Динамика вод Мирового океана

Определение понятия и свойств морских течений. Температурные различия течений. Симметрия движения вод океана. Волнения в океанах и морях, приливные, сейшевые, внутренние волны. Деформация волн у берега. Особенности возникновения цунами. Приливы и отливы.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 17.03.2015
Размер файла 27,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Белорусский государственный университет

Кафедра Общего землеведения и географического факультета

Реферат

Динамика вод Мирового океана

Выполнила:

Студентка 1 курса 5 группы

Дударева Софья Михайловна

Руководитель:

старший преподаватель

Кухарчик Михаил Васильевич

Минск 2014

Оглавление

  • Введение
  • 1. Течения
  • 2. Волнение
    • 2.1 Ветровые волны
      • 2.2 Деформация волн у берега
      • 2.3 Волны цунами
  • 3. Приливы и отливы
  • Заключение
  • Список литературы

Введение

Морская вода - очень подвижная среда, поэтому в природе она находится в непрерывном движении.

Это движение вызывают различные причины и прежде всего ветер. Он возбуждает поверхность течения в океане, которые переносят огромные массы воды из одних районов в другие.

Однако непосредственное влияние ветра распространяется на сравнительно небольшое (до 300 м) расстояние от поверхности. Подвижность вод океана проявляется и в вертикальных колебательных движениях - таких, например, как волны и приливы.

С последними связаны и горизонтальные движения воды - приливные течения. Ниже в толще воды и в придонных горизонтах перемещение происходит медленно и имеет направления, связанные с рельефом дна.

1. Течения

Горизонтальное поступательное перемещение вод в океанах и морях обобщенно называют морскими течениями. Они создаются под воздействием различных природных факторов.

Морские течения на поверхности океанов и морей вызываются главным образом ветром (ветровые течения). Его касательное напряжение создает трение, а движущийся воздух оказывает давление на водную поверхность. В результате этого верхний слой воды толщиной около 1,5 км начинает перемещаться в пространстве. Если ветер, вызвавший течение, устойчиво действует длительное время примерно в одном направлении, то образуется постоянное течение. Оно может распространяться на 1000 км. Если ветер, образующий течение, действует кратковременно, то создается эпизодическое случайное течение, существующее лишь сравнительно небольшое время. Главную роль в Мировом океане играют постоянные течения. Именно они осуществляют обмен водами между различными частями океана, именно они переносят тепло и соли, т.е. обеспечивают единство Мирового океана.

Перемещение вод в пространстве создает температурные различия течений. Соответственно они подразделяются на: теплые течения - их вода теплее окружающих вод; холодные - их вода холоднее окружающих вод; нейтральные - их вода близка по температуре к окружающим водам.

Основные характеристики морского течения: скорость (V м/с) и направление. Последнее определяется обратным способом по сравнению со способом определения направления ветра, т.е. в случае с течением указывается, куда течет вода (северо-восточное течение идет на северо-восток, южное - на юг и т.п.), тогда как в случае с ветром указывается, откуда он дует (северный ветер дует с севера, западный с запада и т.д.).

По направлению движения вод течения бывают прямолинейные, когда воды перемещаются по относительно прямым линиям, и круговые, образующие замкнутые окружности. Если движение в них направлено против часовой стрелки, то это - циклонические течения, а если по часовой стрелке - то антициклонические, иногда их называют антициклональными.

Морские течения охватывают всю толщу вод от поверхности до дна Мирового океана. По глубине своего протекания они подразделяются соответственно на поверхностные, глубинные и придонные. Скорость движения наиболее высока в самом верхнем (0-50 м) слое. Глубже она снижается. Глубинные воды движутся значительно медленнее, а скорость перемещения придонных вод 3-5 см/с. Скорости течений неодинаковы в разных районах океана.

Горизонтальное движение вод океана приближенно характеризуется симметрией относительно экватора, хотя в каждом полушарии имеются свои особенности.

В тропической зоне Мирового океана, где господствуют пассаты северо-восточного направления в Северном полушарии и юго-восточного - в Южном, по обе стороны экватора возникают мощные пассатные течения. Под действием силы Кориолиса они приобретают широтное направление и пересекают с востока на запад Атлантический, Индийский (кроме его северной тропической части) и Тихий океаны. В Северном полушарии - это Северное пассатное течение, его средняя скорость 80 см/с, а в Южном - Южное пассатное течение, его средняя скорость 95 см/с. Пассатные течения переносят большие массы воды, что создает ее нагон и соответственно повышает уровень у восточных берегов материков. Вследствие этого происходит отток воды у побережий и между Северным и Южным течениями образуется Межпассатное (экваториальное) противотечение, скорости которого в разных районах составляют от 50 до 130 см/с. Оно находится на 2-8? с.ш., что связано с асимметричностью расположения материков и океанов.

В Южном полушарии примерно около 50? ю.ш. постоянные и сильные западные ветры вызывают мощное Антарктическое циркумполярное течение (течение Западных ветров). Оно идет с запада на восток со средней скоростью 25-75 см/с, окаймляя южные части Атлантического, Индийского и Тихого океанов, т.е. охватывает все океанские пространства этой части земного шара.

Таким образом, Северное и Южное пассатные течения, Межпассатное (экваториальное) противотечение и Антарктическое циркумполярное течение - основные течения Мирового океана в целом.

В Мировом океане хорошо выражены вихревые движения вод, различные по происхождению, размерам и т.п. Так, основная струя Гольфстрима движется не прямолинейно, а образует горизонтальные волнообразные изгибы - меандры. Длина волны между гребнями 35-370 км. Вследствие неустойчивости потока меандры иногда отделяются от Гольфстрима севернее мыса Гаттерас и образуются самостоятельно существующие вихри. Их диаметр 100-300 км, толщина от тысячи до нескольких тысяч метров, продолжительность существования от нескольких месяцев до нескольких лет, скорость движения воды может достигать 300 см/с. Слева от струи Гольфстрима образуются теплые антициклонические вихри, а справа от нее - холодные циклонические. И те и другие дрейфуют со средней скоростью около 7 км/сут в сторону, противоположную направлению самого течения.

В северной Атлантике обнаружены вихри, созданные рельефом дна и ветрами. Они бывают циклонические и антициклонические, имеют диаметр порядка 100 км, захватывают слой воды толщиной порядка сотен метров и перемещаются со скоростями примерно несколько километров в сутки. Распространены в открытых районах океана.

2. Волнение

Волнение - одно из разновидностей волновых движений, существующих в океане. Это волны, вызванные воздействием ветра на поверхность моря. Кроме волнения в океанах и морях существуют другие виды волн: приливные, сейшевые, внутренние и т.п. Все волновые движения представляют собой деформацию массы воды под воздействием внешних сил. Сила может быть разовой (единичной), постоянно действующей или периодически, но в любом случае эта сила, выведя массу воды из равновесия, возбуждает в ней колебательное периодическое движение, выражающееся двояко: колеблется форма поверхности воды около поверхности покоя и колеблются отдельные частицы вокруг своих точек равновесия. Так как это колебание развивается во времени, то можно определить и скорость этих движений.

Волны разделяются на длинные и короткие. К длинным относятся волны, у которых длина значительно больше глубины места, например приливные, имеющие длину в сотни и даже тысячи километров, к коротким - ветровые размерами в десятки и сотни метров при средней глубине океана около 4 км. Существуют волны вынужденные, находящиеся непрерывно под воздействием силы, и свободные, распространяющиеся по инерции после окончания действия силы, вызвавшей их. Именно к такому виду относятся волны зыби, волны, оставшиеся после прекращения ветра, вызвавшего ветровое волнение.

2.1 Ветровые волны

Воздействуя на поверхность воды, ветер, благодаря трению о воду, создает касательные напряжения и влекущие усилия, а также вызывает местные колебания давления воздуха. В результате на поверхности воды даже при ветре со скоростью 1 м/с образуются маленькие волны, имеющие высоту, измеряемую в миллиметрах, и длину - в сантиметрах. Эти едва зародившиеся волны имеют вид ряби. Так как существование таких волн связано с поверхностным натяжением, их называют капиллярными. Если ветер прошел над водой кратковременным порывом, то образованные им пятна ряби исчезают с прекращением ветра - поверхностное натяжение стремится сократить площадь поверхности воды. Если ветер устойчивый, то капиллярные волны, интерферируя, увеличиваются в размерах, прежде всего по длине. Рост волн приводит к их объединению в группы и удлинению до нескольких метров. Волны становятся гравитационными.

Процессы передачи энергии от воздуха к воде и начальные стадии развития волн очень сложны и недостаточно изучены.

Существенное отличие ветрового волнения от зыби состоит в том, что оно развивается под действием не двух (сила тяжести и центробежная сила), а многих сил. Добавляется влияние ветра (трение и давление). Это приводит к нарушению симметрии формы волны - передний склон становится круче заднего, следовательно, и короче его. Частицы воды приобретают поступательную скорость и, закончив один оборот, возвращаются не в точку начала движения, а оказываются чуть впереди в сторону распространения волны - орбита не замыкается. Эта асимметрия профиля, увеличение крутизны переднего склона может дойти до срыва гребня, до образования переднего барашка, беляка. Наконец, из-за того, что скорость ветра часто неравномерна вдоль фронта (гребня) волны, становится неравномерной и высота волны вдоль гребня, иначе говоря, волна оказывается не двумерной, а трехмерной. Вот такие волны и бывают в море чаще всего.

Размеры трехмерных волн тем больше, чем ветер сильнее, продолжительнее и чем больше его разгон, т.е. расстояние, которое он пробегает над водой, а это зависит от его направления. Наибольшие волнения наблюдаются в районах с частыми и продолжительными штормами.

Измерение элементов волн связано с очень большими техническими трудностями, к тому же измерения в одной точке мало характеризуют все трехмерное волновое поле. Лучший способ его изучения - стереофотография, которая дает полную картину топографии, рельефа волновой поверхности моря, но только на один момент, на момент съемки. Чтобы изучить движение, развития явления во времени, можно использовать стереокиносъемку, дающую избыток материала, который требуется не очень часто. Поэтому в массовых наблюдениях пользуются приближенными приемами для качественной оценки размеров волнения в баллах (таблица 1).

Таблица 1

Шкала степени волнения (по Л.А. Жукову, 1976)

Высота волны, м

Балл степени волнения

Характеристика волнения

0

До 0,25

0,25 - 0,75

0,75 - 1,25

1,25 - 2,0

2,0 - 3,5

3,5 - 6,0

6,0 - 8,5

8,5 - 11,0

11,0 и более

0

1

2

3

4

5

6

7

8

9

Волнение отсутствует, штиль

Слабое

Умеренное

Значительное

Сильное

Очень сильное

Исключительное

2.2 Деформация волн у берега

При подходе к берегу, где глубина уменьшается до нуля у уреза воды, в волне происходят существенные изменения: изменяются ее профиль и направление движения - волнового луча. Волна, отражаясь от берега, может образовывать стоячую волну, может разрушаться. При разрушении волны возникает прибой (накат), или взброс, бурун. Различные варианты деформации волны связаны с характером берега и прибрежного рельефа дна. При пологом дне и неизменной прибрежной полосе передний склон волны становится круче, гребень догоняет впереди идущую подошву и наконец обрушивается, образуя прибой. Гребень волны устремляется на сушу, возникает заплеск. Чем больше волна, тем большую часть берега заливает заплеск. Ширина заплеска зависит от размеров волны и уклона берега и бывает от нескольких метров до десятков метров. В результате постоянной работы волн формируются пляжи и продольные (вдоль береговой линии) и поперечные (от берега в открытое море) потоки наносов. При отлогом дне и высоком крутом береге срывающийся гребень ударяет в берег и вода вскидывается вверх, образуя взброс. Вода при взбросах у берегов океана поднимается на десятки метров, наблюдались взбросы до 60 м. При крутом береге и приглубом дне может происходить отражение волн и интерференция падающей и отраженной волн, т.е. образование стоячей волны. Если недалеко от уреза на дне есть гряда с меньшими глубинами (вроде рифа), то волна, не доходя до уреза, разрушается, образуя бурун. При больших волнах бурун может образовываться и далеко от уреза на сравнительно большой (в десятки метров) глубине.

При подходе к урезу воды, начиная с глубины в половину длины волны, скорость, длина и высота ее уменьшаются. Но начиная с глубины приблизительно в 1/5 длины волны высота волны начинает возрастать, причем особенно быстро с глубины, равной 0,1 ? (кратчайшее расстояние между двумя соседними вершинами), затем волна разрушается, образуется прибой. течение волна океан цунами

Одновременно с деформацией профиля волны меняется и положение фронта волны. Под каким бы углом к берегу ни проходил он в открытом море, на берег волна выкатывается параллельно урезу или под очень острым углом к нему. Это объясняется тем, что волна у берега из класса коротких волн переходит в класс длинных. А длинные волны распространяются по другому закону: скорость их зависит не от длины волны, как у коротких волн, а от глубины места, она пропорциональна корню квадратному из глубины. Поэтому, как только волна вышла на глубину меньше половины длины волны, разные участки фронта (гребня) будут двигаться с разной скоростью: участок, ближайший к урезу, замедлит движение, и линия фронта станет искривляться - преломляться, подравнивая направление фронта к линии уреза. Возникает рефракция волн. Если береговая линия не прямая, а изрезанная, то возникает очень сложное волновое поле. Искривляются не только фронт волны, но и волновой луч, поэтому создается очень замысловатая система рефракции и интерференции. Волновые лучи сходятся к мысам берега и расходятся у заливов, сильно усложняя процессы формирования берега, образование абразионных и аккумулятивных участков. При этом могут образовываться и разрывные течения, идущие от берега в открытое море поперек фронта и разрывающие его. Лучевая картина волнения имеет очень важное значение не только для изучения геоморфологии берегов, но и для планирования и ведения гидротехнических работ в береговой зоне (постройка портов, берегоукрепительных сооружений и др.)

2.3 Волны цунами

Волны цунами возникают вследствие подводных землетрясений, которые деформируют дно. Эта деформация дна приподнимает или опускает здесь всю толщу воды, что приводит ее в движение на некоторой ограниченной площади океана. От нее на поверхности начинает перемещаться длинная волна или несколько волн. Высота волны в месте зарождения всего 1-2 м, а длина - несколько километров, поэтому ее крутизна ничтожна и волна цунами практически незаметна для визуального наблюдения. Лишь при подходе к берегу, волна трансформируется и достигает высоты 5-10 м, а в исключительных случаях - 35 м. Обрушиваясь на берег, она производит катастрофические разрушения в прибрежной зоне. Это грозное стихийное бедствие с негативными экономическими и экологическими последствиями.

Подсчитано, что за последнее тысячелетие в Тихом океане было около 1000 цунами. В Атлантическом и Индийском океанах их было всего несколько десятков. Чаще всего цунами бывают у берегов Японии (само название "цунами" - японское), Чили, Перу, Алеутских и Гавайских островов. Приуроченность цунами к Тихому океану объясняется сейсмической и вулканической его активностью. Из 400 действующих вулканов земного шара в Тихом океане находится 330. Большинство сильных землетрясений (около 80%) тоже происходит в зоне Тихого океана.

Катастрофические цунами приводят к ужасным бедствиям. Например, при цунами 1703 г. в Японии погибло около 100 тыс. человек, от цунами после взрыва вулкана Кракатау в Зондском проливе (1883) погибло около 40 тыс. человек.

Явления, подобные цунами, наблюдаются у берегов тропических стран. Их порождают тайфуны - тропические циклоны. Они приносят ветры огромной силы, которые нагоняют воду на берег и заливают его. Такое явление чаще всего называют штормовым нагоном, но из-за сходства результатов иногда называют "метеорологическим цунами".

3. Приливы и отливы

Приливы и отливы это периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики.

Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива - малой водой, а момент достижения этих предельных отметок уровня - стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря - условная величина, выше которой расположены отметки уровня во время приливов, а ниже - во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) - осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.

Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды - приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью

Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.

Объяснение происхождения приливообразующих сил. Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона.

Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и "приподнимает" все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.

Тем не менее, океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30-60 см, но она значительно увеличивается при подходе к берегам материков или островов.

За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной - обратной. Первая из них всего на 5% выше второй.

Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива около 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.

Наибольшие амплитуды приливов. Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.

Ветер и погода. Ветер оказывает существенное влияние на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.

За счет повышения атмосферного давления над обширной акваторией происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм ртутного столба, уровень воды понижается приблизительно на 33 см. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений. Формирование упомянутых волн может быть сопряжено либо с ветрами ураганной силы, либо с подводными землетрясениями (в последнем случае они называются сейсмическими морскими волнами, или цунами) [5].

Заключение

Поверхностные течения в океане имеют преимущественно ветровое происхождение. Вращение Земли оказывает всестороннее влияние на океаны (сила Кориолиса).

В северном и южном полушариях основные океанические течения образуют антициклонические вихри (круговороты); в зоне климатического экватора они разделяются Экваториальным противотечением восточного направления.

Течения на западной стороне круговоротов, такие, как Гольфстим и Куросио, более сильные и переносят больше воды, чем течения на восточной стороне океанических бассейнов.

Список литературы

1. http://www.ed.vseved.ru

2. Залогин Б.С., Кузьминская К.С. Мировой океан: Учеб. пособие для студ. высш. пед. учеб. заведений. - М.: Издательский центр "Академия", 2001. - 192 с.

3. Михайлов В.Н., Добровольский А.Н. Общая гидрология: учебник для геогр. спец. вузов. - М.: Высш. шк., 1991. - 368.: ил.

4. http://ru.wikipedia.org

5. http://www.krugosvet.ru

6. Пирожник И.И. География мирового океана. - М.: ТетраСистемс, 2006, 320с.

Размещено на Allbest.ru

...

Подобные документы

  • Основные элементы и виды приливов. Влияние Луны и Солнца на движение океанских вод. Схема распределения приливообразующей силы на меридиональном сечении поверхности Земли. Изменение уровня моря во время прилива. Деформация приливной волны у берега.

    презентация [1,1 M], добавлен 28.05.2015

  • Главные черты строения океанических впадин. Действительная картина подводного рельефа на современных картах Мирового океана. Особенность строения океанского ложа и хребтов. Осадки Мирового океана. Будущее освоение океана. Основные типы донных осадков.

    реферат [17,4 K], добавлен 16.03.2010

  • История исследования глубоководных областей океана. Методы изучения строения океанического дна. Анализ особенностей образования континентальных окраин материков. Структура ложа океана. Описания основных форм рельефа, характерных для Мирового океана.

    реферат [4,4 M], добавлен 07.10.2013

  • Биогенное и эндогенное происхождение вод биосферы. Распределение суши и воды по поверхности. Суммарные запасы поверхностных вод. Составляющие Мирового океана. Водный и солевой баланс, температурный режим. Население Мирового океана, его суммарная биомасса.

    курсовая работа [715,7 K], добавлен 19.04.2011

  • Гипотезы образования Мирового океана. Виды рельефа дна: шельф, материковый склон, материковое подножие, разломы, океанические хребты, рифтовые долины. Течения Гольфстрим и Куросио, экваториальные течения, термохалинная циркуляция, приливы и цунами.

    реферат [41,0 K], добавлен 18.05.2012

  • Геологическая деятельность океанов и морей. Особенности добычи нефти и газа из подводных недр. Крупнейшие центры подводных нефтеразработок. Шельфовые месторождения твердых ископаемых. Минеральные ресурсы Мирового океана и возможности их освоения.

    курсовая работа [406,7 K], добавлен 22.03.2016

  • Исследования континентальных окраин Индийского океана. Общие сведения и факторы формирования континентальных окраин Индийского океана. Основные структурные и тектонические особенности выделенных по географическому признаку берегов Индийского океана.

    реферат [8,1 M], добавлен 06.06.2011

  • Основные черты рельефа дна Мирового океана по морфологическим данным. Основные особенности строения земной коры под океанами. Краткая история развития сейсморазведки. Современные методы сейсморазведки и аппаратура, применяемая при исследованиях на море.

    курсовая работа [7,6 M], добавлен 19.06.2011

  • Понятие активных действиях вод Мирового океана и морей. Последствия движений вод морей и океанов. Волновые движения, их развитие на поверхности воды и возникновение под действием и по направлению ветра. Основные способы разрушения горных пород берега.

    курсовая работа [5,0 M], добавлен 28.06.2014

  • Причины возникновения одиночных волн огромной амплитуды, внезапно возникающих в океане – волнах-убийцах. Их отличие от других волн, предоставляемая ими угроза для судов, лайнеров, морских сооружений, нефтяных платформ. Проявление волн в Мировом океане.

    курсовая работа [3,6 M], добавлен 03.03.2014

  • Характеристика наиболее крупных форм рельефа океана, которые отражают поднятия материков и впадины океанов, а также их взаимоотношение. Материковые отмели или шельфы, склоны. Глобальная система срединных океанических хребтов. Островные дуги, талаплены.

    курсовая работа [1,1 M], добавлен 16.04.2011

  • Определение понятия, динамики вод Мирового океана. Гольфстрим исчезает - Европа замерзает. Рассмотрение зависимости между Лабрадорским течением и плотностью Гольфстрима. Кардиостимулятор мирового климата на планете, угроза нового ледникового периода.

    презентация [1,6 M], добавлен 28.05.2015

  • Физико-географические особенности расположения морской акватории. Количество атмосферных осадков над Северной Атлантикой. Общий обзор истории геологической изученности акваторий. Геоморфология берегов. Гидрологические и гидрохимические особенности океана.

    курсовая работа [649,2 K], добавлен 03.05.2012

  • Физико-геологические основы сейсморазведки. Три типа объёмных сейсмических волн: одна продольная и две поперечных. Зависимость фазовой скорости распространения от частоты регистрации поперечных волн Лява. Запись гармоник поверхностных волн Лява.

    курсовая работа [452,1 K], добавлен 28.06.2009

  • Анализ русловых деформаций. Расчет объемов грунтозаборных работ, плана течений. Определение рабочего режима и производительности землесосного снаряда. Оценка влияния дноуглубления на положения уровня воды на перекатном участке и устойчивости русла реки.

    курсовая работа [613,3 K], добавлен 04.08.2011

  • Рассмотрение особенностей процесса абразии. Формирование волнами волноприбойной ниши, карниза и абразионной террасы. Изучение свойств подводного песчаного вала. Образование лагуны, пляжа, томболо. Анализ типов донных осадков, областей осадконакопления.

    презентация [5,5 M], добавлен 28.05.2015

  • Объёмные сейсмические волны: продольные (P-волны) и поперечные (S-волны). Распространение SH-волны в различных геологических условиях среды. Описание волн и создаваемых ими на границе напряжений. Граничные условия и спектральные коэффициенты рассеивания.

    курсовая работа [2,1 M], добавлен 28.06.2009

  • Методы изучения океанов и морей из космоса. Необходимость дистанционного зондирования: спутники и датчики. Характеристики океана, исследуемые из космоса: температура и соленость; морские течения; рельеф дна; биопродуктивность. Архивы спутниковых данных.

    курсовая работа [2,6 M], добавлен 06.06.2014

  • Причины возникновения оледенений. Астрономические факторы, вызывающие похолодание на Земле. Парниковый эффект: мифы и реалии. Опасность и реальная возможность потепления (изменения) климата. Последствия повышения уровня Мирового океана, угроза потопа.

    реферат [20,4 K], добавлен 11.09.2015

  • Причины и классификация, примеры и прогноз землетрясений. Денудационные, вулканические, тектонические землетрясения. Моретрясения, образования грозных морских волн — цунами. Создание в сейсмически опасных районах пунктов наблюдения за предвестниками.

    реферат [16,7 K], добавлен 13.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.