Оттаивание грунта
Рассмотрение перехода грунта из мёрзлого состояния в талое в связи с фазовым переходом лёд—вода. Описание предварительного оттаивания и весеннего оттаивания грунта. Изучение процессов, происходящих в деятельном слое (сезонного промерзания и оттаивания).
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 14.10.2014 |
Размер файла | 397,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
Оттаивание грунта
Содержание
1. Оттаивание грунта
2. Предварительное оттаивание грунта
3. Процесс весеннего оттаивания грунта
4. Процессы, происходящие в деятельном слое (сезонного промерзания и оттаивания)
Список литературы
1. Оттаивание грунта
Оттаивание грунта (породы) (а. ground thawing; н. Воdenabtauen, Воdenauftauen; ф. degelement du sol; и. deshielo de suelo, desсоngelado de suelos, deshielo de terrenos, desсоngelado de terrenos) -- процесс перехода грунта из мёрзлого состояния в талое в связи с фазовым переходом лёд--вода при нагревании до температуры оттаивания (около 0°С). При фазовом переходе подземного льда в воду поглощается тепло и существенно изменяются механические, физико-химические, теплофизические, электрические свойства водной компоненты и самого грунта. Вследствие этих изменений происходят перестройка структуры грунта и резкое снижение прочностных и деформационных характеристик, что диктует необходимость изучения оттаивания как в естественных, так и техногенных условиях.
В естественных условиях оттаивание происходит вследствие воздействия природных источников тепла (солнечной радиации, воздушных масс и атмосферных процессов, поверхностных, грунтовых и термальных вод). В этих условиях различают сезонное и многолетнее оттаивание.
Оттаивание сезонномёрзлого слоя вне области распространения многолетнемёрзлых пород и в таликах происходит сверху под действием тепла, поступающего через дневную поверхность грунта, и снизу под действием тепла нижележащих талых пород; образование сезонно-талого слоя над многолетнемёрзлыми породами происходит под действием только поверхностных источников тепла. Многолетнее оттаивание захватывает толщу многолетнемёрзлых пород. Оно происходит сверху под действием поверхностных источников тепла и снизу под действием глубинных источников тепла и подземных вод, что приводит к уменьшению мощности мёрзлых толщ или к их полному исчезновению. Известны случаи сезонных колебаний положения подошвы многолетнемёрзлых пород (их оттаивание -- промерзание) в связи с колебаниями температуры грунтовых вод. Продолжительность многолетнего оттаивания может составлять от нескольких лет до сотен тысяч лет, в зависимости от мощности толщи мёрзлых пород, их льдистости и интенсивности потоков тепла.
При техногенных воздействиях (см. также Водно-тепловая мелиорация) различают оттаивание: под влиянием естественных источников тепла в техногенно-изменённых условиях теплообмена на поверхности грунтов (например, при удалении растительности, торфяного слоя, затоплении площадки) и под воздействием техногенных (искусственных) источников тепла (тепловыделяющих сооружений, сброса промстоков и др.). В этих случаях оттаивание может проявляться как побочный (неблагоприятный) процесс или как регулируемый, входящий в технологическую схему (искусственное оттаивание). Неблагоприятные последствия оттаивания в техногенных условиях связаны со снижением прочности и просадкой оттаивающего грунта, а также осадкой его под сжимающей нагрузкой, что определяет сложные условия работы грунтов в основаниях сооружений, насыпях, откосах при оттаивании. Для предупреждения неблагоприятных последствий оттаивания в практике строительства и эксплуатации сооружений применяются: метод сохранения мёрзлого состояния грунтов -- изоляция источников тепла или поверхности грунта, устройство охлаждающих грунт конструкций; метод предпостроечного оттаивания и уплотнения оснований; конструктивный метод учёта предельных деформаций оттаивающих оснований при расчёте сооружений.
В практике горного дела оттаивание учитывается при расчёте бортов карьеров и выемок, откосов насыпей, отвалов, дамб. Для борьбы с негативными последствиями оттаивания на искусственных склонах иногда используются изолирующие покрытия (пенопластовые, дощатые щиты и т.п.), препятствующие прогреву и оттаивание теплом естественных источников. Чаще применяется "конструктивный" метод борьбы путём учёта негативных последствий оттаивание откосов при организации и планировании технологии горных работ.
Искусственное оттаивание широко используется в практике строительства и добычи полезных ископаемых в криолитозоне. Существует несколько способов такого оттаивания, различающихся в зависимости от источников тепла и способов теплопередачи. Радиационный способ -- оттаивание теплом естественных источников при сохранении естественных механизмов теплопередачи в грунтах и направленном изменении условий на их поверхности для увеличения поступления летнего тепла в грунт путем удаления растительного и торфяного покровов; то же с зачернением поверхности с целью уменьшения альбедо, применения плёночных покрытий и др. Наиболее эффективен и широко используется при горном производстве метод послойного удаления оттаивающего грунта, позволяющий за один летний сезон разработать толщу многолетнемёрзлых пород мощностью до 10-15 м. Эффективность гидрооттайки повышается с увеличением температуры воды, поэтому применяется её предварительный прогрев (искусственный или в прудах-отстойниках). Наиболее технологичен и широко распространён в практике подготовки россыпей к разработке гидроигловой способ (на оттаивание используется до 85% тепла подогретой воды), а для предпостроечного оттаивания при строительстве применяются оттаивание паром (паровыми иглами), электропрогрев и оттаивание переменным током, пропущенным между погружёнными в мёрзлый грунт электродами, пламенные и беспламенные источники высокой температуры, погружаемые в грунт по мере его оттаивания или устанавливаемые в скважины.
Эффективность использования способов искусственного оттаивания определяется свойствами грунтов: для хорошо водопроницаемых после оттаивания применяется гидро- и парооттайка, для глинистых и торфяных пород предпочтительно оттаивание теплом искусственных источников, а для пластов, подлежащих разработке, -- послойное оттаивание.
Особый случай искусственного оттаивания -- термодинамическая очистка рабочих поверхностей оборудования высокоскоростной газовой струёй от примёрзшей горной массы.
2. Предварительное оттаивание грунта
Предварительное оттаивание мерзлых грунтов основания может осуществляться двумя способами: с помощью использования естественного солнечного тепла и путем применения искусственных методов. Первый способ применим при неглубоком оттаивании грунтов (5--6 м). Второй способ -- гидравлическое оттаивание и оттаивание с помощью паровых игл (горячим паром) -- на глубину 7--10 м с последующим искусственным закреплением грунтов.
В настоящее время В.П. Горбуновым и Л.И. Куренковым (НИИОСП) разработан способ предпостроечного оттаивания и уплотнения вечномерзлых грунтов основания с помощью электрического тока и электроосмоса. Оттаивание основания из вечномерзлых грунтов производят также с помощью электропрогрева их переменным током. Электрический ток передается на глубину сжимаемой толщи через заглубленные в грунт трубчатые электроды, которые располагаются рядами
3. Процесс весеннего оттаивания грунта
Поэтому в результате развития вертикальных сил пучения, превышающих вес столба и силы бокового трения, грунт увлекает за собой столб вверх и вырывает его из нижележащих слоев грунта. При этом под столбом образуется полость, которая заполняется водой или разжиженным грунтом. При полном промерзании сезонноталого слоя в полости замерзает лед (или ледогрунт) (III). В процессе весеннего оттаивания грунта, пока оно не дойдет до подошвы столба, последний сохраняет наиболее высокое положение, достигнутое при выпучивании (IV). После оттаивания льда в полости происходит частичная осадка столба. Однако в. годовом цикле столб оказывается выпученным на какую-то высоту Ah. При ежегодном повторении такого процесса столб настолько выпучивается вверх, что теряет устойчивость и падает. При заглублении столба в мерзлую толщу ниже сезониоталого слоя его выпучиванию дополнительно противодействуют силы смерзания с многолетнемерзлой породой. Если эти силы и вес столба больше, сил пучения, то столб не выпучивается; если меньше -- он "выдергивается" из мерзлой толщи.
4. Процессы, происходящие в деятельном слое (сезонного промерзания и оттаивания)
К ним относятся: значительные колебания температуры; промерзание и оттаивание грунтов; морозное пучение грунтов; миграция влаги к фронту промерзания; перемещение влаги под действием гидравлического градиента; образование морозобойных трещин; сползание грунта по склонам (солифлюкция); поверхностные оползни.
Колебания температуры по глубине деятельного слоя 1 и слоя вечномерзлого грунта 2 легко зафиксировать, измеряя температуру на разных глубинах в течение года в скважине результаты измерений приведены на рисунке, римскими цифрами указаны месяцы). Наибольшие колебания температуры испытывает самый верхний слой. С глубиной колебания уменьшаются, и ниже некоторой границы 3 температура практически постоянна.
Эту границу называют границей нулевых амплитуд сезонных колебаний температуры.
Рис. 1. Распределение температуры в пределах толщины сливающегося деятельного слоя и слоя вечномерзлого грунта (за начало координат принята температура начала замерзания грунта)
График колебаний температуры демонстрирует и ход промерзания и оттаивания грунтов, залегающих выше границы оттаивания 4. Согласно наблюдениям, грунт промерзает преимущественно сверху. Однако при сливающемся деятельном слое имеет место небольшое промерзание грунта и снизу, от верхней границы вечномерзлого грунта. Оттаивание грунта происходит только сверху. В ходе промерзания влажных пылевато-глинистых грунтов и пылеватых мелких песков, как правило, происходит морозное пучение грунта, которое является следствием увеличения объема воды при переходе ее в лед и миграции влаги из нижних горизонтов к фронту промерзания.
Морозное пучение в случае сливающегося деятельного слоя весьма ограничено и чаще всего не превышает 3% его толщины. Однако, если происходит движение надмерзлотной грунтовой воды или деятельный слой не промерзает до верхней границы слоя вечномерзлого грунта, то морозное пучение может достигать десятков процентов толщины этого слоя и оказывать значительное влияние на конструкции, расположенные в пределах его интенсивного воздействия. Эти конструкции (при недостаточной их заделке в вечно-мерзлом грунте) в ходе промерзания поднимаются силами пучения вверх, весной же они не могут перемещаться вниз вместе с оседающим грунтом, который оттаивает сверху, так как удерживаются еще не стаявшей частью деятельного слоя, а иногда и слоем вечномерзлого грунта. Следствием этого является выпучивание конструкций, заглубленных в грунт (столбов, фундаментов и др.). Перемещение влаги под действием гидравлического градиента свойственно надмерзлотным, межмерзлотным и подмерзлотным грунтовым водам. Надмерзлотные грунтовые воды, обычно перемещающиеся только при уклоне местности, приурочены к слоям песка, супеси и других хорошо фильтрующих грунтов. При несливающемся деятельном слое они могут находиться в слое талого грунта. Эти воды оказывают существенное влияние на миграцию влаги к фронту промерзания и способствуют морозному пучению грунтов деятельного слоя. Межмерзлотные подземные воды находятся между двух слоев вечномерзлого грунта. Обычно они служат путями для выхода подмерзлотных вод на поверхность земли или в деятельный слой. Подмерзлотные подземные воды, расположенные под слоем вечномерзлого грунта, имеют значение при устройстве фундаментов только в случае выхода вод через талики в деятельный слой и питания ими надмерзлотных вод.
Рис. 2. Схема образования грунтовой наледи на склоне местности 1--промерзший слой грунта; 2 -- водоносный непромерзший слой грунта; 3 -- перемещающиеся по склону грунтовые воды; 4 -- слой вечномерзлого грунта; 5 --грунтовая наледь
При наличии подземных вод всех видов создаются условия для образования грунтовых наледей. Даже при небольшом уклоне местности надмерзлотные воды 3 перемещаются вниз по склону (рис. 2). Если грунт, например под дорогой, промерзнет до верхней границы вечномерзлого грунта раньше, чем на остальной территории, покрытой растительностью и снегом, то между промерзшим слоем 1 и слоем вечномерзлого грунта 4 в непромерзшем слое 2 будут скапливаться грунтовые воды 3 с повышением давления. Под действием этого давления промерзший слой может быть поднят и сломан в слабом месте. После этого вода начнет вытекать через трещину, образуя грунтовую наледь 5. В некоторых случаях разрыва промерзшего слоя не происходит, но он поднимается вверх в виде холма, и под ним образуется линза льда. Кроме рассмотренной, возможны и другие причины образования грунтовых наледей. Так, наледи могут образовываться в местах выхода на поверхность межмерзлотных и подмерзлотных грунтовых вод, а также вследствие замкнутости объема обводненного грунта, поскольку промерзание воды в песке приводит к ее отжатию от фронта промерзания. Отжатие же, в свою очередь, создает гидростатическое давление, вызывающее поднятие промерзшего слоя в отдельныхместах.
Как уже было сказано, в верхней части промерзшего слоя температура грунта сильно понижается (см. рис. 2). В таком случае грунт ведет себя как твердое тело, т.е. уменьшается в объеме. Это приводит к небольшому опусканию поверхности грунта по вертикали и к возникновению в нем напряжений растяжения в горизонтальном направлении. Под воздействием этих напряжений в грунте образуются морозобойные трещины. Их образованию способствует изгиб промерзшего слоя, так как в верхней части он сжимается в результате снижения температуры больше, чем у границы промерзания. В то же время изгибу промерзшего слоя препятствует момент, возникающий от действия его веса. В результате указанных причин образующиеся в промерзшем слое трещины сначала имеют небольшую ширину раскрытия, затем по мере понижения температуры они получают развитие. Особенно неблагоприятно воздействие морозобойных трещин на линейные сооружения (трубопроводы, подземные кабели и др.) -- оно приводит к их разрушению.
Рис. 3. Схема перемещения частицы грунта, находящейся на поверхности откоса
грунт оттаивание лёд весенний
Солифлюкция -- медленное сползание грунта по склонам происходит в условиях пучинистых грунтов. Причиной этого процесса является поднятие частиц грунта, расположенных. У поверхности земли по нормали к ней при промерзании и развитии пучения (например, из точки А в точку В -- рис. 3) и опускание их при оттаивании под действием сил гравитации по вертикали вниз (из точки В в точку С). В результате за один год частицы грунта из точки А переместятся в точку С. Аналогичная картина будет наблюдаться в пределах всего склона. Частицы грунта, расположенные на некоторой глубине, будут совершать такое же движение, но с меньшей интенсивностью. Это ведет к затуханию перемещения грунта по склону с глубиной. Явление солифлюкции оказывает отрицательное воздействие на линейные сооружения, прокладываемые на склонах.
На откосах крутизной 1:1,5 и 1:2, кроме солифлюкции, весной наблюдается образование поверхностных оползней (сползание части слоя сезонного оттаивания). Они вызываются следующими причинами. При промерзании грунта происходит миграция влаги в верхние горизонты деятельного слоя. В результате верхняя его часть переувлажняется. В процессе оттаивания переувлажненные грунты легко сползают по слою еще мерзлого грунта. Этому способствует наличие прослоев и линз льда, совпадающих по направлению с направлением откоса. Исследования, выполненные Н.К. Захаровым в ЛИСИ, показали, что в процессе оттаивания суглинков их сопротивление сдвигу может уменьшаться примерно на 50%. Таким образом, в пределах деятельного слоя протекает одновременно много процессов, которые необходимо учитывать при строительстве в районах распространения вечномерзлых грунтов.
Список литературы
1. Горная Энциклопедия
2. Б.И. Долматов. Механика грунтов
Размещено на Allbest.ru
...Подобные документы
Определение влажности грунта. Построение геологического разреза. Определение влажности грунта на пределах раскатывания и текучести, разновидностей глинистого грунта, гранулометрического состава песчаного грунта ситовым методом. Борьба с оползнями.
отчет по практике [378,4 K], добавлен 12.03.2014Величина углов внутреннего трения песчаного грунта в зависимости от его гранулометрического состава и плотности. Непостоянство коэффициента трения для одной породы в зависимости от ее состояния, кривые изменения в связи с изменением состояния грунта.
курсовая работа [1002,1 K], добавлен 24.06.2011Проведение оценки строительных свойств грунтов и выделение их таксономических единиц. Классификация песчаного грунта по водонасыщению и коэффициенту пористости. Схема определения мощности пласта. Расчет пластичности и консистенции глинистого грунта.
курсовая работа [162,8 K], добавлен 17.09.2011Определение физических характеристик песчаного грунта, его расчетные характеристики. Использование весового способа для определения влажности. Методы режущего кольца и парафинирования для определения плотности (удельного веса) грунта и его частиц.
курсовая работа [587,4 K], добавлен 02.10.2011Рассмотрение распространенных способов определения величины вертикальных составляющих напряжений в массиве грунта. Общая характеристика способов постройки эпюры напряжений. Методы определения коэффициента активного давления грунта, этапы расчета осадки.
задача [422,3 K], добавлен 24.05.2015Построение геологической колонки, изучение напластований грунтов. Классификация песчаного грунта. Определение нормативных значений прочностных и деформационных свойств грунтов и значение условного расчетного сопротивления грунта. Испытание на сдвиг.
курсовая работа [563,2 K], добавлен 25.02.2012Главные этапы и принципы определения объема образца для вычисления основных и физических, а также производных характеристик грунта. Методика расчета степени влажности (доля заполнения объема пор грунта водой) Деформационные и прочностные характеристики.
задача [32,2 K], добавлен 01.03.2014Определение классификационных характеристик глинистых и песчаных грунтов. Построение эпюры нормальных напряжений от собственного веса грунта. Расчет средней осадки основания методом послойного суммирования. Нахождение зернового состава сыпучего грунта.
контрольная работа [194,6 K], добавлен 02.03.2014Геолого-морфологическое строение и гидрогеологические условия. Рельеф и геологическое строение разрабатываемого участка. Расчёт скважин, скорости грунтового потока, промерзания грунта. Физико-геологические процессы территории. Проект карты гидроизогипс.
курсовая работа [158,0 K], добавлен 30.01.2011Определение плотности сухого грунта. Определение гранулометрического состава. Утилизация техногенных грунтов. Растворение поверхностной и подземной водой некоторых горных пород. Прекращение фильтрации подземных вод путем сооружения дренажных систем.
контрольная работа [180,1 K], добавлен 01.09.2013Характеристика экзогенных геологических процессов и их геологических результатов. Физико-механические свойства гранита, кварцевого порфира, вулканического стекла. Инженерно-геологическая классификация кислых пород. Определение плотности частиц грунта.
контрольная работа [37,8 K], добавлен 14.03.2014Основные методы лабораторного определения физических характеристик и коэффициента пористости песчаных слоев грунта. Построение эпюры природного давления на геологическом разрезе. Виды, гранулометрический состав и литологическое описание песчаных грунтов.
курсовая работа [4,0 M], добавлен 20.06.2011Инженерно-геологические условия участка: местоположение, геоморфологические условия. Прогноз изменения условий в связи с инженерным освоением территории. Результаты полевого определения плотности грунта. Каталог разведочных выработок, водная вытяжка.
отчет по практике [5,5 M], добавлен 22.01.2014Проведение инженерно-геологических изысканий для обеспечения информацией, необходимой для строительства трассы ВЛ 500 кВ. Геолого-геоморфологическая характеристика района строительства. Буровые работы, изучение геологического разреза, отбор проб грунта.
дипломная работа [4,4 M], добавлен 08.12.2010Особенности набухания и пластичности глинистых грунтов. Определение набухания, верхнего и нижнего пределов пластичности. Исследование влияния на свойства грунта замачивания и высушивания при проведении инженерного строительства разнообразных объектов.
курсовая работа [954,4 K], добавлен 30.03.2014Изучение плотностных, электрических и тепловых свойств горных пород. Определение влажности грунта методом высушивания до постоянной массы, анализ его плотности. Исследование гранулометрического и минерального состава намывных отложений ситовым методом.
курсовая работа [1,3 M], добавлен 28.01.2013Составление расчетной схемы сооружения. Глубина забивки шпунта. Определение давления грунта на сооружение. Построение эпюры сосредоточенных сил. Коэффициент асимметрии, эксцесс. Статистическая обработка результатов исследований. Коррозионный износ.
курсовая работа [734,4 K], добавлен 14.11.2013Изучение технологий глубинного закрепления глинистых грунтов. Подбор просадочного грунта и определение его физико-механических, деформационных и прочностных характеристик. Оптимизация состава грунтобетона модифицированного углеродными наноструктурами.
дипломная работа [1,6 M], добавлен 06.04.2013Исследование процесса кольматации на примере песков alQ возраста. Физические свойства песков. Закономерности изменения свойств грунта. Определение гранулометрического (зернового) состава песчаных грунтов ситовым методом. Глинисто-цементные растворы.
курсовая работа [374,4 K], добавлен 18.09.2013Сущность и основные технологические процессы гидромеханизации. Сооружение ирригационного канала способом гидромеханизаци. Схема разработки грунта гидромонитором. Безэстакадный и эстакадный способы намыва. Схемы закрытых способов прокладки трубопроводов.
контрольная работа [473,7 K], добавлен 15.06.2012