затормаживается. Потеря способности к такому передвижению объясняется тем, что в почве при испарении исчезает сплошность заполнения капилляров водой, т. е. в ней не остается систем пор, сплошь заполненных влагой и пронизывающих промоченную часть почвенной толщи. Эту критическую величину влажности М. М. Абрамова назвала влажностью разрыва капиллярной связи (ВРК).

Таким образом, влажность разрыва капилляров -- это влажность, при которой подвижность капиллярной воды в процессе снижения влажности резко уменьшается. Вода, однако, остается в мельчайших порах, в углах стыка частиц (мениски стыковой влаги). Эта влага неподвижна, но физиологически доступна корешкам растений.

ВРК называют также критической влажностью, так как при влажности ниже ВРК рост растений замедляется и их продуктивность снижается. В почвах и грунтах эта величина варьирует довольно сильно, составляя в среднем около 50--60% от наименьшей влагоемкости почв. На содержание воды, соответствующей ВРК, помимо гранулометрического состава почв, существенное влияние оказывает их структурное состояние. В бесструктурных почвах запасы воды расходуются на испарение значительно быстрее, чем в почвах с агрономически ценной структурой. Поэтому в них влажность будет быстрее достигать ВРК, т. е. обеспеченность влагой растений снижаться будет быстрее.

Наименьшая влагоемкость (НВ) -- наибольшее количество капиллярно-подвешенной влаги, которое может удержать почва после стекания избытка влаги при глубоком залегании грунтовых вод. Термину наименьшая влагоемкость соответствуют термины полевая влагоемкость (ПВ), общая влагоемкость (0В) и предельная полевая влагоемкость (ППВ). Последний термин особенно широко используется в агрономической практике и в мелиорации; термин полевая влагоемкость широко распространен в иностранной литературе, особенно американской.

Наименьшая влагоемкость зависит главным образом от гранулометрического состава почв, от их оструктуренности и плотности (сложения). В почвах тяжелых по гранулометрическому составу, хорошо оструктуренных НВ почвы составляет 30--35, в почвах песчаных она не превышает 10--15%.

Наименьшая влагоемкость почв является очень важной гидрологической характеристикой почвы. С ней связано понятие о дефиците влаги в почве, по НВ рассчитываются поливные нормы.

Полная влагоемкость (ПВ) - наибольшее количество влаги, которое может содержаться в почве при условии заполнения ею всех пор, за исключением пор с защемленным воздухом, которые составляют, как правило, не более 5--8% от общей порозности. Следовательно, ПВ почвы численно соответствует порозности (скважности) почвы.

При влажности, равной ПВ, в почве содержатся максимально возможные количества всех видов воды: связанной (прочно и рыхло) и свободной (капиллярной и гравитационной). Можно сказать, что ПВ характеризует водовместимость почв. Поэтому эту величину называют также полной водовместимостью. Зависит она, как и наименьшая влагоемкость, не только от гранулометрического состава, но и от структурности и порозности почв. Полная влагоемкость колеблется в пределах 40-50%, в отдельных случаях она может возрасти до 80 или опуститься до 30%. Состояние полного насыщения водой характерно для горизонтов грунтовых вод.

Размещено на Allbest.ru

...

Подобные документы

  • Вода как одно из самых распространенных веществ на Земле. Классификация и категории воды в горных породах, ее разновидности и отличительные особенности, значение в природе. Анализ и оценка влияния химического состава воды на свойства горных пород.

    контрольная работа [17,2 K], добавлен 14.05.2012

  • Вода в жидком, твердом и газообразном состоянии и ее распределение на Земле. Уникальные свойства воды. Прочность водородных связей. Круговорот воды в природе. Географическое распределение осадков. Атмосферные осадки как основной источник пресной воды.

    реферат [365,1 K], добавлен 11.12.2011

  • Этапы развития гидрогеологии. Состояние воды в атмофере: парообразное, капельножидкое и твердое. Виды воды в горных породах: парообразная, связанная, гравитационная, каппилярная, кристаллизационная, лед. Понятие о скважности и пористости горных пород.

    курсовая работа [24,5 K], добавлен 19.10.2014

  • Физические свойства и химическая формула воды. Рассмотрение агрегатных состояний воды (лёд, пар, жидкость). Изотопные модификации и химические взаимодействия молекул. Примеры реакций с активными металлами, с солями, с карбидами, нитридами, фосфидами.

    презентация [958,8 K], добавлен 28.05.2015

  • Влияние морской и речной воды. Влажность древесины и свойства, связанные с её изменением, прямые и косвенные методы. Толпяк: понятие, главные проблемы освоения. Фенол в водах Енисея. Работы по очищению Саяно-Шушенской гидроэлектростанции от древесины.

    контрольная работа [3,3 M], добавлен 30.01.2016

  • Феномен влияния магнитного поля на водные растворы и другие немагнитные системы. Проблема снижения величины отложений из жесткой воды на поверхностях трубопроводов при магнитной обработке воды. Основные различия кристаллохимического состава отложений.

    реферат [1,1 M], добавлен 03.03.2011

  • Воды зоны многолетней мерзлоты как подземные воды, приуроченные к зоне многолетней мерзлоты. Типы водохранилищ, их заиление, водные массы и влияние на речной сток и окружающую среду. Термический и ледовый режим рек. Общая характеристика Оби и ее бассейна.

    контрольная работа [610,5 K], добавлен 03.05.2009

  • Разновидности воды в горной массе. Гигроскопичность - способность горной массы поглощать пары воды. Условия протекания процессов сушки. Тепло- и массообмен при сушке горной породы. Брикетирование горного сырья, процесс агломерации руды и обжига окатышей.

    курсовая работа [1,0 M], добавлен 04.12.2012

  • Построение и свойства кривой расходов воды. Выбор способа вычисления ежедневных расходов воды на основе анализа материалов наблюдений особенностей режима реки. Способы экстраполяция и интерполяции. Гидрологический анализ сведений о стоке воды и наносов.

    практическая работа [28,9 K], добавлен 16.09.2009

  • В каких формах встречается вода в природе. Сколько воды на Земле. Понятие круговорота воды в природе. Сколько воды содержится в организме человека. Понятие испарения и конденсации. Три агрегатных состояния воды. Применение воды в деятельности человека.

    презентация [2,7 M], добавлен 19.02.2011

  • Общие сведения о месторождении, его стратиграфия, тектоника, нефтегазоводоностность. Свойства и состав нефти, газа, конденсата, воды. Физико-химические свойства пластовых вод. Гидравлический разрыв пласта, применяемое при нем скважинное оборудование.

    дипломная работа [1,1 M], добавлен 18.04.2014

  • Понятие круговорота воды в природе, водной оболочки Земли, их структура, значение. Сущность испарения и конденсации как физических процессов, условия их осуществления. Особенности и состав годового поступления воды. Источники движения воды на Земле.

    презентация [1,2 M], добавлен 23.11.2011

  • Виды воды в горных породах, происхождение подземных вод, их физические свойства и химический состав. Классификация подземных вод по условиям образования, газовый и бактериальный состав. Оценка качества технической воды, определение ее пригодности.

    презентация [92,8 K], добавлен 06.02.2011

  • Водные ресурсы и водообеспеченность Днепропетровской области. Забор и использование воды, загрязнение водных ресурсов и его источники. Радиационное загрязнение и микробиологическая оценка качества воды. Состояние и методы очистки возвратных вод.

    реферат [40,8 K], добавлен 29.05.2009

  • Пресные и минеральные лечебные воды в недрах Вологодской области. Основные водоносные горизонты: триасовый, пермский, каменноугольный. Классификация вод по общей минерализации. Профилактории и санатории Вологодской области. Промышленные минеральные воды.

    реферат [33,2 K], добавлен 06.03.2011

  • Общие представления об уравнениях состояния. Уравнение состояния Кнудсена. Программы и методические указания для расчета плотности воды. Результаты расчета вертикального профиля плотности воды. Анализ изменения плотности воды с глубиной в разных широтах.

    курсовая работа [1,6 M], добавлен 10.12.2012

  • Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

    учебное пособие [3,1 M], добавлен 09.01.2010

  • Геолого-промысловая характеристика ГКМ Медвежье, физико-химические свойства природных углеводородов и пластовой воды, оценка запасов газа. Техника и технология добычи газа, конденсата и воды. Этапы обработки результатов газодинамических исследований.

    курсовая работа [430,1 K], добавлен 06.08.2013

  • Вывод уравнения для аналитического описания эпюры температуры воды. Изучение неоднородности температуры воды по глубине рек. Анализ распределения температуры воды по ширине рек. Оценка эффективности использования уравнения теплового баланса реки.

    дипломная работа [4,1 M], добавлен 22.12.2010

  • Артезианские воды - подземные воды, заключённые между водоупорными слоями и находящиеся под гидравлическим давлением. Артезианский бассейн и артезианский склон. Условия образования вод, их химический состав. Загрязнение артезианских водоносных горизонтов.

    реферат [20,2 K], добавлен 03.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.