Ориентирование линий на местности

Градусная величина дирекционного угла. Положение линии местности относительно истинного меридиана, определяемое истинным азимутом. Зависимость между дирекционными углами и румбами. Прямая и обратная геодезическая задача, особенности решения и формулы.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 18.03.2015
Размер файла 211,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «Государственный аграрный университет Северного Зауралья»

Институт дистанционного образования

Факультет: «Кадастр недвижимости»

.

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: Основы геодезии

По теме: «Ориентирование линий на местности»

Выполнила: студентка группы

Б-КН-11

Воронцова Алена Юрьевна

Проверил: Профессор геодезических наук

Ткачев Б. П.

г. Ханты-Мансийск 2015

Содержание

Введение

1. Дирекционные углы

2. Истинные азимуты и румбы

3. Магнитные азимуты и румбы

4. Прямая геодезическая задача

5. Обратная геодезическая задача

Заключение

Введение

При выполнении геодезических работ на местности, а также при решении инженерно-геодезических задач на топографических картах и планах возникает необходимость в определении положения линий местности относительно какого-либо направления, принимаемого за основное (исходное). Такое определение называется ориентированием.

Чаще всего за основное принимается направление меридиана, и положение линий местности определяется относительно сторон горизонта - севера, востока, юга и запада. Такое ориентирование называется ориентированием относительно сторон света.

В геодезии при ориентировании за основное направление принимают направление осевого, истинного или магнитного меридианов. При этом положение линии определяют с помощью соответствующих углов ориентирования: дирекционного угла, истинного или магнитного азимута.

1. Дирекционные углы и осевые румбы

Осевой (средний) истинный меридиан зоны часто принимают за основное направление. В этом случае положение линии местности относительно осевого меридиана определяет угол ориентирования, называемый дирекционным (рис.1)

Дирекционный угол измеряется от северного направления осевого меридиана в направлении движения часовой стрелки через восток, юг и запад. Следовательно, градусная величина дирекционного угла может иметь любое значение от 0° до 360°.

Рис. 1. Дирекционные углы

Для линии ОА её дирекционным углом в точке О является горизонтальный угол бОA между северным направлением осевого меридиана и направлением линии. Для линий ОВ, ОЕ и ОF - бОВ , бОE , бОF.

Таким образом, дирекционным углом является угол в горизонтальной плоскости, отсчитываемый от северного направления осевого меридиана по ходу часовой стрелки до данной линии.

В геодезии принято различать прямое и обратное направление линии (рис. 2). Так, если ВС считать прямым направлением линии, то СВ будет обратным направлением той же линии. В соответствии с этим бBC является прямым дирекционным углом линии ВС в точке М, а угол бCB - обратным дирекционным углом этой же линии в той же точке.

Рис. 2. Прямое и обратное направление линии

Из рисунка видно, что бCB = бBC + 180°, т.е. прямой и обратный дирекционные углы отличаются друг от друга на 180°.

Иногда для ориентирования линии местности пользуются не дирекционными углами, а румбами (рис. 3).

Осевым румбом называется острый горизонтальный угол, отсчитываемый от ближайшего направления осевого меридиана (северного или южного) до данной линии. Румбы обозначают буквой r с индексом, указывающим четверть, в которой находится румб.

Рис. 3. Румбы и дирекционные углы

Название четвертей составлены из соответствующих обозначений главных точек горизонта: север (С), юг (Ю), восток (В), запад (З).

Зависимость между дирекционными углами и румбами определяется для четвертей по следующим формулам:

I четверть (СВ) r = б

II четверть (ЮВ) r = 180° - б

III четверть (ЮЗ) r = б - 180°

IV четверть (СЗ) r = 360° - б

Румб в точке М направления ВС называется прямым, а противоположного направления СВ - обратным. Прямой и обратный румб в одной и той же точке данной линии равны по численному значению, но имеют индексы противоположных четвертей (рис. 4).

Рис. 4. Прямой и обратный румбы

2. Истинные азимуты и румбы

Кроме осевого меридиана зоны при ориентировании линий местности за основное направление может приниматься направление истинного (географического) меридиана.

Истинный меридиан - линия пересечения земной поверхности с плоскостью, проходящей через отвесную линию и ось вращения Земли.

Положение линии местности относительно истинного меридиана определяется истинным азимутом или истинным румбом.

Истинный азимут линии - угол в горизонтальной плоскости, отсчитываемый от северного направления истинного меридиана по ходу часовой стрелки до данной линии (рис. 5).

Истинный румб линии - острый горизонтальный угол, отсчитываемый от ближайшего направления истинного меридиана (северного или южного) до данной линии.

Рис. 5. Истинные азимуты

Истинный азимут A измеряется от 0° до 360°. Зависимость между истинными азимутами и румбами такая же, как и между дирекционными углами и осевыми румбами.

Истинные меридианы, проходящие через точки Земли с разной долготой, не параллельны между собой и сходятся на полюсах. Поэтому азимуты одной и той же прямой линии, определяемые относительно разных истинных меридианов, отличаются на величину г (рис. 6), которую называют углом сближения меридианов. Его приближенное значение можно рассчитать по формулам:

г = 0,54 · l · tgц или г = sinц · Дл,

где l - длина прямой линии между точками (км); ц - средняя широта линии; Дл - разность долгот. При l = 1 км и широте Хабаровска ц = 48°28' угол сближения меридианов г = 0,6' = 36".

Рис. 6. Зависимость между истинным азимутом и дирекционным углом

Для перехода от дирекционного угла к истинному азимуту и наоборот необходимо знать угол сближения г между осевым и истинным меридианом (рис. 6). Зависимость между истинным азимутом и дирекционным углом следующая

А = б + г .

Если точка расположена к западу от осевого меридиана, то величину угла сближения г между осевым и истинным меридианом принято считать отрицательной, если к востоку - положительной (рис. 6). Например, истинные азимуты линии при дирекционном угле б = 70° и углах сближения г = - 0°50' для западной точки М1, г = 0°50' для восточной - М2 соответственно равны

А1 = 70° - 0°50' = 69°50',

А2 = 70° + 0°50' = 70°50'.

3. Магнитные азимуты и румбы

При ориентировании линий местности за основное направление может также приниматься направление магнитного меридиана.

Магнитная стрелка на концах имеет точки, в которых сосредоточены магнитные массы. Соединяющая их линия называется магнитной осью стрелки.

Вертикальная плоскость, проходящая через магнитную ось стрелки, является плоскостью магнитного меридиана.

Линия пересечения плоскости магнитного меридиана с горизонтальной плоскостью дает направление магнитного меридиана.

Горизонтальный угол, отсчитываемый от северного направления магнитного меридиана по ходу часовой стрелки до данной линии, называется магнитным азимутом Ам (рис. 7).

Рис. 7. Магнитный азимут и склонение магнитной стрелки: а) западное; б) восточное

В каждой точке на поверхности Земли магнитный и истинный меридианы образуют между собой угол, называемый склонением магнитной стрелки д (рис. 7). Северный конец магнитной стрелки может отклоняться от истинного меридиана к западу или востоку. В зависимости от этого различают западное и восточное склонения. Восточное склонение принято считать положительным, западное - отрицательным:

Аи = Ам + двост ,

Аи = Ам - дзап .

Магнитное склонение в разных пунктах Земли различно и непостоянно. Различают вековые, годовые и суточные изменения склонения. В связи с этим магнитная стрелка указывает направление магнитного меридиана приблизительно и ориентировать линию по нему можно только тогда, когда не требуется большая точность ориентирования.

4. Прямая геодезическая задача

дирекционный угол азимут меридиан

В геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки А (рис.8), горизонтальное расстояние SAB от неё до точки В и направление линии, соединяющей обе точки (дирекционный угол бAB или румб rAB), можно определить координаты точки В. В такой постановке передача координат называется прямой геодезической задачей.

Рис. 8. Прямая геодезическая задача

Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом.

Дано: Точка А( XA, YA ), SAB и бAB.

Найти: точку В( XB, YB ).

Непосредственно из рисунка имеем:

ДX = XB - XA ;

ДY = YB - YA .

Разности ДX и ДY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС:

ДX = SAB · cos бAB ;

ДY = SAB · sin бAB .

Так как в этих формулах SAB всегда число положительное, то знаки приращений координат ДX и ДY зависят от знаков cos бAB и sin бAB. Для различных значений углов знаки ДX и ДY представлены в табл.1.

Таблица 1.

Знаки приращений координат ДX и ДY

Приращения координат

Четверть окружности в которую направлена линия

I (СВ)

II (ЮВ)

III (ЮЗ)

IV (СЗ)

ДX

+

-

-

+

ДY

+

+

-

-

При помощи румба приращения координат вычисляют по формулам:

ДX = SAB · cos rAB ;

ДY = SAB · sin rAB .

Знаки приращениям дают в зависимости от названия румба.

Вычислив приращения координат, находим искомые координаты другой точки:

XB = XA + ДX ;

YB = YA + ДY .

Таким образом можно найти координаты любого числа точек по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения.

5. Обратная геодезическая задача

Обратная геодезическая задача заключается в том, что при известных координатах точек А( XA, YA ) и В( XB, YB ) необходимо найти длину SAB и направление линии АВ: румб rAB и дирекционный угол бAB (рис.9).

Рис. 9. Обратная геодезическая задача

Данная задача решается следующим образом.

Сначала находим приращения координат:

ДX = XB - XA ;

ДY = YB - YA .

Величину угла rAB определим из отношения

По знакам приращений координат вычисляют четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находим бAB.

Для контроля расстояние SAB дважды вычисляют по формулам:

SAB=

ДX

=

ДY

= ДX · sec бAB = ДY · cosec бAB

cos бAB

sin бAB

SAB=

ДX

=

ДY

= ДX · sec rAB = ДY · cosec rAB

cos rAB

sin rAB

Расстояние SAB можно определить также по формуле

.

Заключение

Изучив материалы по данному вопросу, я узнала, что при выполнении геодезических работ на местности, а также при решении инженерно-геодезических задач на топографических картах и планах возникает необходимость в определении положения линий местности относительно какого-либо направления, принимаемого за основное (исходное). Такое определение называется ориентированием.

Чаще всего за основное принимается направление меридиана, и положение линий местности определяется относительно сторон горизонта - севера, востока, юга и запада. Такое ориентирование называется ориентированием относительно сторон света.

В геодезии при ориентировании за основное направление принимают направление осевого, истинного или магнитного меридианов. При этом положение линии определяют с помощью соответствующих углов ориентирования: дирекционного угла, истинного или магнитного азимута.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика ориентирования линии местности. Определение понятия географического меридиана. Рассмотрение связи между румбами и азимутами (дирекционным углом). Описание магнитного склонения и изменения полюсов Земли, а также сближения меридианов.

    презентация [246,1 K], добавлен 22.08.2015

  • Азимут линии местности. Определения и схемы связи между углами ориентирования и пояснения. Качество производных измерений в геодезии. Обработка журнала тригонометрического нивелирования и определение отметок станций. Вычерчивание топографического плана.

    задача [152,8 K], добавлен 03.02.2009

  • Сети и съемки, геодезические сети Российской Федерации. Получение контурного плана местности с помощью теодолита и мерной ленты. Работы по прокладке теодолитных ходов. Камеральная обработка результатов съемки. Вычисление дирекционных углов и координат.

    лекция [397,2 K], добавлен 09.10.2011

  • Провешивание прямой на местности с помощью вехи - вертикальной прямой жерди, которая становится для обозначения точки на местности и имеет длину около 2 м. Прием "проведения" длинных отрезков прямых на местности, применяемые геодезические приборы.

    презентация [1,9 M], добавлен 02.03.2016

  • Характеристика и применение основных видов измерительных приборов, способы измерения высот и расстояния на участке местности. Изучение геодезии как науки о производстве измерений. Роль, сущность и значение измерений на местности в различных сферах жизни.

    курсовая работа [819,5 K], добавлен 30.03.2018

  • Понятие съемки как совокупности измерений, выполняемых на местности с целью создания карты или плана местности. Государственные геодезические сети. Особенности теодолитной съемки. Методы тахеометрической съемки. Камеральная обработка полевых измерений.

    реферат [21,7 K], добавлен 27.08.2011

  • Формулы связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки. Условие, уравнения и элементы взаимного ориентирования снимков. Построение фотограмметрической модели и ее внешнее ориентирование.

    реферат [276,9 K], добавлен 22.05.2009

  • Ориентирование на местности при помощи компаса. Основные факторы генерализации. Назначение, тематика и типы карты. Обобщение качественных и количественных характеристик картографируемого явления. Основные количественные показатели отбора: ценз, норма.

    контрольная работа [19,1 K], добавлен 14.11.2010

  • Оценка инженерной обстановки при наводнении. Создание связей между основной моделью рельефа местности и теплодинамическими показателями атмосферы. Моделирование 3D рельефа местности по заданной топографической съемке. Прогноз погоды и природные явления.

    курсовая работа [3,9 M], добавлен 19.06.2014

  • Вычисление исходных дирекционных углов сторон теодолитного хода; определение координаты точки. Обработка угловых измерений, составление топографического плана участка местности между двумя пунктами полигонометрии ПЗ 8 и ПЗ 19 по данным полевых измерений.

    контрольная работа [544,2 K], добавлен 08.11.2011

  • Общая характеристика основных этапов теодолитной съемки контуров местности. Особенности закрепления точек и измерения горизонтальных углов на точке теодолитного хода. Порядок вычисления румбов по дирекционным углам, специфика их отражения на чертеже.

    отчет по практике [59,8 K], добавлен 05.07.2010

  • Проверка геодезических инструментов - теодолита и нивелира: определение качества видимых в зрительную трубу изображений, плавности вращения на оси и работы подъемных винтов. Выполнение геодезических измерений, тахеометрическая съемка участка местности.

    курсовая работа [206,7 K], добавлен 24.01.2011

  • Обработка инженерно-геодезической информации для систем автоматизированного проектирования. Элементы цифровой модели местности. Построение продольного профиля тематического объекта на примере канализации. Создание чертежной цифровой модели местности.

    курсовая работа [5,5 M], добавлен 13.05.2019

  • Физико-географический анализ района работ. Инженерно-геодезические изыскания в сложно-пересеченной местности. Создание опорной сети, съемочного обоснования. Топографическая съемка оползневых участков. Камеральная обработка результатов полевых работ.

    дипломная работа [721,7 K], добавлен 25.02.2016

  • Поверки и исследования геодезических приборов. Рекогносцировка местности, закрепление точек планово-высотной основы. Методика построения плана тахеометрической съемки. Камеральное трассирование автодороги. Вычисление координат точек теодолитного хода.

    отчет по практике [996,1 K], добавлен 12.01.2014

  • Межевание объектов землеустройства и уведомление лиц, права которых могут быть затронуты при его проведении. Определение границ объекта землеустройства на местности, их согласование и закрепление. Государственная, опорная и межевая геодезическая сеть.

    курсовая работа [813,4 K], добавлен 18.12.2010

  • Использование аэрофотосъёмки для создания топографических карт. Элементы внутреннего и внешнего ориентирования снимка в базисной системе. Составление технического проекта построения одиночной модели местности и измерения координат запроектированных точек.

    курсовая работа [481,5 K], добавлен 23.07.2013

  • Физико-географические условия работ: рельеф, климат, геология местности, растительность, животный мир и гидрография. Топографо-геодезическая изученность района. Триангуляция, полигонометрия, нивелирование. Уравнивание геодезического четырехугольника.

    курсовая работа [138,0 K], добавлен 28.10.2013

  • Поиски нефти и газа в Астраханской области. Региональная задача - прослеживание поверхности фундамента и сейсмо-разведочные работы. Климат, геологические особенности местности. Орогидрафия и разведочное бурение. Широкое развитие соляных куполов.

    курсовая работа [17,5 K], добавлен 27.02.2009

  • Топографо-геодезическая обеспеченность района работ. Классификация и категория проектируемого газопровода. Составление продольного и поперечного профиля местности. Применение спутниковой технологии при полевом трассировании и топографической съемке.

    дипломная работа [1,4 M], добавлен 20.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.