Внедрение гибкой насосно-компрессорной трубы в процесс нефтедобычи в ОАО "Юганскнефтегаз" для осуществления промывки скважин после проведения гидроразрыва нефтяных пластов

Характеристика фонда скважин и объема работ по ремонту скважин в ОАО "Юганскнефтегаз". Спектр услуг гибкой насосно-компрессорной трубы в современной мировой нефтедобыче. Основные проблемы освоения нефтяных скважин после проведения гидроразрыва пласта.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 10.02.2014
Размер файла 147,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1

7Размещено на http://www.allbest.ru

Оглавление

Введение

1. Характеристика фонда скважин и объема работ по ремонту скважин в ОАО “Юганскнефтегаз”

2. Проблемы освоения нефтяных скважин после проведения гидроразрыва пласта (ГРП)

3. Традиционная технология промывки скважин установкой КРС

4. Спектр услуг ГНКТ в современной мировой нефтедобыче

5. Опыт применения технологии ГНКТ компании «Шлюмберже» в Западной Сибири

6. Предложение технологии для внедрения на месторождениях ОАО «Юганскнефтегаз» - Промывка скважины после ГРП от песка и несвязанного проппанта посредством ГНКТ

7. Технология промывок скважин посредством ГНКТ

Заключение

Список литературы

Введение

Нефтеюганский регион, расположенный в Ханты-Мансийском автономном округе (ХМАО), является территорией, на которой сосредоточены основные извлекаемые запасы нефти компании «Юкос» - второй по величине среди российских нефтяных гигантов.

ООО «РН-Юганскнефтегаз»,крупнейшее нефтедобывающее предприятие НК «Роснефть», ведет работу на территории городов Нефтеюганск и Пыть-Ях, Нефтеюганского, Сургутского и Ханты-Мансийского районов Ханты-Мансийского автономного округа-Югры.

С 2008 года добыча нефти в Обществе поддерживается на уровне более 65,7 млн. тонн нефти. По итогам 2012 года было добыто 66,8 млн. тонн нефти, что составляет 26 % добычи по ХМАО-Югра и 13% всей нефтедобычи России. В добычу из эксплуатационного бурения было введено 927 скважин. Средний дебит новых скважин составил 43,6 т/сут. Средний дебит действующих нефтяных скважин 21,7 т/сут, что более чем в 2 раза превышает средний показатель по России. Обеспеченность текущей добычи по месторождениям ОАО «НК Роснефть» на территории деятельности ООО «РН-Юганскнефтегаз» составляет 28 лет. Протяжённость трубопроводов 10 тыс. км. Численность персонала составляет 7,7 тысяч человек, сервисного блока - более 45 тысяч человек. Стратегический план развития компании «Юкос» предусматривает выход на уровень добычи 75 млн. тонн в течение последующих пяти лет. Столь напряженные производственные планы диктуют необходимость мобилизации всех имеющихся резервов. Основными направлениями, по которым возможно поступательно наращивать темпы добычи, являются бурение и строительство новых скважин, выведение скважин из фонда бездействующих, а также оптимизация работы добывающих скважин.

ОАО «Юганскнефтегаз» использует целый ряд современных технологий по оптимизации работы скважин. Наиболее эффективной из таких технологий считается гидроразрыв нефтяных пластов (ГРП). Сервисные услуги для ОАО «Юганскнефтегаз» в части ГРП оказывает компания «Шлюмберже Лоджелко Инк». В апреле 2001 г., за год и четыре месяца с начала операций по ГРП, компания выполнила уже 500 гидроразрывов. В результате скважины, оптимизированные методом ГРП в 2000 г., дали прибавку в 1,4 млн. тонн нефти. В 2001 г. ОАО «Юганскнефтегаз» планирует провести ГРП на 254 скважинах и получить дополнительно свыше 2 млн. тонн нефти.

Эффект ГРП состоит в том, что скважина начинает работать с отдачей (дебитом), превышающей прежнюю отдачу (дебит) в несколько раз, от 2-3 крат по ранее действовавшим скважинам и от 3 до 8 крат по новому фонду скважин.

К сожалению, в результате ГРП происходит частичное разрушение пласта, что является причиной последующего выноса из забоя твердых частиц - механических примесей. Как показывает статистика, в 42% случаев механические примеси, попадая в рабочие органы электроцентробежных насосов (ЭЦН), приводят к их быстрому износу и выходу ЭЦН из строя. Среднее время межремонтного периода (МРП) работы насосов в скважинах после ГРП составляет около 60 суток.

Строго говоря, мехпримеси не являются единственной причиной отказов в работе ЭЦН. Существуют также проблемы с качеством самих насосов, проблемы правильного вывода скважин в режим добычи, отложение солей на стенках эксплуатационной колонны и т.д. Тем не менее, в случае, если бы удалось найти решение задачи по минимизации выноса механических примесей, экономический эффект от внедрения данного мероприятия мог стать весьма значительным.

В мировой практике нефтедобычи уже давно - с начала 60 г.г. XX века - и достаточно широко применяется технология гибкой насосно-компрессорной трубы (ГНКТ). Известен широкий диапазон применения этой технологии - от бурения до заканчивания скважин.

Темой настоящей курсовой работы является обоснование проекта по внедрению ГНКТ в процесс нефтедобычи в ОАО «Юганскнефтегаз» для осуществления промывки скважин после проведения ГРП.

В настоящее время промывка стволов скважин производится в процессе освоения скважины после ГРП. Бригаде капитального ремонта скважин (КРС) требуется на эту операцию до пяти суток. Для промывок применяется 40-50 куб.м. плотного солевого раствора. Общее качество промывки оставляет желать лучшего, т.к. процент отказов ЭЦН из-за примесей, оставшихся в стволе, забое и призабойной зоне, в настоящее время довольно высок. Кроме того, бывают случаи потерь солевого раствора, который уходит в призабойную зону пласта, что существенно увеличивает срок вывода скважин в режим добычи.

ГНКТ позволяет проводить промывки стволов скважин с большей скоростью, в среднем в течение двух суток. Общее количество раствора на одну работу в среднем - до 10 куб.м. Преимуществом технологии ГНКТ является то, что помимо собственно промывки ствола технологическим раствором, она дает возможность закачивать в скважину определенный объем азота для создания пониженного гидростатического давления. В итоге возникает эффект притока жидкости, следовательно, обеспечивается процесс вымывания твердых примесей (солевого раствора) из призабойной зоны пласта. Традиционный станок КРС обеспечить такой эффект не в состоянии. Кроме того, технология ГНКТ позволяет контролировать процесс циркуляции, дает возможность работать при более сложных условиях в скважине.

В настоящей курсовой работе рассмотрено современное состояние нефтедобычи ОАО «ЮНГ» и объем ремонтов существующего фонда скважин на 2001 г. Определена одна из основных проблем возникающих после оптимизации скважин методом ГРП - вынос механических примесей и, как следствие, высокий процент отказов ЭЦН, короткий межремонтный период работы насосов. Описан регламент производства работ по технологии ГНКТ. Освещается аспект безопасности производства работ и защиты окружающей среды. В дипломном проекте выполнены расчеты капитальных затрат, текущих издержек производства и дана общая оценка эффективности предлагаемого мероприятия.

Автор благодарен всем специалистам компаний «Шлюмберже Лоджелко Инк» и ОАО «Юганскнефтегаз» за помощь в сборе информации и консультирование по техническим вопросам работы. На качество расчетов повлиял, в частности, недостаток статистических данных и специальных исследований. Тем не менее, данные дипломной работы в целом отражают существующие экономические реалии. Серьезный экономический эффект, который может обеспечить новая технология, служит наилучшей рекомендацией к внедрению ГНКТ в процесс нефтедобычи в ОАО «Юганскнефтегаз».

1. Характеристика фонда скважин и объема работ по ремонту скважин в ОАО “Юганскнефтегаз”

ОАО «Юганскнефтегаз» - крупнейшее добывающее предприятие нефтяной компании «Юкос» - расположено на территории Нефтеюганского района Ханты-Мансийского автономного округа. ОАО «ЮНГ» осуществляет разработку и эксплуатацию 26 месторождений нефти, совокупные извлекаемые запасы которых составляют 1,6 млрд. тонн. (1*) Добыча нефти в 2000 г. составила 30,5 млн. тонн. Суточная добыча на март 2000 г. составляет 96 000 тонн. В 2001 году предполагается добыть 36 млн. тонн. Добыча нефти ведется из 6 797 скважин. (2*)

Общий фонд скважин на 01.11.01 представлен в таблице.

Таблица 1 «Фонд скважин ОАО «Юганскнефтегаз»

Тип скважины

Действ-е

Бездейств-е

В консервации

Всего

Добывающие

6797

6 797

Нагнетательн.

3 987

3 987

Бездействующ.

2 500

В консервации

1 500

Итого эксплуатац. фонд скважин:

10 784

Потенциальная добыча скважин, выведенных из эксплуатации, может достигать 37 500 тонн в сутки или 14 миллионов тонн нефти в год. В 2000 г. из фонда бездействующих было выведено 335 скважин. По заявлению А. Растрогина, главного геолога ОАО «ЮНГ», акционерное общество планирует сократить фонд бездействующих скважин с 2 500 на сегодняшний день до 700 в 2005 году, т.е. восстанавливать по 360 скважин в год. (3*)

Таблица 2 «Потенциал добычи бездействующего фонда»

Кол-во отремонтированных скважин

Сметная суточная добыча, тонн

Сметная годовая добыча, тонн

360 в 2001 г.

5 500

2 000 000

1800 в 2005 г.

27 000

10 000 000

Как видно из таблиц 1 и 2 существует большой потенциал увеличения добычи не только за счет оптимизации работы скважин и бурения новых скважин, но и за счет восстановления скважин из фонда бездействующих. Следует отметить, что не все бездействующие скважины могут быть успешно восстановлены. скважина нефтедобыча гидроразрыв пласт

Скважины бездействуют по ряду причин:

Парафиновые или гидратные пробки в рабочих колоннах НКТ в результате низкого дебита;

Высокая обводненность;

Выход из строя внутрискважинного оборудования (ВСО) - НКТ, ЭЦН, пакер и пр.;

Плохая зональная изоляция;

Засорение интервала перфорации механическими примесями;

Потерянный в стволе инструмент;

Серьезное повреждение пласта.

Традиционно, работы по восстановлению скважин из бездействующего фонда и ремонту текущего фонда производятся управлениями капитального ремонта скважин. На 1 апреля 2001 г. проведением ремонтов на месторождениях ОАО «Юганскнефтегаз» занимались 70 бригад КРС и 80 бригад ПРС. Плановые задания по ремонтам представлены в таблице 3.

Таблица 3 «План КРС и ПРС на 2001 г. по ОАО «ЮНГ»

Категория ремонта

1 бригада/мес.

Работ / месяц

1 бригада/год

Всего ремонтов/год

КРС

1,9

133

22,8

1 596

ПРС

7,3

584

87,5

7 008

Итого:

8 604

Виды капитальных ремонтов скважин представлены в диаграмме 1.

Диаграмма 1 «Капитальный ремонт скважин в 2000 г.»

ОПЗ - обработка призабойной зоны пласта (40%)

Изоляция - изоляция притока (борьба с водой) (6%)

Подг. ГРП - подготовка к гидроразрыву пласта (6%)

После ГРП - освоение скважины после гидроразрыва (6%)

ГНКТ - комплекс гибкой насосно-компрессорной трубы (6%)

Наряду с бригадами КРС ремонтами скважин занимался комплекс ГНКТ, принадлежащий Управлению КРС-1 (г. Нефтеюганск). Как следует из диаграммы 2, комплекс гибкой насосно-компрессорной трубы выполнял практически те же операции, что и традиционные установки КРС:

Ликвидация гидратно-парафиновых пробок (ЛГПП);

Обработка призабойной зоны пласта (ОПЗП);

Промывка стволов скважин;

Промывка после гидроразрыва пласта и пр.

Диаграмма 2 «Операции ГНКТ Нефтеюганского КРС-1»

Отметим, также, что в промывке призабойной зоны пласта после ГРП комплекс ГНКТ ОАО «Юганскнефтегаз» применялся лишь в восьми случаях за последние пять лет.

Услуги сервисной компании «Шлюмберже Лоджелко Инк.», предоставляемые для ОАО «Юганскнефтегаз», в рамках альянса «Юкос» - «Шлюмберже».

Сервисная компания «Шлюмберже Лоджелко Инк» работает на месторождениях ОАО «Юганскнефтегаз» с октября 1999 г.* Отправной точкой нынешнего этапа совместной работы стал март 1998 года, когда в Нью-Йорке состоялась церемония подписания меморандума между компаниями «Шлюмберже» и «Юкос». Документ объявил о создании стратегического альянса двух компаний. Это обеспечивало нефтяной компании «Юкос» доступ к новейшим технологиям и мировому опыту сервисного обслуживания нефтяных месторождений. «Шлюмберже» взяла на себя обязательства оказывать сервисные услуги второй по величине российской нефтяной компании.

В настоящее время компания «Шлюмберже Лоджелко Инк» оказывает широкий спектр сервисных услуг, таких как текущий и капитальный ремонт скважин, промысловые и геофизические исследования, перфорационные работы. Ведущее место в программе сотрудничества занимают гидроразрывы пластов скважин (ГРП). Работы по ГРП проводятся практически на всех перспективных месторождениях ОАО «Юганскнефтегаз»:

Приобское

Приразломное

Мало-Балыкское

Угутское

Асомкинское

Усть-Балыкское и др.

Гидравлический разрыв пласта представляет собой одну из сложнейших технологических операций в нефтегазодобывающей промышленности. Эта технология уже около 50 лет широко применяется во всем мире с целью увеличения продуктивности скважины. Жидкость закачивается в скважину под таким давлением и с таким расходом, которые достаточны для того, чтобы разорвать породу пласта и создать по обе стороны от ствола скважины две направленные в противоположные стороны трещины, протяженностью до 300 метров. Для предотвращения выноса проппанта - искусственного расклинивающего материала - используется запатентованный продукт Подрядчика - «Пропнет».

В создаваемую трещину совместно с проппантом закачивается пропнет, образующий сеточную структуру, которая стабилизирует проппантную пачку, обеспечивая тем самым высокие дебиты пластовых углеводородов.

В 2000 г. из скважин, оптимизированных ГРП, было добыто более 1,4 миллиона тонн нефти. В результате стимуляции скважин методом ГРП достигнуто 2-3 кратное увеличение дебита нефти в действующем фонде скважин и 3-8 кратное увеличение на скважинах, вводимых в строй после бурения.

Средний прирост дебита нефти в 2000 г. составил более 60 тонн в сутки по действующему фонду и более 70 тонн в сутки по фонду новых скважин.

За счет постоянного совершенствования технологии, всесторонней оценки и выявления особенностей продуктивных залежей Нефтеюганского региона, тесного взаимодействия специалистов «Шлюмберже» и «Юганскнефтегаза», в 2001 году средний прирост дебита нефти составил уже более 90 тонн в сутки по действующему фонду и более 80 тонн в сутки по новым скважинам.

В 2001 году планируется выполнить 370 ГРП, что позволит получить дополнительно свыше 2 миллионов тонн нефти.

Подготовку скважин к ГРП осуществляет 15 бригад КРС компании «Шлюмберже» и несколько бригад Нефтеюганского управления КРС. Средняя продолжительность цикла ГРП (подготовительные работы, гидроразрыв пласта, освоение скважины после ГРП) составляет на апрель 2001 года 16 суток против 21 суток на январь 2000 года.

В апреле 2001 года компания «Шлюмберже» планирует усовершенствовать цикл ГРП за счет применения новой технологии - комплекса гибкой насосно-компрессорной трубы (ГНКТ) или Койл-тюбинга. Данная технология позволяет осуществлять промывку забоя скважин после ГРП с одновременным вызовом притока нефти из пласта, что способствует не только качественной очистке забоя от незакрепленного проппанта, но и удалению из трещины фрагментов разрушенной в результате разрыва породы, утерянного солевого раствора, а в конечном итоге - более продолжительной работе электроцентробежных насосов - ЭЦН.

Применение ГНКТ позволит сократить общую продолжительность цикла ГРП до 13 суток.

2. Проблемы освоения нефтяных скважин после проведения гидроразрыва пласта (ГРП)

Представители ОАО «Юганскнефтегаза» не раз заявляли о большом количестве отказов ЭЦН в скважинах, на которых компания «Шлюмберже» производила гидроразрыв пласта. Так как в некоторых ЭЦН находили остатки проппанта, то качество услуг по ГРП соответственно ставилось под сомнение. Для исследования проблемы было решено провести совместный анализ ситуации силами специалистов «Шлюмберже» и «Юганскнефтегаза».

Анализ проблем параллельно проводился также по скважинам, на которых операций по ГРП не было (на основании данных 2000 г.). Основной причинами поломок ЭЦН в этих скважинах были проблемы с собственно ЭЦН (30%) и отложение солей на рабочих органах ЭЦН (25%). Вынос механических частиц из пласта был причиной отказа в 8% случаев.

Диаграмма 3 «Причины отказов ЭЦН в скважинах без ГРП»

В течение 2000 г. после проведения ГРП в 170 скважинах было отмечено 276 поломок ЭЦН. В ряде случаев на одной и той же скважине ЭЦН выходил из строя по несколько раз.

Диаграмма 4 «Причины отказов ЭЦН после проведения ГРП»

Как показывают лабораторные анализы основной причиной отказов ЭЦН там, где речь шла о попадании в ЭЦН твердых частиц, были механические примеси из пласта, но не проппант. Из сравнения двух диаграмм также видно, что процент отказов ЭЦН из-за твердых (механических) частиц в скважинах после ГРП был выше (42%), чем в скважинах не подвергавшихся гидроразрыву пласта.

Среднее время наработки ЭЦН до первого отказа равняется примерно 60 дням после монтажа насоса. Вынос проппанта и твердых частиц породы был более сильным при следующих условиях:

В скважинах с низким уровнем жидкости в стволе по причине меньшего ожидаемого дебита или по причине установки ЭЦН слишком высокой производительности;

В скважинах, где промывка затруднялась из-за слабого давления в пласте.

Для скорейшего сокращения проблем с выносом проппанта/мехпримесей «Шлюмберже» рекомендовала новый регламент проведения очистки скважин и запуска ЭЦН, включая установку насосов-«жертв» небольшого диаметра.

Результаты рекомендаций дали положительный результат.

Лабораторный рентгенографический анализ состава твердых частиц в общей массе исследованных образцов показал, что кварцевые породы составляют 53%, далее идет парафин - 20%, проппант - 8%, магнитный железняк - 6%, шпатовый железняк - 5% и др.

Источники механических примесей

Существует несколько источников механических примесей:

обратный вынос проппанта;

неконсолидированный в пласте песок;

подвижные глины.

В целом всегда существует фактор обратного выноса проппанта, т.к. не весь проппант, закачанный в скважину, остается закрепленным в трещине. Но как мы видели выше, рентгенографический анализ зафиксировал, что только 8% проппанта входит в состав частиц, выносимых из скважины. Кварц - основной компонент пластового песка - формирует большую часть мехпримесей.

Вынос песка может произойти из-за разрушения породы пласта в зоне перфорации, либо это может быть песок, вымываемый из пористого участка. В случае некачественной перфорации могут оставаться отверстия, не сообщающиеся с нефтяным пластом. Они тоже могут стать источником выноса механических примесей.

Методы борьбы с выносом механических примесей

Существует насколько методов борьбы с выносом песка:

1). Скважина продолжает добычу жидкости вместе с песком.

Допускается вынос определенного количества песка. Экономическое преимущество метода несомненно, т.к. он не требует затрат на капитальный ремонт. Следует однако сравнить возможные затраты за определенный период времени (неизбежные смены насосов) и принять наиболее экономичное решение;

2). Монтаж ЭЦН с пескоотделителем.

Пескоотделитель предотвращает попадание абразивных частиц в двигатель ЭЦН и предохраняет его от разрушения. Метод легкий в смысле монтажа и стоимости дополнительного оборудования. Не решает проблему кардинально вследствие забивания пескоотделителя с течением времени. Фирма-изготовитель продолжает работать над совершенствованием отделителей механических примесей;

3). Монтаж насоса -«жертвы».

Спуск временного насоса. Как показывает практика, это требует значительного увеличения времени работы бригады на скважине и не гарантирует положительного эффекта;

4). Установка гравийного фильтра в забое скважины.

Метод рекомендован как последняя возможность в борьбе с песком вследствие высокой стоимости, а также того, что с течением времени фильтр забивается песком, окалиной, органическими осадками и его проницаемость уменьшается. Следовательно, уменьшается дебит, начинается процесс разрушения призабойной зоны;

5). Сваббирование скважины и создание большой депрессии.

Откачивание жидкости на первоначальном этапе с помощью поршня. Метод привлекательный с точки зрения затрат. Время сваббирования трудно прогнозировать;

6). Отработка азотом с использованием комплекса ГНКТ.

Основное преимущество этого метода в том, что он может использоваться наряду с уже действующими методами работы на скважине. После промывки забоя азот закачивается через гибкую НКТ на необходимую глубину и в скважине поддерживается депрессия в течение необходимого времени, отработанная жидкость поступает в выкидную линию. Затем проводится окончательная промывка забоя. Продолжительность работ можно прогнозировать. Обеспечивается полный контроль скважины. Сразу после заканчивания скважина начинает давать продукцию.

Эффективность технологии гидравлического разрыва скважин подтвердилась в результате проведенных исследований.

Рентгенографический анализ показывает, что большую часть механических примесей в скважине составляют частицы кварца.

Основной причиной отказа ЭЦН являются механические примеси, а не проппант.

Средняя продолжительность работы ЭЦН из-за проблем с выносом механических примесей составляет 60 дней.

Проблемы с отказом ЭЦН из-за механических примесей уменьшаются с течением времени.

Следует устанавливать узлы отделения механических примесей на всех спускаемых ЭЦН.

Рекомендуется проводить специальные виды каротажа для мониторинга ситуации в стволе скважины.

Для минимизации выноса проппанта и других механических примесей следует производить промывку скважины после ГРП посредством комплекса гибкой НКТ с использованием различных жидкостей, а также закачку азота.

3. Традиционная технология промывки скважин установкой КРС

За период проведения операций по гидроразрыву пластов на месторождениях ОАО «Юганскнефтегаз» (включая ГРП, произведенные предприятиями «Юганскфракмастер» и «Интрас», с 1989 по 1999 г.г. и компанией «Шлюмберже» с декабря 1999 г. по настоящее время) промывка скважин после ГРП осуществлялась в основном станками КРС.

Так называемый «цикл ГРП» состоял из следующих этапов: 1).Подготовка скважины к ГРП - 2). ГРП (гидроразрыв пласта) - 3). Освоение: промывка ствола после ГРП, спуск ЭЦН - или «КРС - ГРП - КРС».

Ниже приводится порядок действий по очистке забоя и ствола скважины от проппанта и механических примесей с использованием традиционной установки КРС, а также хронология производства работ и анализ затрат.

1.Технологический регламент. Промывка проппантной пробки.

После проведения ГРП в колонне НКТ остается некоторое количество проппанта. Информация об этом, с указанием объема, должна быть предоставлена сразу после проведения ГРП. В случае невозможности безопасного срыва пакера из-за большого объема проппанта, необходимо промыть колонну НКТ. В этом случае необходимо провести следующие операции:

1. Закрыть задвижки на крестовине фонтанной арматуры.

2. Установить на задвижку высокого давления переводник с манометром, записать давление в трубках, при необходимости стравить жидкость в емкость.

3. Смонтировать подъемник и бригадное оборудование.

4. Собрать устьевое оборудование.

5. Подготовить и спустить КНБК (компоновка низа колонны - прим. автора).

Определить верх песчаной пробки в подвеске ГРП;

Приподнять колонну труб на одну трубу, установить промывочную головку с вертлюгом;

Собрать нагнетательную линию от насосного агрегата до отвода на “столе-тройнике“, обратную линию от блока долива до НКТ (обязательна обратная циркуляция для обеспечения большей скорости выноса песка на поверхность);

Вызвать циркуляцию и осторожно достичь верха песчаной пробки;

Промыть скважину до очистки зоны непосредственно под пакером, контролировать выход песка.

Поднять колонну НКТ. Приступить к срыву и подъему пакера.

Промывка ствола скважины

Перед запуском скважины ее необходимо промыть до искусственного забоя:

1. Спустить необходимое количество НКТ.

2. Определить осторожно верх песка;

3. Собрать нагнетательную линию от насосного агрегата до затрубного пространства и обратную линию от НКТ до блока долива (предпочтительна обратная циркуляция для обеспечения большей скорости выноса песка на поверхность);

4. Вызвать циркуляцию и начать промывку;

5. Промыть скважину до искусственного забоя;

6. Убедиться, что скважина стабильна.

Демонтировать промывочное оборудование. Поднять подвеску НКТ.

При невозможности промыть скважину из-за сильного поглощения раствора (на скважинах с низким пластовым давлением), допускается на время промывки снижать удельный вес раствора. При этом после окончания промывки, до подъема инструмента, необходимо произвести замену раствора промывки на раствор необходимого удельного веса.

Примерная хронология основных технологических операций цикла ГРП:

Монтаж станка КРС - 6 часов;

Подъем эксплуатационной колонны НКТ - 14 часов;

Смена колонны (подвески) НКТ - 5 часов;

Спуск ремонтной колонны НКТ и пакера - 12 часов;

Проведение гидроразрыва пласта (ГРП) - 12 часов;

Подъем пакера - 14 часов;

Спуск пера (КНБК) - 12 часов;

Подъем пера (КНБК) - 14 часов;

Промывка забоя (100 метров) - 10 час;

Проведение ГИС (определение глубины искусственного забоя) - 3 часа;

Монтаж и спуск ЭЦН - 18 часов.

Так как промывка ствола и призабойной зоны скважины является частью программы оптимизации скважины с помощью ГРП, т.е. частью целого цикла ГРП, то общее время выполнения работ в течение цикла в настоящее время составляет в среднем 16 суток и состоит из следующих этапов:

Подготовка к ГРП (включая время на переезд) 5 сут.

Проведение ГРП 1 сут.

Промывка после ГРП 6 сут.

Монтаж и спуск ЭЦН 1 сут.

Выведение скважины в режим добычи 3 сут.

Выполнение промывок традиционным способом требует значительного количества времени. Так как промывка ствола скважины от проппанта и механических примесей, выносимых из пласта, является только частью общего «цикла ГРП» («оптимизация работы скважины с помощью проведения гидравлического разрыва пласта»), то мы приводим общее время работы установки КРС на скважине в течение всего цикла. Опыт выполнения подобных операций показывает, что для 1 бригады КРС и 1 бригады ГРП «Шлюмберже» на это требуется в среднем 16 суток, из них в среднем 6 суток - на промывку (от 5 до 10 суток в различных случаях).

Эффективность работы бригад КРС местных сервисных компаний значительно ниже. На выполнение промывки они затрачивают в среднем 10 суток (от 8 до 12 суток). Стоимость их работы - ок. 440 000 рублей.

Как показывает исследование проблем, имеющихся на скважинах после проведения ГРП, до 40% отказов ЭЦН происходит по причине выноса незакрепленного проппанта, либо выноса других твердых частиц (кварц и прочие). Следовательно, очистка механических примесей традиционным способом производится недостаточно качественно.

Данная технология занимает много времени, приводит к тому, что большое количество промывочной жидкости поглощается в пласт, которая впоследствии выносится вместе с остатками геля и механическими примесями и наносит вред электропогружным насосам.

Повреждение насосов приводит к дополнительным затратам на их смену и потере дополнительной добычи. Минимизация количества отказов ЭЦН вследствие улучшения качества и скорости очистки от мехпримесей могла бы принести значительный экономический эффект.

4. Спектр услуг ГНКТ в современной мировой нефтедобыче

Решения руководителей современной нефтяной промышленности определяются несколькими ключевыми факторами, такими как эффективность, гибкость, производительность, экология. Но наиболее важным фактором остается экономичность проектов и технологий.

Сервисная компания «Шлюмберже» предлагает своим клиентам технологию гибкой насосно-компрессорной трубы (ГНКТ), важнейшим качеством которой является именно экономичность. ГНКТ помогает уменьшить расходы, т.к. зачастую устраняет необходимость использования дорогостоящих станков КРС. (прим. - на Западе услуги установок КРС стоят очень дорого)

Услуги ГНКТ являются быстрыми и эффективными - скважина возвращается в действующий фонд с минимальной потерей времени.

Компания «Шлюмберже» предлагает экономичную альтернативу многим традиционным методам нефтедобычи --от бурения до заканчивания скважин.

ГНКТ - это автономная, легко транспортируемая установка с гидравлическим приводом, которая спускает и поднимает непрерывную гибкую НКТ в эксплуатационную НКТ или в обсадную трубу скважины. Технология ГНКТ может применяться в наземной и морской нефтедобыче и не требует отдельного станка КРС. ГНКТ можно применять на добывающих скважинах, она позволяет вести закачку рабочих жидкостей или азота во время спуска трубы.

Апробированные сервисные услуги ГНКТ для вертикальных, горизонтальных и направленных скважин включают:

Бурение

Каротаж и перфорация

Вытеснение жидкостей

Борьба с песком

Повторное цементирование

Установка и удаление цементных мостов

ГНКТ как выкидная линия

Ловильные работы

Работа с пакерами

Стимулирование

Ликвидация парафиновых пробок

Промывка забоя

Бурение

Бурение посредством ГНКТ все чаще становится альтернативой традиционному бурению. Применяется для разведочных скважин, углубления существующих стволов скважин и бурения горизонтальных отводов из вертикальных стволов скважин. Преимущества ГНКТ включают:

Экономичность - не требуется буровая установка, сокращаются время работы и затраты;

Меньше повреждается пласт - бурение производится при пониженном гидростатическом давлении;

Меньше время бурения - нет необходимости соединять бурильные трубы;

После бурения та же самая ГНКТ применяется для заканчивания скважины;

Компактность - объем оборудования в десять раз меньше традиционной буровой установки;

Экологичность - ГНКТ уменьшает риск утечки жидкостей, меньший размер долота означает меньший объем добытого шлама и расходы на его утилизацию.

Каротаж и перфорирование

ГНКТ позволяет вести непрерывный каротаж всего интервала;

Применяется полный диапазон приборов каротажа;

Быстрые спуско-подъемные операции (СПО) на заданной скорости и точная доставка инструмента на место замеров;

Продолжительная циркуляция жидкостей позволяет получить данные о дебите скважины и контролировать давление и температуру;

Каротаж в действующей скважине;

Все электрические соединения каротажных приборов делаются на поверхности.

Перфорирование в вертикальных скважинах;

Перфорирование при пониженном гидростатическом давлении увеличивает приток жидкости из пласта и уменьшает повреждения;

Перфорирование в горизонтальных отводах скважин, где традиционные методы практически бессильны.

Вытеснение жидкостей

Методы вытеснения жидкостей для вызова притока включают применение азота. Эффективность и экономичность - установленный факт при использовании таких методов, как:

Газлифт и струйная промывка для вызова притока;

Пенистые жидкости - улучшают вымывание твердых частиц из забоя со сложным профилем;

Закачка азота для уменьшения гидростатического давления во время циркуляции и бурения.

Борьба с песком

ГНКТ предлагает значительные преимущества для контроля песка. Способность установить КНБК (компоновка низа буровой колонны) непосредственно в зоне перфорации позволяет практически сразу начать подъем песка. С помощью смолистых материалов возможно установить пробку в зоне перфорации и прекратить попадание песка в ствол скважины. Затем пробка разбуривается, проводится новая перфорация и скважина возвращается в число действующих.

Повторное (исправительное) цементирование

Испытанная альтернатива традиционным станкам КРС. Излишний приток воды можно уменьшить путем перекрытия каналов и изоляции непродуктивных зон перфорации. ГНКТ успешно использовался для закачки цемента на глубину до 5 791 метра.

ГНКТ как выкидная линия

Стремительно растет популярность использования гибкой НКТ в качестве выкидной линии к сепаратору на морских платформах и наземных скважинах. Преимущества:

Безопасность - существенно уменьшает опасность разлива жидкостей, что особенно важно в экологически чувствительных участках;

Скорость монтажа линии.

Ловильные работы

ГНКТ может проводить ловильные работы в вертикальных, горизонтальных и наклонно-направленных скважинах. Преимущества:

Циркуляция различных жидкостей, включая азот и кислоту, под высоким давлением для промывки или растворения песка, бурраствора, накипи и других твердых частиц поверх улетевшего инструмента;

Большие крутящие моменты для доставания инструмента из вертикальных или направленных скважин, что слишком тяжело для станка КРС;

Одновременная циркуляция и работа по извлечению инструмента;

Извлечение инструмента под давлением в действующей скважине без необходимости глушить скважину.

Работа с пакерами

Усовершенствование технологии пакеров позволяет использовать ГНКТ для селективных обработок пласта. Основным преимуществом является устранение использования станка КРС. Другими преимуществами являются:

Селективный интервал обработки;

Пакера используются для нескольких обработок (до пяти работ).

Стимулирование

ГНКТ - самый эффективный метод доставки рабочих жидкостей в интересующую зону. Использование ГНКТ предохраняет рабочую НКТ от воздействия рабочих жидкостей и позволяет избежать загрязнения кислоты осадками и частицами из рабочей НКТ. Через ГНКТ можно закачивать ингибиторы парафина и коррозии. В длинных горизонтальных отводах скважин (до 1 000 м) ГНКТ может дойти до конца участка и начать медленный отход назад, одновременно закачивая кислоту. После обработки ГНКТ можно использовать для промывки азотом, чтобы быстрее очистить скважину.

Промывка песка

Возможно наиболее частое применение ГНКТ - это удаление осадков и частиц из ствола скважины. Один из таких методов - промывка песка - эффективно применяется в вертикальных, горизонтальных и наклонных скважинах. Преимущества:

Обеспечивает постоянную циркуляцию и контроль;

Удаляет разнообразные виды осадков и твердых частиц;

Использует специальные инструменты, увеличивающие эффективность промывки;

Позволяет применять жидкости, учитывающие условия пласта, ствола, рабочей колонны, а также особенности частиц;

Позволяет комбинировать методы промывки, стимулирования и азотного лифта.

Окружающая среда

Компания «Шлюмберже» всегда бережно относилась к окружающей среде в местах производства работ. Услуги комплекса ГНКТ продолжают эту традицию и предлагают следующие преимущества по сравнению с традиционными буровыми установками:

ГНКТ использует намного меньше оборудования;

Меньше объем буровых жидкостей;

Меньше уровень шума;

Небольшой визуальный профиль относительно мачты буровой вышки;

Меньше ущерб для местных дорог, т.к. ГНКТ требует в десять раз меньше оборудования для транспортировки;

Меньше объем бурового шлама подлежащего утилизации.

По сравнению с традиционными станками КРС уменьшается опасность разлива жидкостей (при подъеме из скважины и укладке отдельных НКТ). ГНКТ также предусматривает протирание внешних стенок гибкой трубы при подъеме из скважины.

В качестве выкидной линии ГНКТ может применяться там, где традиционные трубопроводы могут причинить большой вред окружающей среде - болота, заболоченные участки, заповедники и т.д.

5. Опыт применения технологии ГНКТ компании «Шлюмберже» в Западной Сибири

Компания “Шлюмберже” приступила к выполнению сервисных услуг комплексом ГНКТ для ОАО «Ноябрьскнефтегаз» с января 2000 года. В течение стартового периода проекта: с января по апрель 2000 г. были проведены работы на 50 скважинах. Опыт работы с ОАО «Ноябрьскнефтегаз» позволяет теперь компании определить качество, стоимость и диапазон сервисных услуг ГНКТ относительно условий Западной Сибири. Ниже приводится краткий анализ технических и экономических аспектов работ с ГНКТ по упомянутому проекту.

ОАО «Ноябрьскнефтегаз» - нефтедобывающее предприятие компании «Сибнефть» - располагает 17 месторождениями нефти и газа, находящимися в районе города Ноябрьска (Ямало-Ненецкий автономный округ). Суммарная суточная добыча ОАО «ННГ» в марте 2000 г. составляла 40 тыс. тонн в сутки из порядка 4 тысяч действующих эксплуатационных скважин.

Комплекс ГНКТ в основном применялся на Вынгапуровском месторождении ОАО «ННГ».

Традиционно работы по ремонту и восстановлению скважин производятся с помощью установок КРС. Хотя установка ГНКТ не может соперничать с комплексом КРС в производстве определенных операций (например, там, где требуется повышенная продольно-осевая нагрузка, используются насосы иного типа, чем ЭЦН), ГНКТ может быть очень эффективной технологией в случае тщательного подбора скважин-кандидатов.

До настоящего времени до 95% работ ГНКТ в Западной Сибири (ОАО «Ноябрьскнефтегаз», ОАО «Юганскнефтегаз», НК «Сургутнефтегаз» и др.) сводились к удалению гидратных/парафиновых пробок, вытеснению жидкостей, закачке азота и промывке скважин.

С учетом широкого масштаба работ по гидроразрыву пластов (ГРП) на месторождениях ОАО «Юганскнефтегаз» ГНКТ может применяться для промывки призабойной зоны сразу после ГРП.

ГНКТ - это эффективная технология, которая может получить широкомасштабное применение в нефтедобыче на территории Западной Сибири.

Характеристика основных операций комплекса ГНКТ

Состав комплекса ГНКТ.

Основное оборудование:

Установка ГНКТ с катушкой и гидравлическим краном;

Блок устьевого оборудования;

Азотная установка;

Азотная емкость;

Мобильная насосная установка.

Вспомогательное оборудование:

Блок очистки;

ППУ - паровая установка;

АДПМ - установка депарафинизации (разогрева) нефти;

Компрессор - для продувки ГНКТ после работы;

Автокран;

Бульдозер.

Персонал

Количество персонала было рассчитано на обеспечение круглосуточной работы комплекса. Работа проводилась в две смены по 12 часов. Количество работающих в одном звене - 12 человек. Общее количество работающих (с отдыхающей вахтой) - 24 человека. В качестве КТ супервайзеров -2 чел. - работали иностранные специалисты с целью обеспечить качество проводимых работ в соответствии с регламентом компании «Шлюмберже». Среднее количество работ - 1 в течение двух дней или до 15 работ в месяц.

Исходные данные

Услуги ГНКТ для ОАО «ННГ» представляли следующие виды работ:

Удаление парафиновых/гидратных пробок;

Закачка жидкостей через ГНКТ;

Закачка азота (вызов притока);

Промывка ствола в нагнетательных скважинах;

Промывка песка в призабойной зоне после ГРП.

Расчеты эффективности работ ГНКТ на Вынгапуровском м/р в первом квартале 2000 г. строятся на следующих данных:

Описание

Ед. измерения

Цена, долларов США

Цена нефти

Тонна

16

Ставка бригады КРС

Час

45

Азот, ex-Ноябрьск

Тонна

123,5

Средние данные по времени исполнения работ бригад КРС ОАО «ННГ»:

Описание

Ед. изм.

Количество

Удаление параф. пробок

Дней

7 - 10

Промывка ствола

Дней

18-24

Промывка забоя после ГРП

Дней

14-20

Удаление парафиновых (гидратных) пробок.
Целью данной операции является удаление парафина из рабочей колонны НКТ, а также из затрубного пространства между НКТ и обсадной трубой, с тем, чтобы бригада КРС могла начать ремонт скважины. Пробки находились на глубине 350-600 метров, т.е. в линзах вечной мерзлоты. Причинами возникновения пробок являются обычно:
Значительное падение дебита;
Увеличение газо-жидкостного фактора;
Нарушение изоляции колонны.
Традиционно проблема решается проведением матричных кислотных обработок установкой КРС. Последняя из трех ситуаций является наиболее привлекательной для использования ГНКТ, т.к. здесь не потребуется бригада КРС, а скважина возобновляет добычу сразу после работы ГНКТ. Возможными скважинами-кандидатами для ГНКТ могут также быть фонтанирующие скважины и скважины, оборудованные электроцентробежными насосами (ЭЦН). Другие виды заканчивания скважин (штанговые насосы, гидравлические и поршневые насосы) требуют проведения работ посредством станка КРС.
Оценка эффективности.
Сравнение двух технологий может определить эффективность применения ГНКТ для удаления парафиновых (гидратных) пробок.
Время, которое требуется бригаде КРС для выполнения этой работы, колеблется от 7 до 10 дней, что будет стоить ок. 10 000 долларов США (включая материалы и вспомогательное оборудование). Эта операция производится как часть программы ремонта скважины. Подобная работа, выполненная посредством ГНКТ, занимает два дня и стоит ок. 30 000 долларов США.
ГНКТ выполняет в среднем 12 работ в месяц.
КРС делает в среднем 3 работы в месяц.

Следовательно, можно произвести экономический расчет согласно нижеприведенной формуле (допуская, что дебит скважин остается постоянной средней величиной в течение определенного времени):

Валовой доход (ГНКТ) = (Nгод х Qгод х $oil) - $гнкт

И Валовой доход (КРС) = (Nгод х Qгод х $oil) - $крс

Где, $ oil - текущая продажная цена нефти для ОАО «ННГ», $/тонна

Q год - средний дебит, тонн/год

$ гнкт - стоимость услуг ГНКТ

$ крс - стоимость услуг КРС

N год - количество работ за год

При условии, что Т гнкт оп = 2 дня, Т крс оп = 10 дней, совокупная выручка и совокупный доход КРС и ГНКТ будут следующими:
Таблица 5. «Удаление гидратных пробок. КРС против ГНКТ»

КРС

Скваж.

Т ремонта, дней

Т дебит,дней

Q

тонн/сут

Q мес., (перв)

тонн

Q год,

тонн

Вал.

выручка, US$

Вал. доход, US$

10000$

1

10

20

15

300

5 325

85 200

75 200

Месяц

3

30

60

45

900

16 425

262 800

232 800

Год

36

360

720

540

10 800

197100

3153 600

2793 600

ГНКТ

30000$

1

2

28

15

420

5 445

87 120

57 120

Месяц

12

24

336

180

5 040

65 340

1 045 440

685 440

Год

144

288

4 032

2 160

60 480

784080

12545280

8225280

Эффективность ГНКТ в четыре раза превосходит эффективность КРС.

Сравнение двух вариантов операции по удалению парафиновых пробок показывает, что ГНКТ предлагает очень эффективное и быстрое решение проблемы по сравнению с традиционным станком КРС. Более высокая стоимость услуг ГНКТ за одну операцию означает, что комплекс ГНКТ должен быть загружен работой на полную мощность.

Очевидно, что применение ГНКТ для удаления парафиновых пробок предполагает более интенсивный оборот финансовых средств и большее количество выполняемых ремонтов. Важнейшее условие - тщательный предварительный отбор скважин-кандидатов. Скважина-кандидат для подобного рода операций должна соответствовать следующим критериям:

Скважина может возобновить добычу сразу после удаления пробки;

Достаточно высокий дебит, чтобы «Заказчик» согласился понести затраты;

Нехватка или отсутствие бригад КРС на данном месторождении;

Потенциальная проблема контроля скважины;

Промывка ствола является частью программы ремонта скважины (см. ниже);

Очистка эксплуатационной НКТ от накипи;

Ловильные работы;

Кислотная обработка или промывка при повреждении пласта;

Закачка азота для вызова притока.

Следует иметь в виду систему работы управления по КРС. На Вынгапуровском месторождении развернуто 19 бригад КРС. Если количество ремонтов, выполненных за месяц, будет ниже планового, то бригады КРС не получат премиальной надбавки, что существенно сказывается на их зарплате. Плановый объем КРС установлен как 19 х 1,23 = 23 ремонта.

Для повышения эффективности ремонтов в качестве альтернативы можно использовать комплекс ГНКТ, который передвигался бы на скважины и подготавливал их до развертывания установки КРС. В среднем 10 работ ГНКТ в месяц могли бы сэкономить около 70 ремонто-дней КРС (или 1 680 рем-часов), что равняется экономии в 75 600 долларов США (или 2,5 дополнительных ремонта ГНКТ или 7,5 ремонтов КРС в месяц). Это позволило бы не только увеличить эффективность 1 бригады КРС с 1,23 до 1,62 ремонтов в месяц или на 32%, но также увеличить прирост добычи как результат большего количества скважин, запущенных в эксплуатацию или подготовленных для гидроразрыва пласта.

Возможность увеличения времени операций КРС является весьма привлекательной выгодой для «Заказчика».

Промывка стволов скважин

На Вынгапуровском м/р выполнялось два вида промывки:

Промывка механических примесей в забое водонагнетательных скважин;

Промывка проппанта после проведения ГРП.

Среднее время на выполнение работ ГНКТ - 2 или 3 дня в зависимости от длины интервала, подлежащего очистке. В случаях, когда на данном кусте скважин отсутствует станок КРС, бригаде КРС потребуется 18-21 день на проведение одного ремонта.

Средняя цена услуг ГНКТ («Шлюмберже») = 30 000 долл. США

Средняя цена услуг КРС (ОАО «ННГ») = 19 500 долл. США

Относительно высокая цена работы станка КРС связана с необходимостью смены эксплуатационной колонны НКТ, в то время как ГНКТ делает промывку внутри эксплуатационной колонны.

Промывка водонагнетательных скважин

Основные стимулы:

Промывка через эксплуатационную колонну НКТ;

Сокращение времени операции и увеличение количества операций в месяц;

Увеличение добычи из окружающих эксплуатационных скважин. Преимущество ГНКТ основано на увеличении количества операций за определенный период времени. Валовой доход будет зависеть в основном от дебита окружающих нефтяных скважин. Изменение дебитов обычно начинается через 1-2 месяца после промывки;

Обнаружение неправильного профиля закачки воды, промывка ствола ГНКТ дает возможность проведения каротажа профиля притока. Можно сэкономить значительные средства, если удастся вовремя заглушить ненужную скважину.

Обнаружение повреждений стенок труб. Клиент может своевременно начать КРС;

Более высокая степень контроля скважины, т.к. среднее давление в нагнетательных скважинах - 120 бар.

Как и в других случаях применения ГНКТ ключевую роль играет должный отбор скважин-кандидатов.

Промывка проппанта после ГРП

Промывка проппанта после ГРП представляет второй тип промывок с ГНКТ. Тот факт, что скважина может начать добычу с большим дебитом сразу после ремонта делает использование ГНКТ весьма привлекательным для Заказчика.

Для бригады КРС данная операция занимает 14 - 18 дней, в зависимости от сложности проблемы. Стоимость ремонта будет около 15 000 долл. США.

При выборе экономически целесообразного решения должны соблюдаться следующие критерии:

Станок КРС не в состоянии удалить песок быстро и эффективно. Это может быть в случаях проблемы с контролем скважины или существует риск потери циркуляции;

Скважина работает с дебитом не менее 30 тонн нефти в сутки;

Велика вероятность потери циркуляции. ГНКТ имеет большое преимущество в использовании метода моделирования реальных условий в стволе. Выбор жидкости обработки с подходящими реологическими свойствами или азота помогает уменьшить плотность циркулирующей жидкости и увеличить угловую скорость для облегчения выноса частиц из ствола скважины;

Низкое пластовое давление, промывочная жидкость уходит в пласт. Если скважина не начинает отдавать, закачка азота ГНКТ через зону перфорации - очень эффективный и безопасный метод по сравнению со сваббированием станком КРС или использованием воздушного компрессора для создания пониженного гидростатического давления.

Оценка эффективности

Целью промывки ствола скважины от твердых частиц после ГРП является скорейшее выведение скважины в режим добычи. Так как увеличение дебита здесь всегда связано только с качеством проведенного ГРП, оценка эффективности основывается на количестве выполненных работ двумя конкурирующими способами и расчете прироста дохода, обеспеченного с участием данной технологии. Следовательно,

доход КРС = (N год x Q год x $ oil) - $ крс

И доход ГРП = (N год x Q год x $ oil) - $ гнкт

где: $ oil - текущая продажная цена нефти;

Q год - дебит скважины, тонн/сутки;

N год - количество ремонтов в год;

$ крс - стоимость работ КРС.

$ гнкт - стоимость услуг ГНКТ;

доход - прирост дохода

Расчет валового дохода и затрат сделан на основе идеальных условий производства работ (неизменный дебит, максимальная загрузка ГНКТ, межремонтный период работы насосов составляет не менее года и т.д.).

Таблица 6. «Прирост дохода после промывки. КРС против ГНКТ»

КРС

Скваж.

Т ремонта, дней

Т дебита,дней

Q

тонн/сут

Q год,

тонн

Вал.

выручка,

US$

Затраты,

US$

Вал. доход, US$

1

14

16

30

10470

167520

15 000

152 520

Месяц

2

28

32

60

Год

24

336

384

720

251280

4020480

360000

3660480

ГНКТ

1

2

28

30

10890

174 240

30 000

144 240

Месяц

12

24

336

360

Год

144

288

4 032

4320

1568160

25090560

4320000

20770560

Таким образом, один комплекс ГНКТ в состоянии увеличить годовой доход Заказчика от скважин, оптимизированных ГРП, в 5 раз по сравнению с отдельно взятым станком КРС.

Промывки песка представляются хорошим подспорьем для выполнения программы капитальных ремонтов на Вынгапуровском м/р, особенно когда песок остается в эксплуатационной НКТ. В этом случае установка КРС не может поднять колонну. Потребуется доставка НКТ малого диаметра (1,5 дюйма), что повлечет дополнительное время простоя.

Помимо подобных сложных проблем ГНКТ предлагает более высокую эффективность и надежность по сравнению с установками КРС. Хотя их услуги дешевле, они не имеют достаточного вспомогательного оборудования (например, всего 5 ЦА-320, 5 ППУ на 19 бригад КРС), что отрицательно сказывается на производительности их труда.

Чтобы конкурировать с КРС и получить заказы на операции по удалению песка технология ГНКТ должна предлагать более совершенные технические решения, такие как:

Специально подобранная рабочая жидкость, которая обеспечит очистку в самых критических ситуациях (обсадная труба 5,12 дюйма и отклонение ствола свыше 15 градусов);

Комплект инструментов ГНКТ (включая JetBlaster), который позволил бы разрушать любые песчаные пробки.

Закачка азота

Существует несколько причин для использования ГНКТ:

Способность ГНКТ вытеснять жидкость глушения, которая остается ниже эксплуатационной НКТ или ушла в пласт. В большинстве случаев это скважины после недавнего повторного заканчивания;

Способность удалять жидкости ГРП на скважинах с низким забойным давлением;

Способность ГНКТ создавать более низкое гидростатическое давление в зоне перфорации. Этот фактор становится критическим, когда кислота и продукты реакции должны быть вымыты после окончания обработки. Если не ускорить процесс промывки, скорее всего повреждения пласта будут значительными;

Способность закачивать азот как часть комбинированной обработки. Ствол скважины и зону перфорации можно затем обработать солевым раствором или кислотой.

Существующий метод понижения гидростатического давления с помощью сжатого воздуха считается высоко опасным мероприятием и не может служить безопасной альтернативой использованию азота. Замещение рабочих жидкостей на нефть решает только часть проблемы, т.к. жидкость ниже эксплуатационной НКТ остается в скважине, на многих скважинах установлены пакера, что делает замену на нефть неэффективной, т.к. жидкость в стволе должна быть выдавлена назад в пласт.

Проект операции по разгрузке скважины должен включать расчет скорости закачки азота, глубину, общий объем азота и время закачки. Для планирования работы необходима информация о давлении в пласте, свойствах оригинальной пластовой жидкости, возможный дебит, свойства добываемой жидкости и условия в стволе. Успешная и оптимальная операция должна вывести скважину в режим добычи в минимальный срок и с минимальным объемом азота.

...

Подобные документы

  • Температура образования метаморфических горных пород. Потенциальные и оптимальные дебиты скважин. Насосно-компрессорные трубы (НКТ) для перемещения внутри колонн газов, жидкостей во время применения газовых и нефтяных скважин. Резьбовые скрепления (НКТ).

    контрольная работа [18,7 K], добавлен 11.12.2010

  • Разработка нефтяных залежей пробуренными скважинами. Процесс освоения скважин. Насосно-компрессорные трубы и устьевое оборудование. Условия фонтанирования скважин. Эксплуатация скважин погружными центробежными и штанговыми глубинными электронасосами.

    курсовая работа [1,8 M], добавлен 16.09.2012

  • Краткая характеристика и основные показатели деятельности предприятия. Анализ рынка нефти, особенности процесса и проблемы ее добычи. Поиск возможных методов увеличения производительности скважин. Внедрение кислотного гидроразрыва пласта при добыче нефти.

    дипломная работа [1,3 M], добавлен 29.06.2012

  • Солянокислотные обработки призабойных зон скважин. Предварительная обработка горячей водой или нефтью нефтяных скважин. Кислотные обработки терригенных коллекторов. Компрессорный способ освоения фонтанных, полуфонтанных и механизированных скважин.

    лекция [803,1 K], добавлен 29.08.2015

  • Цикл строительства скважин. Эксплуатация нефтяных и нагнетательных скважин. Схема скважинной штанговой установки. Методы увеличения производительности скважин. Основные проектные данные на строительство поисковых скважин № 1, 2 площади "Избаскент – Алаш".

    отчет по практике [2,1 M], добавлен 21.11.2014

  • Геолого-физическая характеристика Сабанчинского месторождения. Физико-химические свойства пластовых жидкостей и газов. Анализ фонда скважин и технологии повышения нефтеотдачи пластов. Применение гидроразрыва пласта для интенсификации добычи нефти.

    отчет по практике [588,8 K], добавлен 29.04.2014

  • Виды и методика гидродинамических исследований скважин на неустановившихся режимах фильтрации. Обработка результатов исследования нефтяных скважин со снятием кривой восстановления давления с учетом и без учета притока жидкости к забою после ее остановки.

    курсовая работа [680,9 K], добавлен 27.05.2019

  • Геолого-промысловая характеристика Сузунского месторождения. Расчет потребной длины талевого каната. Технология проведения термокислотной обработки скважины при проведении капитального ремонта скважин. Характеристика литолого-стратиграфического разреза.

    курсовая работа [1,6 M], добавлен 17.02.2015

  • Сущность гидроразрыва пласта — одного из методов интенсификации работы нефтяных и газовых скважин и увеличения их приёмистости. Основные виды источников газа в земной коре и перспективы их освоения. Главные сланцевые и газоугольные бассейны Европы.

    презентация [4,4 M], добавлен 17.03.2014

  • Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.

    курсовая работа [1,9 M], добавлен 07.07.2015

  • Исследование основных способов бурения нефтяных и газовых скважин: роторного, гидравлическими забойными двигателями и бурения электробурами. Характеристика причин и последствий искривления вертикальных скважин, естественного искривления оси скважин.

    курсовая работа [2,0 M], добавлен 15.09.2011

  • Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

    отчет по практике [2,0 M], добавлен 20.03.2012

  • Методы исследования скважин н технические средства для их осуществления. Электрокаротаж и его разновидности. Результаты реальных исследований скважин при разной обводненности продукции и содержании газа. Подъем жидкости из скважин нефтяных месторождений.

    презентация [1,0 M], добавлен 29.08.2015

  • Консервация скважин, законченных строительством. Временная консервация скважин, находящихся в стадии строительства. Порядок оборудования стволов и устьев консервируемых скважин. Порядок проведения работ при расконсервации скважин.

    реферат [11,0 K], добавлен 11.10.2005

  • Исследование методов вскрытия нефтяных залежей. Освоение скважин. Характеристика процесса технологических операций воздействия на призабойную зону пласта. Измерение давления и дебита скважин. Повышение эффективности извлечения углеводородов из недр.

    контрольная работа [53,2 K], добавлен 21.08.2016

  • Технология освоения скважин после интенсификации притока. Описание оборудования, необходимого для очистки призабойной зоны пласта кислотным составом. Последовательность проведения работ с применением электроцентробежных насосов. Расчет затрат и прибыли.

    контрольная работа [1,5 M], добавлен 27.04.2014

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.

    отчет по практике [1,6 M], добавлен 23.09.2014

  • Методы выявления и изучения нефтегазонасыщенных пластов в геологическом разрезе скважин. Проведение гидродинамических исследований скважин испытателями пластов, спускаемых на бурильных трубах, интерпретация полученной с оценочных скважин информации.

    курсовая работа [2,2 M], добавлен 20.04.2019

  • Батырбайское месторождение нефти и газа. Краткие сведения из истории геологического изучения района. Гидродинамические и термодинамические методы исследования скважин и пластов. Эксплуатация скважин штанговыми насосами. Условия приема на работу.

    отчет по практике [500,8 K], добавлен 08.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.