Основные проблемы изучения рифтогенеза
Новейшие рифтовые структуры на континентах и их окраинах. Позднемезозойские и кайнозойские спрединговые зоны ложа океанов. Специфические морфоструктуры земной поверхности. Раздвижения дна и эволюции рифтогенеза в ходе геологической истории Земли.
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 20.01.2015 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Рифтогенез как феномен геодинамики охватывает ряд явлений: образование специфических морфоструктур земной поверхности, преобразование континентальной и формирование океанической земной коры, подъем глубинного вещества, вулканические проявления.
В данной работе будут кратко рассмотрены основные проблемы изучения рифтогенеза, выражающегося в горизонтальном растяжении, разрыве и расширении земной коры, его наиболее крупномасштабного проявления - раздвижения (спрединга) океанского дна и эволюции рифтогенеза в ходе геологической истории Земли.
Рифты
Рифт - это протяженная (сотни, тысячи километров) линейная зона литосферы, грабеноообразного строения, в которой происходит горизонтальное расширение коры с подъемом нагретого глубинного мантийного материала. Процесс возникновения и развития рифтов получил название рифтогенеза (рифтинга) и выражается он в образовании крупных сводовых поднятий над поднимающимися из недр Земли массами нагретого материала, в растяжении и в утонении литосферы и ее разрыве с заложением системы линейных грабенообразных рифтовых структур, ограниченных нормальными сбросами. рифтовый кайнозойский спрединговый
Для рифтовых зон литосферы характерно:
· Утонение земной коры до 30-35 км;
· Наличие астеносферного выступа, что приводит к существенному подъему верхней мантии к подошве коры (астеносферный апвеллинг, или астеносферная подушка);
· Действие растягивающих горизонтальных усилий;
· Сейсмическая активность с расположением гипоцентров землетрясений в подошве земной коры;
· Широкое проявление базальтового и щелочно-базальтового вулканизма;
· Аномально высокое значение теплового потока
Милановский Е.Е. подразделяет рифты на древние (авлакогены) и молодые. Первые возникают в позднем протерозое, часто продолжают развиваться и в палеозое (авлакогены древних платформ Лавразийской группы). Молодые (мезозойско-кайнозойские) рифты закладываются в позднем палеозое, чаще в мезозое или кайнозое. И древние, и молодые рифты приурочены в большинстве случаев, к ослабленным зонам литосферы, наследуя простирание более древних структур, тяготея к стыкам этих структур. Авлакогены, таким образом, являются разновидностью рифтов - палеорифтами.
Авлакоген - грабенообразная структура проседания, формирующаяся в условиях остывания недр и локального уменьшения их объема. В отличие от авлакогенов для рифтов характерен разогрев недр, высокий тепловой поток и существенная вулканическая активность.
При классификации рифтов прежде всего их можно подразделить на океанические и континентальные.
Для океанических рифтов характерны такие черты, как:
· земная кора океанского типа;
· бОльшая протяженность, по сравнению с континентальными рифтами;
· нечетко выраженное грабенообразное строение;
· высокая магматическая и сейсмическая активность.
Для континентальных рифтов характерны следующие черты:
· земная кора континентального типа;
· меньшие размеры, по сравнению с океаническими рифтами;
· четкое грабенообразное строение. (Гаврилов В.П., 2005)
Новейшие рифтовые структуры на континентах и их окраинах
Все активно развивающиеся или лишь недавно приостановившие свое развитие континентальные рифтовые зоны были заложены не ранее 40-50 млн лет тому назад (то есть середины палеогенового периода), а многие из них - даже в последние 5-10 млн лет, то есть во второй половине неогенового периода, когда произошла резкая глобальная активизация рифтогенеза и спрединга. Как видно на рис. 1, современные и новейшие рифтовые зоны (р.з.) и их системы (р.с.) известны на всех континентах, кроме Австралии. Они возникли в двух различных тектонических обстановках: 1) в относительно стабильных областях на так называемых древних и реже молодых платформах (Афро-Аравийская, Рейнская, Байкальская, Восточно-Китайская, Северо-Канадская р.с., р.с. Антарктиды) и 2) в пределах тех областей молодых (мезозойско-кайнозойских) подвижных складчатых (орогенических) поясов - Средиземноморско-Гималайского и кольцеообразного пояса, окружающего впадину Тихого океана (Циркум-Тихоокеанского), где сильное горизонтальное сжатие земной коры сменилось в конце кайнозоя преобладанием ее горизонтального растяжения (Кордильерская, Андская, Восточноазиатская и другие р.с.). Наложившиеся на платформы и орогенические пояса р.з. и р.с. (соответственно эпиплатформенные и эпиорогенные) наряду с общими чертами строения и развития обладают существенными отличиями.
Геофизические исследования показали, что континентальная кора, толщина которой в среднем составляет 30-50 км, подвергается в р.з. растяжению и общему относительному утоньшению: в эпиплатформенных р.з. оно обычно не превышает 10-20%, но в некоторых эпиорогенных р.з. достигает 30-50%. Процесс горизонтального растяжения по-разному проявляется в разных частях континентальной коры в связи с различиями их реологических свойств. В нижней, более нагретой и пластичной части коры он приводит к ее пластическому растяжению и общему утоньшению с образованием шейки, а в более холодной и хрупкой верхней части - к развитию системы трещин и разрывов, рассекающих ее на несколько блоков, взаимные перемещения которых в обстановке общего горизонтального растяжения, поперечного или диагонального по отношению к оси р.з. в итоге также приводят к утоньшению верхней части коры и образованию четко выраженных в рельефе ее поверхности более или менее глубоких линейно-вытянутых впадин (рис. 2). Граница нижней (относительно пластичной) и верхней (более хрупкой) частей коры может проходить на разной глубине в зависимости от интенсивности теплового потока из мантии Земли под различными р.з., но в целом последняя превышает таковую под соседними с ними участками континентов от нескольких десятков процентов до двух раз и более.
Первоначально предполагалось, что наиболее распространенными типами структурных форм р.з. являются грабены, то есть относительно опущенные, удлиненные, более или менее симметричные в поперечном разрезе блоки, отделенные от соседних, не испытавших опускания блоков наклоненными в сторону грабена разрывами - нормальными сбросами (рис. 2, а), либо ступенчатые грабены, ограниченные с каждой стороны “лестницами” из нескольких сбросов, либо, наконец, комбинации из нескольких взаимопараллельных грабенов, разделенных горстами, то есть относительно (или абсолютно) приподнятыми блоками, ограниченными нормальными сбросами - так называемой клавиатуры блоков (рис. 2, в).
В действительности оказалось, что для континентальных р.з. наиболее характерны асимметричные и ступенчатые грабены (рис. 2, г) или полуграбены, наклонные днища которых лишь с одной стороны ограничены крутым сбросом или ступенчатыми сбросами (рис. 2, д ), а также системы из нескольких или даже многих односторонне наклоненных блоков - полуграбенов или полугорстов (рис. 2, е). При этом комбинации структурных форм типов (рис. 2, в и е), связанные взаимопереходами, наиболее характерны для некоторых эпиорогенных р.з. и р.с., развивающихся в условиях относительно большего масштаба горизонтального растяжения и общего утоньшения коры, большего теплового потока и относительно меньшей мощности её верхней, относительно хрупкой части. Геофизические исследования показали, что нижней границей системы блоков и разделяющих их разрывов, развивающихся в условиях горизонтального растяжения р.з. или р.с., часто служат относительно пологие, даже субгоризонтальные поверхности тектонических срывов - детачментов, на большей части площади р.з. отделяющие верхнюю (хрупкую) от нижней (пластичной) части коры, но в краевой части р.з. приобретающие характер сбросов, становящихся все более крутыми по мере приближения к земной поверхности (рис. 2, ж). Такую же ковшеобразную в поперечном разрезе, выполаживающуюся с глубиной форму имеют и многие другие разломы в р.з. - листрические сбросы, сливающиеся внизу с поверхностью главного срыва (детачмента) или затухающие книзу внутри верхней, относительно хрупкой части коры.
Длина кайнозойских континентальных рифтов обычно измеряется первыми сотнями километров, их гирлянд (р.з.) - многими сотнями или даже 1-2 тыс. км, а длина р.с. (или рифтовых поясов) может достигать нескольких тысяч километров (например, Афро-Аравийской р.с. до 6-7 тыс. км). Ширина рифтов колеблется от 10-20 до 80 км (обычно 30-50 км), ширина р.з. (учитывая нередкое кулисное расположение в них отдельных рифтовых впадин) может достигать 100-150 км, а р.с., состоящих из нескольких субпараллельных р.з., - 500-1000 км.
Амплитуды вертикальных смещений блоков коры по крупнейшим наклонным сбросам или нескольким сближенным ступенчатым сбросам на бортах отдельных грабенов, а также горстов внутри некоторых р.з., например горста Рувензори в Танганьикской р.з. в Восточной Африке, выраженного в рельефе в виде узкого хребта абсолютной высотой до 5 км, могут измеряться несколькими километрами (иногда до 5-10 км). Однако относительная глубина рифтовых впадин в рельефе обычно бывает значительно меньшей (не более 2-3 км), так как в процессе проседания они частично заполняются толщами осадков (а нередко и вулканических продуктов), мощность которых может достигать нескольких километров (в Байкальском рифте более 5 км).
Амплитуда горизонтального растяжения коры в отдельных рифтовых впадинах и р.з. варьирует от 5-10 до 30-40 км, а суммарная амплитуда растяжения в некоторых р.с. может достигать 100 и даже нескольких сот километров (в Кордильерской р.с.). Продольные разломы р.з. могут иметь не только существенно вертикальную (сбросовую), но и горизонтальную сдвиговую компоненту, а в некоторых из них, например в Левантинской р.з. на северном окончании Афро-Аравийской р.с., она даже резко преобладает над сбросовой и достигает 100 км.
В плане рифтовые впадины и р.з. часто имеют коленчато изгибающуюся форму (с взаимным параллелизмом краевых разломов), в основном обусловленную приспособлением их конфигурации к структурным особенностям древнего субстрата. В непосредственной близости к рифтовым впадинам их борта (“плечи”) нередко бывают несколько приподнятыми (в виде полугорстов или полусводов) по сравнению с преобладающим высотным уровнем обрамляющих рифты территорий, что создает впечатление (не всегда правильное) о возникновении рифта в приосевой части обрушившегося свода.
Развитие рифтов, р.з. и р.с. с момента их заложения протекает неравномерно, активизируясь во время относительно коротких фаз, разделенных фазами ослабления или приостановки рифтогенеза. Обычно оно сопровождается вулканическими извержениями, в эпиплатформенных р.з. и р.с. - с преобладанием продуктов щелочно-основного и щелочно-ультраосновного состава, а в эпиорогенных - с контрастным сочетанием кислых и основных продуктов. Вулканизм может проявляться далеко не на всей площади р.з., на разных стадиях рифтогенеза, а масштаб сопутствующих рифтогенезу магматических проявлений в разных р.з. колеблется в очень широких пределах: суммарный объем его продуктов может составлять от 1 тыс. км3 и меньше в одних р.з. до десятков и даже нескольких сот тысяч кубических километров в других (например, в Эфиопской и Кенийской р.з. Восточной Африки).
По относительной роли вулканизма и сопряженными с ней особенностями строения и развития континентальных р.з. среди них можно различать два крайних типа, связанных постепенными переходами: сводо-вулканический и “щелевой” невулканический или слабовулканический.
1. Развитие сводо-вулканических р.з. (тектонотип - Кенийская р.з. в Восточной Африке) начинается с образования обширного овального сводового поднятия земной коры вследствие возникновения под ним, в самой верхней части мантии, под воздействием повышенного теплового потока линзы аномально разогретого, разуплотненного и частично расплавленного материала - “рифтовой подушки”. В результате постепенного выпучивания свода в его коре в условиях растяжения возникают глубокие трещины и почти вертикальные разломы, которые проникают книзу вплоть до магматических очагов в “рифтовой подушке” и служат каналами для поднимающихся из них и частично достигающих земной поверхности расплавов (рис. 3). Сводовое поднятие и в особенности его приосевая зона становятся ареной мощных наземных вулканических извержений продуктов преимущественно щелочно-основного состава. Частичное опорожнение глубинного магматического очага приводит к проседанию и даже обрушению блоков коры в приосевой зоне сводового поднятия и образованию рифтовой впадины, обычно имеющей форму асимметричного ступенчатого грабена или полуграбена (рис. 3). После этого вулканическая активность в основном сосредоточивается внутри рифта, дальнейшее проседание и расширение которого происходят сопряженно с новыми импульсами извержений.
Тектоно-магматический процесс формирования сводо-вулканической р.з., связанный с возникновением и развитием локальной области разогрева и разуплотнения в верхах мантии (горячего пятна) под воздействием поднимающейся из нижней мантии или даже от поверхности внешнего, жидкого ядра Земли струи аномально нагретого глубинного материала (мантийного плюмажа), нередко условно называют “активным рифтогенезом”. Этот процесс, если он не сопровождается некоторым горизонтальным расширением коры в пределах обширной области или даже всей поверхности Земли, может вызвать растяжение и рифтообразование лишь в относительно узкой приосевой зоне вулканоактивного сводового поднятия.
2. Развитие не связанных со сводами «щелевых» невулканических или слабовулканических рифтовых р.з. (тектонотипы - Байкальская и очень похожая на нее Танганьикская р.з. в Восточной Африке) начинается с возникновения узких и неглубоких удлиненных приразломных впадин, заполняющихся тонкообломочным, но по мере углубления и появления вдоль их бортов краевых поднятий постепенно грубеющим кверху материалом. Импульсы проседания и расширения рифтовых впадин сопровождаются подвижками по крупномасштабным краевым внутренним наклонным сбросам и мощными землетрясениями с сейсмическими очагами в верхней хрупкой части коры, ориентировка напряжений в которых указывает на горизонтальное растяжение, поперечное или диагональное относительно оси рифта. Вулканические проявления либо отсутствуют, либо незначительны, локальны и приурочены главным образом к перемычкам между отдельными рифтовыми впадинами или к флангам р.з.
Образование “щелевых” слабо- или невулканических р.з. предположительно связывают с процессом горизонтального растяжения обширной области континентальной коры, приблизительно поперечного к простиранию р.з., или, возможно, некоторого общего расширения поверхности Земли в соответствующую эпоху, условно называемым “пассивным рифтогенезом”. Проявления вулканизма (если они имеют место) начинаются не до заложения рифтовых впадин, а после их возникновения и могут быть объяснены образованием “рифтовой подушки” в верхах мантии и очагов плавления в ней вследствие адиабатического повышения температуры при понижении давления в зоне растяжения под р.з.
По всей вероятности, наиболее благоприятна для возникновения и развития континентальных р.з. такая геодинамическая ситуация, когда горизонтальному растяжению, связанному с обстановкой регионального или глобального расширения земной коры, подвергается район “горячего пятна”, в котором верхняя часть мантии под влиянием мантийного плюмажа оказалась аномально разогретой и пластичной. В таких областях осуществляется как бы синтез процессов, абстрагированных в моделях активного и пассивного рифтогенеза, и рифтообразование протекает наиболее мощно. (Милановский Е.Е., 1999)
Ещё одним механизмом пассивного рифтогенеза может являться, вероятно, проседание литосферы над остывающими недрами. Термическая усадка мантии могла происходить на заключительных стадиях платформенного развития литосферы. (Гаврилов В.П., 2005)
Позднемезозойские и кайнозойские спрединговые зоны ложа океанов
Наиболее крупномасштабную и зрелую форму горизонтального раздвижения земной коры - рифтогенеза в широком смысле - представляет спрединг. Созданные в процессе спрединга тектонические зоны, выраженные в рельефе грандиозными подводными внутриокеаническими рифтовыми хребтами, занимают большую часть площади дна океанов или около половины поверхности Земли (рис. 1). В совокупности они образуют мировую систему спрединговых структур. Ее главными элементами являются почти непрерывное кольцо субширотных спрединговых зон, окаймляющих Антарктиду, и четыре отходящих от него к северу примерно на равном угловом расстоянии друг от друга в целом субмеридиональных спрединговых пояса: Атлантический, Индоокеанский, Западно- и Восточно-Тихоокеанский. Близ экватора эти пояса резко коленообразно отклоняются к западу, а затем продолжают следовать в северном направлении, постепенно сужаются, вырождаются, подставляясь по простиранию современными межконтинентальными р.з. (Аденская, Красноморская, Калифорнийская) и далее внутриконтинентальными р.з. и р.с., и, наконец, затухают. В отличие от остальных океанских спрединговых поясов недавно выявленный Западно-Тихоокеанский пояс в основном протягивается через возникшие в ходе спрединга глубоководные впадины морей на западной окраине этого океана.
Основными элементами внутриокеанских спрединговых хребтов в поперечном разрезе являются узкая гребневая зона, на большей части своего протяжения осложненная осевой рифтовой долиной, и широкие (от нескольких сот до первых тысяч километров) фланговые зоны, в целом полого снижающиеся к подножиям этих хребтов. В осевой зоне ныне происходит процесс раздвижения литосферных плит с полускоростью от 1 до 10 см в год и формирования новой океанской коры за счет поднимающегося из верхней мантии и заполняющего образующуюся полость расплавленного, но постепенно остывающего магматического материала. Верхние части разреза этой зоны слагают лавы подводных базальтовых излияний с их вулканическими центрами и магмоподводящими каналами (дайками), нижнюю - магматическая камера, в процессе охлаждения и застывания постепенно превращающаяся в сложно расслоенное интрузивное тело из основных и ультраосновных пород (рис. 4).
Широкие фланговые зоны в относительно приподнятых приосевых частях спрединговых хребтов осложнены продольными грядами, сложенными базальтовыми лавами, и межгрядовыми понижениями, образовавшимися на более ранних стадиях длительного процесса раздвижения и новообразования океанского дна. По мере удаления от гребневой зоны первичная вулканическая поверхность фланговых зон постепенно скрывается под океанскими осадками, толща которых становится все более мощной, начинается со все более древних слоев и соответственно подстилается все более древними базальтовыми покровами. Понижение поверхности внутриокеанских хребтов к их периферии объясняется постепенным охлаждением и соответственно увеличением плотности и уменьшением объема разновозрастных магматических комплексов, формировавшихся на разных стадиях процесса спрединга по мере их отдаления от активной гребневой зоны.
Характерной особенностью структуры спрединговых океанских хребтов, отличающей их от р.з. континентов, является наличие рассекающих их гребневые, а также фланговые зоны или по крайней мере внутренние приосевые части последних многочисленных взаимнопараллельных зон разломов, поперечных или диагональных по отношению к простиранию гребневой зоны или хребта в целом, получивших от выделившего этот класс тектонических структур канадского геофизика Т. Вилсона название трансформных разломов. Морфологически они могут быть выражены в виде узких желобов, уступов или узких гребней, а в плане наблюдается скачкообразное смещение по этим разломам осевой зоны и одновозрастных элементов фланговых зон в смежных сегментах спрединговых хребтов, создающее иллюзию их последующего относительного перемещения по сдвигу. В действительности, как показал Вилсон, трансформные разломы представляют собой относительно древние тектонические структуры, разделявшие сегменты этих хребтов, а оси спрединга в последних не продолжались непрерывно в соседние сегменты, но с момента заложения находились в них на расстоянии от нескольких до нескольких сот километров друг от друга.
Результаты глубоководного бурения и геофизических исследований показывают, что на некоторых участках внутриокеанических рифтовых хребтов процесс спрединга начался еще в позднеюрскую эпоху (около 160-140 млн лет тому назад), но по большей части в раннемеловую (между 140-100 млн лет тому назад) или позднемеловую эпоху (100-65 млн лет тому назад) и продолжался в течение всего кайнозоя. В отличие от континентального рифтогенеза, проявлявшегося отдельными прерывистыми импульсами, спрединг происходил почти непрерывно, но во времени скорость его неоднократно изменялась. Относительно наиболее высокой средняя скорость спрединга была в позднемеловую эпоху, а в кайнозое она в целом, хотя и с колебаниями постепенно снижалась, но в последние 10 млн лет вновь заметно возросла. Со временем положение осей активно развивающихся зон спрединга также несколько изменялось, некоторые из них отмирали (например, зоны спрединга Лабрадорского и Тасма- нова морей), другие, напротив, постепенно удлинялись, как бы прорастали по простиранию, третьи скачкообразно смещались в сторону параллельно своему первоначальному положению, четвертые изменяли свою ориентировку. Особенно резкие перестройки тектонического плана активных зон спрединга наблюдались в Индоокеанской области.
Процесс спрединга может начинаться в регионах, первоначально обладавших как континентальной, так и океанской корой. Так, во второй половине мезозоя существовавший тогда единый гигантский суперконтинент Пангея раскололся на несколько крупных обломков - нынешних континентов, между которыми в результате длительного спрединга образовались впадины современных Индийского, Атлантического и Северного Ледовитого океанов. При этом спредингу непосредственно предшествовало и частично сопутствовало его начальной стадии широкое развитие континентальных р.з. и р.с. (главным образом юрских и раннемеловых), фрагменты которых сохранились в пределах северо-западной окраины Европы, Африки, Южной Америки, Индостана, Австралии и Антарктиды. В этих регионах в ходе своего развития некоторые внутриконтинентальные р.з. превратились в межконтинентальные эмбриональные спрединговые зоны, а последние в дальнейшем - в спрединговые пояса океанов.
Однако в пределах Тихого океана, ложе которого, по мнению большинства исследователей, как огромный регион с корой океанского типа существует по крайней мере с палеозоя, то есть более 0,5 млрд лет, а может быть, и 1 млрд лет, а современные спрединговые пояса в котором стали формироваться лишь во второй половине или в конце мезозоя, то есть не раньше 170-150 млн лет тому назад, процессу рифтогенеза, переросшему в крупномасштабный спрединг, по-видимому, подверглась более древняя кора океанского типа. Спрединговые пояса, несомненно, имеют очень глубокие корни, уходящие в глубь всей верхней мантии (до глубин 600-700 км), а частично и в нижнюю мантию, а их развитие, вероятно, контролировалось процессами, происходящими в верхнем, жидком ядре и на границе ядра и мантии Земли (2900 км). Результаты новейших сейсмотомографических исследований, позволяющих просвечивать недра Земли вплоть до поверхности ядра, показали, что под всеми спрединговыми поясами верхняя мантия, а под некоторыми из них также нижняя мантия или ее верхняя часть характеризуются аномально пониженными (для соответствующих глубин) скоростями прохождения сейсмических волн, указывающими на пониженную плотность и повышенные температуры, что позволяет предполагать под этими поясами восходящие потоки тепла и глубинного материала. Недавно было установлено, что частота инверсий полярности геомагнитного поля, которое генерируется во внешнем, жидком ядре Земли и на его границе с мантией и в основном зависит от происходящих в них процессов, во времени существенно варьировала, и эти изменения, по крайней мере на протяжении последних 180 млн лет, хорошо коррелируются с глобальными изменениями интенсивности спрединга, континентального рифтогенеза, базальтового вулканизма и деформаций сжатия в земной коре, а также с эвстатическими колебаниями уровня Мирового океана, отражающими изменения формы его дна и земной поверхности в целом. Оказалось, что фазам учащения геомагнитных инверсий, длительность которых не превышает 1-2 млн лет, отвечают во времени фазы замедления спрединга, приостановки рифтогенеза, ослабления базальтовых излияний, усиления де- формаций сжатия и кратковременные фазы довольно резкого (до 50-100 м) падения уровня Мирового океана. Напротив, фазам, отличающимся более редкими геомагнитными инверсиями или их полным отсутствием (продолжительностью от 1-2 до 10-20 млн лет), соответствуют глобальные фазы ускорения спрединга, активизации континентального рифтогенеза, базальтового вулканизма, ослабления деформаций сжатия и подъема уровня Мирового океана. Таким образом, можно предполагать, что интенсивность спрединга и континентального рифтообразования во времени в конечном счете контролируется ходом процессов, протекающих в самых глубинных частях Земли.
Бесспорные свидетельства спрединга океанской коры в масштабе, подобном тому, в каком он проявлялся в последние 150 млн лет, в более древние эпохи истории Земли отсутствуют, более того, пока достоверно неизвестны даже сравнительно небольшие участки более древней, тектонически не деформированной несомненно океанской коры. Однако это не означает, что спрединг в более ранние эпохи не имел места. Напротив, во внутренних зонах подвижных (геосинклинальных) поясов Земли, по крайней мере в течение последнего миллиарда лет, неоднократно происходили процессы раздвига континентальной коры и новообразования глубоководных бассейнов с корой океанского или близкого к нему типа, однако время их существования, как правило, не превышало десятков или сотни миллионов лет, поскольку спрединг в них быстро прекращался, обрамляющие континентальные блоки вновь начинали сближаться и в конце концов почти смыкались или даже надвигались друг на друга, а заполнявший зону раздвига комплекс ультраосновных, основных, а вверху также глубоководных осадочных пород коры океанского типа (офиолитовая ассоциация) подвергался сильному горизонтальному сжатию, тектоническому разлинзованию, перетиранию и часто также надвигался на один из ее бортов. Вопрос о первоначальной ширине подобных офиолитовых зон в момент их максимального раскрытия вызывает острые дискуссии. Часть исследователей предполагают, что их ширина не превышала десятков или первых сотен километров (подобно современным зачаточным зонам спрединга в осевой части Красного моря и глубоководных впадин некоторых окраинных морей), другие же допускают, что она могла достигать нескольких тысяч километров и не уступала ширине спрединговых поясов Индийского и Атлантического океанов, и считают, что подобные им бассейны с корой океанского типа могли существовать по крайней мере уже не менее 1 млрд лет тому назад. Однако такое предположение вызывает большие сомнения, поскольку в отличие от недолговечных зон с корой океанского типа, возникавших, а затем закрывавшихся в геосинклинальных поясах, впадины современных Атлантического и Индийского океанов существуют уже более150 млн лет, а спрединг в них не только не прекратился и тем более не сменился сближением их бортов, но даже усилился в последние 10 млн лет. Кроме того, породы офиолитовых зон и коры современных океанов несколько различаются петрохимически.
Более вероятно, что огромные спрединговые пояса современных океанов, хотя и представляют собой тектонические структуры, родственные спрединговым зонам геосинклинальных поясов и континентальным р.з. и р.с., вместе с тем отличаются от них по своим размерам, масштабу расширения и раздвижения коры на ранних стадиях развития, геологическому времени появления и длительности развития структур каждого из этих типов (рис. 5): проторифтовые зоны континентов, испытавшие последующее сжатие, возникали уже 2,5-2 млрд лет назад, первые континентальные р.з., не подвергшиеся значительному позднейшему сжатию (авлакогены), - около 1,5-2 млрд лет тому назад, первые офиолитовые спрединговые зоны в геосинклинальных поясах с умеренным масштабом раздвижения континентальных блоков и их последующей коллизией - около 1 млрд лет тому назад и, наконец, огромные по протяженности и масштабу продолжающегося и сегодня раздвижения коры спрединговые пояса в большинстве современных океанов - около 150 млн лет тому назад, а в области Тихого океана, может быть, несколько раньше. Это не исключает того, что спрединг, протекающий в современных океанах, в будущем прекратится и даже может смениться сближением обрамляющих их континентальных блоков. (Милановский Е.Е., 1999)
Заключение
В данной работе был рассмотрены процессы рифтообразования, особенности строения рифтовых зон. Доказано, что природа растягивающих напряжнений в рифтах связана именно с областями мантии с пониженными плотностями и скоростями сейсмических волн.
Данные области называются по-разному: коро-мантийная смесь, глубинный диапир, рифтовая «подушка», однако суть рифтогенеза остается почти одной и той же: поднимающееся с больших глубин аномально легкое вещество мантии, подходя снизу к литосфере, растекается и вызывает её растяжение. Также можно сделать вывод о том, что эволюция рифтовых зон зависит не только от кинематики плит, но и от того, предшествовал или нет их образованию первоначальный вулканизм.
В настоящее время рифтам и процессу рифтогенеза придается очень большое значение как в развитии и современном строении литосферы, так и в формировании месторождений полезных ископаемых.
Графические приложения
Рис. 1. Распространение кайнозойских континентальных рифтовых зон и систем и океанических спрединговых поясов Земли:
1 - внутриокеанические спрединговые пояса; 2 - Западно-Тихоокеанский окраинно-океанический спрединговый пояс; 3 - активные осевые зоны спрединговых поясов и пересекающие их крупнейшие трансформные разломы; 4 - отмершие осевые зоны спрединговых поясов; 5 - континентальные рифтовые зоны и системы; 6 - стабильные ядра континентов - древние платформы; 7 - подвижные пояса разного возраста в пределах континентов и их ок- раин; 8 - области дна океанов вне кайнозойских спрединговых поясов преимущественно с мезозойской корой океанского типа (Милановский Е.Е., 1999)
Список используемой литературы
1. Гаврилов В.П. Геотектоника, М.: "Нефть, газ", 2005
2. Милановский Е.Е. Рифтогенез и его роль в развитии Земли. / Соросовский образовательный журнал, №8, 1999.
3. Мирлин Е.Г. Раздвигание литосферных плит и рифтогенез. М.: Недра, 1985
Размещено на Allbest.ru
...Подобные документы
Природные условия формирования подземных вод. Ландшафтные факторы: орография, гидрография, климат. Структурно-гидрогеологическая роль рифтогенеза. Гидрогеологические бассейны и массивы. Физико-химическое моделирование процессов формирования подземных вод.
дипломная работа [6,6 M], добавлен 28.01.2013Необратимая эволюция земной коры. Катастрофические космические факторы в геологической истории. Земная кора и верхняя мантия как особая система. Повторение в геологической истории складчатости, горообразования, влажного и сухого климата, его последствия.
реферат [709,4 K], добавлен 14.05.2015Общая характеристика Земли как планеты: строение, основные элементы поверхности суши и дна океанов. Главные породообразующие минералы, их классификация. Геология деятельность подземных вод; карстовые и суффозионные отложения; интрузивный магматизм.
контрольная работа [744,9 K], добавлен 16.02.2011Прогнозирование наличия перспективных рудоносных площадей на основе известных закономерностей развития геологических объектов. Образование, размещение и разнообразное изменении металлопород в земной коре в ходе геологической эволюции данного региона.
курс лекций [40,0 K], добавлен 16.01.2011Особенности состава и строения атмосферы Земли. Эволюция земной атмосферы, процесс ее формирования на протяжении веков. Появление водной среды как начало геологической истории Земли. Содержание и происхождение примесей в атмосфере, их химический состав.
реферат [17,4 K], добавлен 19.11.2009Происхождение океанов, представление об их возрасте. Срединно-океанические поднятия (хребты), их строение. Рифтовые зоны и магматизм. Океанские плиты, их структуры. Понятие о микроконтинентах. Глубоководный желоб, островные дуги, окраинные моря.
контрольная работа [1,9 M], добавлен 01.03.2017Строение Земной коры материков и океанических впадин. Тектонические структуры. Литосферные плиты Земли и типы границ между ними. Зоны активного разрастания океанического дна. Рифтогенез на дивергентных границах. Рифтогенез на дивергентных границах.
презентация [5,1 M], добавлен 23.02.2015История обсуждения проблемы и теории формирования поверхности земного шара и образования горных систем. Создание учения о геосинклиналях и платформах. Критические зоны планеты, теоретическое и практическое значение их исследования, теория мобилизма.
реферат [27,1 K], добавлен 29.03.2010Измерение параметров гравитационного поля в воздухе, на земной поверхности, акваториях морей и океанов. Планетарные особенности Земли. Выделение аномальных составляющих гравитационного поля и их геологическая интерпретация. Проведение полевых наблюдений.
презентация [514,7 K], добавлен 30.10.2013Происхождение и развитие микроконтинентов, поднятий земной коры особого типа. Отличие коры океанов от коры материков. Раздвиговая теория образования океанов. Позднесинклинальная стадия развития. Типы разломов земной коры, классификация глубинных разломов.
контрольная работа [26,1 K], добавлен 15.12.2009Общая характеристика физической поверхности Земли. Понятие уровенной поверхности, земного эллипсоида и геоида в геодезии. Определение положения точки с помощью системы географических координат и высот. Рассмотрение правил использования масштаба.
презентация [404,6 K], добавлен 25.02.2014Нарушение геологической структуры недр. Перегрузка земной поверхности продуктами переработки полезных ископаемых. Руды черных и цветных металлов. Цветные камни: алмаз, малахит, изумруд, родонит, чароит, янтарь и жемчуг. Строительные полезные ископаемые.
реферат [31,8 K], добавлен 16.01.2011Сущность и основополагающие идеи контракционной гипотезы Эли де Бомона, заложение основ исследований причин складчатости земной поверхности. Предмет и методы изучения геотектоники, ее развитие на современном этапе. Открытие англичанина Д. Пратта.
презентация [64,1 K], добавлен 15.09.2010Гипотезы образования Мирового океана. Виды рельефа дна: шельф, материковый склон, материковое подножие, разломы, океанические хребты, рифтовые долины. Течения Гольфстрим и Куросио, экваториальные течения, термохалинная циркуляция, приливы и цунами.
реферат [41,0 K], добавлен 18.05.2012Изучение геологических процессов, происходящих на поверхности Земли и в самых верхних частях земной коры. Анализ процессов, связанных с энергией, возникающих в недрах. Физические свойства минералов. Классификация землетрясений. Эпейрогенические движения.
реферат [32,3 K], добавлен 11.04.2013Гипотеза дрейфа континентов Вегенера. Становление теории тектоники литосферных плит. Установление существования пластичного слоя астеносферы и глобальной системы срединно-океанических хребтов и приуроченных к их вершинам зон океанического рифтогенеза.
доклад [8,8 K], добавлен 07.08.2011Понятие "мегарельефа" и определение его видов и типов. Сведения о неровностях земной поверхности Земли. Закономерности развития рельефа древних и молодых платформ. Систематизация мегарельефа геосинклинальных поясов. Аккумулятивные и денудационные равнины.
лекция [5,3 M], добавлен 20.02.2014Подвижность и непостоянство физических состояний земной коры, газообразной и водной оболочек, процессы, действующие на рельеф. Особенности рельефа Земли, морфология равнин и горных стран. Геоморфологические процессы, происходящие на земной поверхности.
курсовая работа [11,6 M], добавлен 22.10.2009Закон напластования горных пород, который стал первым инструментом палеонтологов в процессе изучения истории жизни на нашей планете. Интерпретация геологической колонки креационистами. Десять неверных представлений о геологической колонке (эпохах).
реферат [628,1 K], добавлен 14.06.2015Понятие активных действиях вод Мирового океана и морей. Последствия движений вод морей и океанов. Волновые движения, их развитие на поверхности воды и возникновение под действием и по направлению ветра. Основные способы разрушения горных пород берега.
курсовая работа [5,0 M], добавлен 28.06.2014