Географическая информационная система горного предприятия

Маркшейдерско-геологическая аналитическая информационная система горной компании. Топологические основы геометризации базы данных. Ее программное ядро и структура. Геологический модуль и практическое использование системы на примере ОАО "Воркутауголь".

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 05.02.2014
Размер файла 23,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Маркшейдерско-геологическая аналитическая информационная система (МГАИС) горного предприятия

2. Структура системы

3. Топологические основы геометризации маркшейдерской базы данных

4. Программное ядро и динамическая структура маркшейдерской базы данных

5. Геологический модуль и практическое использование системы на примере ОАО "Воркутауголь"

Список литературы

1. Маркшейдерско-геологическая аналитическая информационная система (МГАИС) горного предприятия

В целом современный мировой уровень компьютерных графических систем для горной промышленности отличается разновидностью, активностью, динамичностью развития, готовностью удовлетворять практически любые специфические требования заказчиков - при наличии у последних необходимых средств и достаточно квалифицированного персонала для освоения сложных программных продуктов.

К числу наиболее сложных и развитых компьютерных систем в рассматриваемой области относятся DATAMINE фирмы MICL, VULCAN фирмы МАРТЕК, MINESCAPE фирмы MINCOM.

Так, программа MINESCAPE закуплена на четырех угледобывающих предприятиях России. В настоящее время наиболее полно программа используется на ш. Распадская, где ее эксплуатируют два человека. На остальных предприятиях программа уже длительное время находится в стадии освоения.

MAINE SCAPE изначально разрабатывалась как универсальная система для самого различного использования в горном деле. Применение системы в том виде, в котором ее обычно получает пользователь, довольно проблематично. Универсальность потребовала внедрения в систему средств настройки на предметные области и национальные стандарты. Это было сделано в виде множества системных переменных, с помощью которых пользователь может подогнать пакет под свои нужды. Поскольку MINESCAPE родилась в мире, глубоко чуждом нашим ГОСТам и просто традициям и оформлению горной графической документации, то поле деятельности пользователя в данном случае поистине затруднительно.

Таким образом, не исключая зарубежный опыт информационных систем на объектном и корпоративном уровне, для разработки информационной системы горного предприятия ВНИМИ использован специализированный подход для данной предметной области и России.

В основе системы лежат результаты работ различных лабораторий ВНИМИ и института Углеавтоматизации (маркшейдерия, геология, геомеханика, геодинамика, гидрогеология, геофизика и т.д.).

Она отличается от предлагаемых на рынке универсальных систем прежде всего консалтинговой специализацией в перечисленных научных направлениях. Система является прямым мостом между наукой и практикой. Это новые информационные технологии решения различных эксплуатационных задач горного предприятия, основанные на картографических электронных моделях земной поверхности, горного массива и выработанных пространств. Они включают информационные слои и базы данных входящих в них объектов, характеризующие геометрическое, геологическое, геомеханическое, геодинамическое, гидрологическое, геофизическое состояния, строение и свойства горного массива в пространстве и во времени.

2. Структура системы

В основе структуры сетевая модель "клиент-сервер", являющаяся на сегодня промышленным стандартом для построения информационных систем. Ее суть заключается в размещении Базы Данных на ЭВМ-сервере, а функциональных приложений - на ПЭВМ-клиентах. Тем самым обеспечивается разделение процессов обработки информации между серверами и клиентами, а также минимизируется сетевой трафик за счет передачи пользователю только необходимых ему фрагментов базы данных. В модели "клиент-сервер" сервер играет активную роль: он сначала "думает, а потом делает". На рабочую станцию клиента попадают только те данные, которые удовлетворяют его запросу. В результате на сервере информация является оптимальной для работы со всеми клиентами без повторения одноименных данных об объектах.

В свою очередь эта идеология расширена за счет пополнения самого сервера только индексированной информацией, сформированной на локальной базе данных работы клиента. Например, результаты пополнения плана горных работ поступят в БД сервера после окончательного формирования в индексированном виде результатов обработки маркшейдерской съемки за определенный период с рабочего места маркшейдера.

Система ВНИМИ на сегодня включает следующие программные продукты:

1. Программное ядро и объектная трехмерная маркшейдерская база данных - маркшейдерский модуль.

2. Геологический модуль.

3. Графическое программное ядро всей системы - Microstation.

4. Программное обеспечение Terra Modeler, встроенное в Microstation - для трехмерных, объемных цифровых моделей в системе координат, принятой на предприятии.

5. СУБД Access или ORACLE.

6. Календарное планирование.

7. Расчет деформации земной поверхности.

8. Проектирование дорог.

9. Рекультивация.

Другие приложения, в настоящий момент используемые в различных службах предприятия. Они могут быть встроены в предлагаемую систему.

Для обеспечения управления системой на горном предприятии в ней оперируют объектами и терминами, повседневно используемыми на горном предприятии, такими как: скважина, ствол, горная выработка, штрек, пласт, квершлаг, опасные события, внезапный выброс газа и породы, опасная зона горного давления и т.д. Все модули разработаны на основе отечественных стандартов выполнения горных работ.

3. Топологические основы геометризации маркшейдерской базы данных

Система горных выработок на действующей шахте образует сложную топологическую структуру. Одна из задач для ее отображения в БД - найти топологическую индексацию (определение) объектов этой структуры и на их основе реализовать базу данных по этим объектам. С целью четкой индексации топологических объектов в качестве топологической единицы использовано понятие ребра (звена). Это участок горной выработки между двумя сопряжениями. Регистрация ребра в базе данных осуществляется с использованием геометрических параметров в виде опорно-съёмочной маркшейдерской сети и маркшейдерских замеров.

Геометрические параметры в БД определяют особенности генерации (воспроизведения - рисования) геометрических объектов на электронном плане.

В процессе автоматизированной генерации электронного исходного маркшейдерского плана, в алгоритме ВНИМИ, согласованного с маркшейдерской службой ОАО Воркутауголь, используются все три координаты X,Y,Z и результаты съемки контура объекта. В итоге машина распознает, как сопрягаются горные выработки, и если контурные точки сопряжения имеют одинаковые отметки Z, она их рисует без пересечений и наоборот.

Однако построение ортогонального электронного исходного маркшейдерского плана по трем координатам не позволяет увидеть все морфологические и структурные тонкости горных выработок. МГАИС осуществляет динамическое изменение представления объекта в объемном виде.

Трехмерная база данных дает возможность в любой точке плана получить интерполированную высоту (Z), необходимый профиль (сечение) по выработке. Построение информационной плоскости модели производится со скоростью приблизительно 3000 точек за 2 секунды, с возможностью в любом месте модели визуализировать не экране построенную систему треугольников и, если необходимо, изменить интерактивно построение треугольников или ввести дополнительную точку и пересчитать модель. Количество построений информационных плоскостей неограниченно.

Вместо координаты Z на электронном маркшейдерском плане может быть выбран для построения информационной модели поля показатель этого поля: мощность пласта, зольность угля, геомеханическая мониторинговая характеристика (напряжение в точке, прочность, деформации) и т.д.

Рассчитанные по моделям информационные поля между изолиниями могут быть исправлены экспертом-специалистом, основываясь на свой опыт познания рассматриваемой модели, внося субъективную информацию в прогнозные алгоритмы. Сравнение информационных слоев на основе сопоставления двух построений, одно из которых выполнено с использованием субъективной информации (авторская трактовка интерполяции), а другое на основе стандартных алгоритмов (триангуляция сплайны и т.д.) позволяет осуществлять планирование развития геометрической сети получения данных.

4. Программное ядро и динамическая структура маркшейдерской базы данных

Информационная система имеет динамическую объектную структуру данных с неограниченной возможностью наращивания функциональности. Эта база данных в системе выступает в качестве интегрирующей основы корпоративной работы всех эксплуатационных модулей системы. Важнейшим критерием жизнеспособности и эффективности корпоративной системы являются заложенные в нее возможности развития информационной модели силами самих пользователей. Действительно, эксплуатирующий персонал горного предприятия, как правило, работает с реальными объектами. Задачи инженерно-технических работников служб главного маркшейдера, главного геолога, главного технолога и т.п. трудно формализуются и постоянно меняются. Лица, принимающие решения, имеют здесь дело со специфической технической информацией о разнотипных объектах, структура которых нигде заранее не "прописана", а часто известна им одним. Объекты эксплуатации "живут", как например, горные выработки, сначала они проектируются, затем проходятся, образуют сопряжения, разделяясь на два и более "звена" (ребра), гасятся и т.д. Иначе, одни объекты являются частью других и оказывают влияние на свойства этих объектов - систем более высокого уровня. Информационная поддержка должна сопровождать весь жизненный цикл инженерных объектов и отражать потребности различных служб-участников корпоративной системы. Реализация подобной системы возможна только при постоянном развитии ее структуры, так как единственным "авторитетным" постановщиком задач является Время, точнее - сами пользователи, которые лишь в ходе эксплуатации системы начинают понимать, что от нее можно ожидать и что, - и в какой последовательности - им действительно нужно. И только в ходе развития информационная система способна становиться все более и более адекватной всей сложности объекта. При этом установится необходимая структура, способная эффектно удовлетворить всем требуемым задачам.

Таким образом, возникает необходимость очень гибкого, мощного и, в то же время, доступного пользователю аппарата для самостоятельного создания необходимых структур хранения данных, получения ответов на заранее неизвестные запросы в корпоративном информационном пространстве.

Использование динамической БД, разрабатываемой ВНИМИ, предполагает наличие специального программного обеспечения, наращиваемого и изменяемого адекватно сложившейся ситуации. Фирма Microsoft предоставляет разработчикам программ возможность создания СОМ (Component Object Model)-объектов. Данные объекты пишутся с помощью Visual С++ версии 4.1 и выше, и могут компоноваться как в библиотеки (DLL), так и в исполняемые приложения (ЕХЕ). В отличии от обычных программных модулей СОМ-обьекты регистрируются в реестре операционной системы (ОС) и в дальнейшем рассматриваются как ее неотъемлемая часть. ОС - Windows 98 или NT берет на себя большинство функций по сохранности, отслеживанию модификаций и перемещений СОМ-объектов на жестком диске или в сети.

В нашем случае, каждый СОМ-объект обслуживает некоторый небольшой фрагмент БД и (или) предоставляет набор функций для его обработки. Законченное программное приложение представляет собой набор обращений к независимым друг от друга СОМ-объектам, которые в свою очередь обращаются к другим объектам. Глубина вложенности такой структуры может быть произвольна, и изменение одного из объектов не влечет за собой переделку приложения или всей системы в целом.

Таким образом, появление в динамической БД новых элементов или ссылок, постановка новых практических задач требует лишь написание одного или нескольких СОМ-объектов, не заботясь об изменении всего написанного ранее.

Информационная технология, используемая в предложенной системе, позволяет "на ходу", с помощью СОМ-объектов развивать реализованную в едином хранилище данных информационную модель корпоративной системы и снимает жесткую границу между ее проектированием и использованием. Внедрение системы не требует раз и навсегда завершенного проекта системы. Это качественно отличает ее от обычных подходов к созданию информационных систем, когда разработчики в ходе длительного и дорогостоящего этапа проектирования пытаются собрать максимум сведений от всех предполагаемых пользователей, увязать все существующие и перспективные задачи, и только создав полную и адекватную информационную модель, приступают к программированию. При этом, однако, постоянно обнаруживаются неучтенные потребности, необходимость корректировки возникает еще до начала внедрения, разработка приобретает перманентный характер, а эксплуатация в промышленном объеме так и не начинается. Затратив значительное время и средства и не получив желаемых результатов, заказчик неразвиваемой системы оказывается заложником разработчиков. Потеря их может оказаться фатальной для начатого проекта. Отсутствие же развития внедренной системы очень быстро сделает ее неактуальной.

Возможность развития корпоративной системы ВНИМИ обеспечивается наличием в ней пути представления информации не в статистическом виде (как в обычных реляционных БД), а информации об отношениях между объектами. За счет этого мы можем наращивать сколько угодно новых отношений между объектами, каждые из которых сортируются по информационным слоям, образуя определенную иерархию информации, удобную для извлечения ее из БД по формализованной в ней таблице всего из четырех колонок: идентификатор слоя, начало (верхний по иерархии объект), конец (нижний по иерархии объект), параметр описываемого отношения. маркшейдерская геологическая информационная геометризация

Такая информационная иерархия наглядно может быть представлена графами, в виде стрелок, где начало отображает верхний по иерархии объект, конец отображает нижний по иерархии объект, а от стрелок в виде дроби название информационного слоя и его параметр.

Создав принципиально новую динамичную структуру ядра БД, ее хранение и управление возложено на известные СУБД Acces фирмы Микрософт, имеется готовность к внедрению СУБД Oracle, подчеркивая этим перспективную трехзвенную архитектуру клиент-сервер приложений - СУБД.

Важнейшим слоем графа является "Склад" (хранилище). На нем заканчивается информационная иерархия графа БД и ссылается на таблицу БД, в которой представлена тематическая информация, например, каталог маркшейдерских точек. Каждой стрелке графа соответствует строка формализованной таблицы представления объектов в БД.

Представление любого геометрического объекта в БД возможно в 4-х разновидностях: исходной, производной, планируемой (проектной), расчетной (проекция). Исходное - это представление по результатам маркшейдерской съемки. Производное - представление по производной горной графической документации оператором-векторизатором. Планируемая (проектная) - это информация в плоских координатах, например, с плана горных работ. Расчетная (проекция) - это информация в трехмерных координатах, восстановленная по плоским координатам путем проекции на поверхность, определяемую цифровой трехмерной моделью, например, почвы пласта. Это позволит увидеть объемное отображение будущего звена по отношению к объемному рудному телу или угленосному слою.

Заполнение БД будет происходить в полуавтоматическом интерактивном режиме. Структура таблиц слоев автоматически закладывается в БД по мере отображения горных выработок на плане, т.к. независимо от количества слоев и их расположения они аккумулируются в БД однозначно таблицами из 4-х столбцов, в которых меняется название слоя и параметр. Склады формируются интерактивно и их содержание зависит от решаемых задач.

Решение той или иной задачи, поставленной на производстве, связано лишь селективно с теми или иными информационными данными по выработкам. Эта селективность выбора данных решается в новой структуре БД наглядно, выбирая из БД лишь те стрелочки (слои, графы) информации, которые необходимы для решения той или иной задачи. Практически достаточно соприкоснуться курсором с графическим объектом на электронном маркшейдерском плане, объект выделится миганием и определенным интерфейсом свяжет клиента с базой данных на выделенный объект, а если необходимо - с АРМ маркшейдера /2/.

5. Геологический модуль и практическое использование системы на примере ОАО "Воркутауголь"

Непосредственно к маркшейдерской базе данных в системе ВНИМИ примыкает геологический модуль, разработанный институтом Углеавтоматизации.

Он предназначен для автоматизации на ПЭВМ труда геолога угольного предприятия путем ввода и обработки материалов геологических наблюдений и измерний в горных выработках и разведочных скважинах.

В качестве исходной информации используются дела разведочных скважин и первичные (черновые) данные геологических наблюдений и измерений в горных выработках.

При необходимости исходная информация может вводиться с чистовых геологических разрезов, выполненных ранее на бумажных носителях.

На базе обработки исходной информации осуществляется получение чертежей чистовых геологических разрезов по оси, забою, откосу (стенке) и подошве (площадке) горных выработок:

Формирование базы геологических данных по горным выработкам и разведочным скважинам, необходимой при выполнении прогноза горно-геологических условий разработки угольных пластов, пополнении планов горных выработок, геометрических построениях на планах (изолинии, границы, тектонические нарушения) подсчете, учете и анализе запасов угля.

Использование в модуле графического корпоративного ядра системы Microstation триангуляционного моделирования границ геологических слоев позволили построить для ОАО "Воркутауголь" маркшейдерско-геологическую модель участка месторождения, выбранного на электронном маркшейдерском плане, в районе планирования горных работ. С учетом данных по разведочным скважинам, горным выработкам, данным по геологическим нарушениям построить точные стратиграфические разрезы по выбранным линиям, провести криволинейный разрез по поверхности полезного ископаемого с определенным уклоном, построить изолинии по различным характеристикам (изолинии подошвы, пласта, кровли пласта, изомощности, изолинии плоскости сместителя геологического нарушения, изолинии поверхности, изоглубины).

На основе перечисленных данных, используя объемное моделирование в системе ВНИМИ проектируется календарное планирование работ на определенный объем добычи угля с фиксацией за каждый месяц с учетом перестановки добычного комплекса, если это необходимо.

Для геомеханического обеспечения горных работ оперативно и точно прогнозируется влияние намеченных горных работ на поверхность и объекты, расположенные на ней, поскольку от него зависит безопасность ведения горных работ и условия эксплуатации объектов.

Задача расчета ожидаемых сдвижений и деформаций реализована в системе специальным модулем /З/. Эти расчеты дают возможность применения природоохранных мероприятий для защиты природных объектов от вредного влияния горных разработок.

Список литературы

1. Яковлев Д.В., Михалевич Д.С. и др. "Географическая информационная система горного предприятия" в сб. "Проблемы геодинамической безопасности" II международное рабочее совещание. СПб, Россия, июнь 1997 г. с. 60-65.

2. Жуков Г.П. "Автоматизированное рабочее место маркшейдера". Межвузовский сб. "Маркшейдерское дело и геодезия ", Спб, СПГГИ, 1995 г., с. 14-18.

3. Земисев В.Н. и др. "Правила охраны сооружений и природных объектов".

4. Михалевич Д.С. и др. Отчет "Внедрить растрово-векторную технологию изготовления и пополнения электронно-цифровых маркшейдерских планов на шахтах ОАО "Гуковуголь" и "Ростовуголь".

Размещено на Allbest.ru

...

Подобные документы

  • Географическая информационная система, её взаимосвязь с картографией. Геоинформационные технологии в телекоммуникациях. Аппаратная платформа: понятие, функции, структура. Классификация прикладных задач, решаемых в сфере управления инфраструктурой.

    курсовая работа [64,4 K], добавлен 24.05.2015

  • Пространственные данные – ключ к успеху в нефтегазовой отрасли. Принципы построения географических информационных систем (ГИС) в нефтегазовой промышленности. Потребности нефтегазовой индустрии. ГИС для анализа ресурсной базы нефтегазовых компаний.

    контрольная работа [1,2 M], добавлен 12.05.2009

  • Геологическая характеристика Бакальского рудного месторождения. Фактическое состояние горных работ и технология их проведения, проектирование. Экономические показатели деятельности предприятия и воздействие горного производства на окружающую среду.

    дипломная работа [875,3 K], добавлен 16.06.2015

  • Обоснование необходимости геометризации месторождения полезных ископаемых, ее методы. Условия использования методов изолиний, объемных графиков и моделирования. Способ геологических разрезов. Проведение геометризации форм и условий залегания пласта.

    реферат [30,2 K], добавлен 11.10.2012

  • Разновидности воды в горной массе. Гигроскопичность - способность горной массы поглощать пары воды. Условия протекания процессов сушки. Тепло- и массообмен при сушке горной породы. Брикетирование горного сырья, процесс агломерации руды и обжига окатышей.

    курсовая работа [1,0 M], добавлен 04.12.2012

  • Разработка комплексного освоения месторождения алмазов погребённой россыпи "Нюрбинская" с применение новейшей горной техники в условиях многолетнемёрзлых пород и суровых климатических условиях. Технологические решения и обоснования по горной части.

    дипломная работа [6,4 M], добавлен 06.06.2012

  • Состав работ при тахеометрической съемке, ее объекты. Программное обеспечение, используемое при обработке результатов измерений. Физико-географическое описание местности. Маркшейдерско-геодезическое обеспечение района работ, строительство хвостохранилища.

    дипломная работа [2,5 M], добавлен 09.06.2013

  • Общая геологическая характеристика месторождения, ископаемые и качество руды, гидрогеологическое описание. Схема вскрытия и система разработки, отвальное хозяйство. Состояние маркшейдерской службы предприятия, надежность поверхностных опорных сетей.

    отчет по практике [55,9 K], добавлен 01.10.2013

  • Горно-геологическая характеристика месторождения. Номинальный фонд работы оборудования. Выбор и обоснование отделения горной массы от массива. Обоснование расчет рабочего оборудования рудника. Повышение эффективности эксплуатации бурового инструмента.

    курсовая работа [1,9 M], добавлен 17.10.2014

  • Формирование самосознания человека. Донаучные представления о деятельности человека. Основы научного мировоззрения. Геологическая деятельность человека. Что такое техногенез. Совместное влияние инженерно-строительной и горно-технической деятельности.

    курсовая работа [58,0 K], добавлен 17.12.2010

  • Проблемы и перспективы развития угольной промышленности Кузбасса на современном этапе. Геологическая история, характеристика территории бассейна. Способы добычи угля. Крупнейшие угольные компании. Важнейшие угледобывающие предприятия и их размещение.

    курсовая работа [904,9 K], добавлен 01.07.2014

  • Физико-географическая характеристика Алтайского инженерно-геологического региона в пределах восточной части территории Казахстана. Инженерно-геологическая характеристика пород. Гидрогеологические условия, современные геологические процессы и явления.

    курсовая работа [4,8 M], добавлен 11.03.2011

  • Открытый способ добычи полезных ископаемых - основа функционирования и развития горной промышленности. Краткая геологическая и горнотехническая характеристика месторождения. Режим работы карьера, общая организация работ. Подготовка горной массы к выемке.

    курсовая работа [11,5 M], добавлен 28.03.2010

  • Физико-географическая обстановка в районе Первенчиского месторождения. Стратиграфия патомской серии в районе Вернинского месторождения. История геологического развития Ленского золотоносного района. Полезные ископаемые Кварцево-жильной Зоны Первенец.

    реферат [48,9 K], добавлен 21.10.2013

  • Изучение основных свойств продуктивных пластов Пальяновской площади Красноленинского месторождения. Экономико-географическая характеристика и геологическая изученность района. Геофизические и гидродинамические исследования скважин в процессе бурения.

    дипломная работа [2,1 M], добавлен 17.05.2014

  • Использование в карьерах высокоэффективных средств горного и транспортного оборудования. Специфика карьерного транспорта. Применение железнодорожного, автомобильного транспорта для работы в карьерах. Конвейеры для транспортирования скальных пород.

    реферат [22,1 K], добавлен 07.04.2011

  • Понятие подземных вод как природных вод, которые находятся под поверхностью Земли в подвижном состоянии. Роль подземных вод в ходе геологического развития земной коры. Геологическая работа подземных вод. Участие подземных вод в формировании оползней.

    презентация [3,1 M], добавлен 11.10.2013

  • Продукты выветривания пород, смываемые со склонов и накапливающиеся у их подножия. Геологическая деятельность ледников и ветра в различных климатических зонах. Типы речных террас. Береговые ступени, наблюдаемые в поперечном разрезе речной долины.

    реферат [19,9 K], добавлен 13.10.2013

  • Геологическая характеристика месторождения. Режим работы и производственная мощность предприятия. Вскрытие карьерного поля. Обоснование системы разработки, подготовка пород к выемке. Гидротранспорт горной массы. Производительность и количество земснаряда.

    курсовая работа [95,0 K], добавлен 23.01.2013

  • Анализ геологического строения и закономерностей образования местных месторождений. Структурное положение Горной Шории, основные черты рельефа, тектоника региона. История образования и геологического развития, картосхема орографических районов региона.

    курсовая работа [4,1 M], добавлен 26.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.