Применение модулей геофизических исследований скважин и методика обработки данных в процессе бурения наклонно-направленных и горизонтальных скважин с использованием забойных телеметрических систем

История развития бескабельных систем для исследования скважин. Цели и задачи направленного бурения. Обзор телесистем, применяемых при проводке горизонтальных и наклонно-направленных скважин. Построение геологической модели и прогнозного разреза.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 24.03.2015
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Они должны быть связаны между собой информацией, организованной в соответствующие файлы, пригодные для обмена между различными подмодулями. При такой организации в каждом подмодуле или даже в различных частях одного подмодуля программы могут быть написаны на различных языках программирования, наиболее подходящих для решения этого класса задач. Для математического описания геонавигационных задач лучше всего использовать Фортран, с его богатством готовых математических функций, для описания графических задач - более приспособленные для этого языки С++ и Delphi.

На основании изложенных представлений выбраны следующие независимые подмодули:

Программно-методическое обеспечение геофизических навигационных измерений, реализующее обработку результатов измерений и представление измеренных данных в виде диаграмм и обменных LAS-файлов параметров геофизических полей с любым синхронизированным шагом по глубине;

Программно-методическое обеспечение пространственных построений околоскважинной среды, реализующих построение поверхностей параметров (глубин идентичных горизонтов и их свойств) по соседним скважинам и картам.

Программно-методическое обеспечение геолого-геофизической привязки забоя, реализующее определение местоположения забоя путем корреляции данных, полученных в процессе бурения по соседним скважинам и картам.

Подмодуль 1 обеспечивает сбор первичной геофизической информации, поступающей с различных датчиков аппаратурного модуля системы LWD. Количество обрабатываемых каналов в подмодуле может быть переменным, но в настоящее время оно рассматривается равным 7 (в соответствии с ТЗ), включающим гамма-каротаж, электрокаротаж, каротаж спонтанной поляризации, виброкаротаж, механический каротаж, кажущееся сопротивление пород по амплитуде и по фазе сигнала канала связи.

В подмодуле 1, в соответствии с информацией о проходимых глубинах ствола скважины, поступающей от бурового мастера, проводится осреднение, статистическая фильтрация, первичная увязка со скоростью бурения и формирование текущего обменного LAS-файла первичной информации, полученной LWD.

Основные требования к первичной информации измеренных параметров LWD определяются характером их дальнейшего использования. Так как для навигационных вычислений с помощью корреляции должна быть установлена идентификация горизонтов и основные подходы базируются на идеях поиска коррелятивных признаков, то не имеет большого значения метрология измеряемых параметров. Важно их приведение к условиям, позволяющим достоверно сравнивать относительные картины аномалий, поведение кривых текущих геофизических измерений LWD с измерениями стандартных геофизических методов на соседних скважинах и типовых нормальных разрезов.

Подмодуль 2 предполагает работу с текущим обменным LAS-файлом информации LWD, объединение его с LAS-файлами информации LWD, полученными на предыдущем этапе, с информацией, содержащейся в виде карт, таблиц и каротажных диаграмм в базе геолого-геофизической информации об окружающем околоскважинном пространстве. В процессе его работы проводится глубокая обработка данных инклинометрии в соответствии с аппроксимационными предположениями о пространственном искривлении скважин, приведение их к вертикали, при необходимости - к нормальному разрезу, построение структурных и трендовых поверхностей методами аналитической геометрии. Результатами обработки данного подмодуля будут несколько различных LAS-файлов с промежуточными результативными кривыми, необходимыми для графического представления траектории скважины в геологической среде околоскважинного пространства.

Подмодуль 3 обеспечивает работу с LAS-файлами геофизических кривых соседних скважин и объединенными текущими LAS-файлами бурящейся наклонно-направленной скважины. В процессе обработки проводится многократная корреляция кривых и установление соответствия глубин горизонтов в наклонно-направленной скважине с аналогичными в соседних скважинах. После установления идентичности горизонтов рассчитывается положение текущего забоя скважины относительно целевого пласта, в котором требуется расположить необходимым образом участок наклонно-направленной скважины. С этой целью рассчитываются расхождения между глубинами забоя бурящейся скважины и проектной траекторией скважины.

В процессе обработки во всех подмодулях рассчитываются промежуточные кривые ГИС, собранные в LAS-файлы различного вида, которые будут использоваться в программах графического представления.

Информация, накопленная в базе данных, является исходной для получения графического представления результатов обработки на экране монитора, облегчая тем самым процесс принятия решения при управлении бурением.

Визуальное представление реализуется через интерактивный выбор следующих окон, в которых реализуются следующие графические функции:

Нарисовать призму с возможностью ее поворота вокруг вертикальной оси, проходящей через устье наклонной скважины D.

Нарисовать инклинограмму в принятых масштабах.

Нарисовать многократно вертикальный разрез в задаваемых направлениях.

Нарисовать аксонометрию "занавесок"- следов траектории скважины на ряде вертикальных плоскостей, проходящих прямолинейные отрезки инклинограммы. Окончательная реализация данного рисунка будет зависеть от предварительного опробования.

Нарисовать корреляционную схему с кривыми ГИС (по заданию и выбору) для наклонной скважины (D) и любой из 3х вертикальных (A, B, C).

Дать на экране таблицу, в которой указаны расстояния от текущего положения долота до точки входа в пласт, угол входа в пласт, кратчайшее расстояние от текущей точки до пласта, направление скважины в текущей точке.

5.1 Обработка данных инклинометрии

Данные инклинометрии могут обрабатываться различными методами, неравноценными с точки зрения математики, по точности результатов. В связи с этим ряд методов был опробован на модельных скважинах для оценки величины расхождений в результатах и выбора наилучшего. Учитывая необходимость работы программы в режиме реального времени, было решено использовать методы позволяющие обходится без использования большого объема памяти и сложных вычислений, что вполне допустимо, учитывая относительно малый шаг по глубине, с которым проводятся инклинометрические измерения. Данные методы позволяют для каждого интервала, соответствующего участку ствола скважины между двумя замерами, найти приращения по трем координатным осям X,Y,Z используя длину интервала и значения азимута и зенитных углов на концах интервала. Суммируя эти приращения и зная координаты точки привязки (для устья скважины (0,0,0), азимут= азимут1, зенит=0) можно определить текущее положение забоя и траекторию скважины.

Ниже приведены описания опробованных методов: (ось X на восток, ось Y на север, ось Z вниз)

Метод усреднения углов - исследуемый участок ствола скважины между двумя точками замера представляется отрезком прямой, причем зенитный угол и азимут на протяжении участка интерполяции принимаются равными средним арифметическим соответствующих углов замеренных на концах интервала. Приращения координат:

x = l* sin()*cos(),y = l* sin()*sin(),

z = l*cos()

Балансный тангенциальный метод - исследуемый участок ствола скважины между двумя точками замера разбивается на два участка одинаковой длины: верхний и нижний. Каждый участок интерполируется отрезком прямой, причем зенитный угол и азимут прямой, интерполирующей верхний участок, принимаются равными соответствующим углам в верхней точке замера, а зенитный угол и азимут прямой, интерполирующей нижний участок, принимаются равными соответствующим углам в нижней точке замера. Приращения координат:

x = ,

y = ,

z = .

Метод кольцевых дуг - исследуемый участок ствола скважины между двумя точками замера представляется как дуга окружности. Каждая дуга лежит на наклонной плоскости, положение которой определяется по известным зенитным углам и азимутам в точках замера. Дуги проводятся таким образом, чтобы касательные вектора в точках замера были касательными к проводимым дугам. Радиус дуги определяется из условия, что длина дуги должна быть такой же, как измеренное по стволу скважины расстояние между точками замера.

Метод, основанный на предположении о линейном изменении параметров (метод трапеций) - предполагается, что на исследуемом участке траектории ствола скважины азимут и зенитный угол изменяются линейно:

,где ,,где ,

x =

y = z =

Для проверки и сравнения этих методов они были опробованы на модельных скважинах. Траектория скважины задавалась параметрическими уравнениями вида:

x = x(t), y = y(t), z = z(t).

Касательный вектор к траектории скважины в точке соответствующей параметру

t = t0 - (x(t0),y(t0), z(t0)).

Зная его можно найти значения азимута и зенита в данной точке.

Глубина по стволу l, соответствующая параметру t=t0:

l=,

(константа интегрирования находится из условия l=0 при t=начальному значению). Найденные таким образом тройки значений Глубина, Азимут, Зенит - использовались в качестве исходных данных для проверяемых методов, результаты, работы которых сравнивались со значениями полученными из уравнения траектории скважины.

Ниже указаны три наиболее характерные модели и результаты, полученные на них.

Уравнения

Глубина по стволу

1

x = 5*t

y = 5*t

z =

2

x = axt2+bxt+cx

y = ayt2+byt+cy

z = azt2+bzt+cz

c=4(ax2+ay2+az2), b=4(axbx+ayby+azbz) a=bx2+by2+bz2, R=a+bt+c2t , =4ac-b2

ax=1,bx=6,ay=5,by=1,az=7,bz=1,cx=cy=cz=0

3

x = 5*ln(t)

y = t-1

z = 25*ln(t)

+ const

По полученным результатам не удается выделить какой-либо из методов как более точный, хотя следует отметить несовершенство моделей - траектория ствола реальной скважины не является "гладкой" и имеет перегибы в разные стороны, предполагается, что положение инклинометра в какой-либо точке скважины совпадает с направлением касательного вектора в этой точке и т.д. Однако, несмотря на это был сделан вывод, что выбор метода не является существенным и решено взять за основу метод усреднения углов, рекомендованный стандартами ЕАГО.

Заключение

Необходимость повышения экономической эффективности (рентабельности) геологоразведочных работ, разработка труднодоступных месторождений и месторождений с трудно извлекаемыми запасами углеводородов требуют применения более эффективных технологий, новых технических средств и грамотного мониторинга на всех стадиях разработки месторождений.

Построение информационных моделей немыслимо без геофизического сопровождения процесса разработки залежей, использования контроля за процессами интенсификации режима работы скважин и месторождений.

Одной из современных технологий увеличения нефтеотдачи продуктивных пластов является разработка месторождений углеводородов наклонно-направленными, горизонтальными и разветвленно-горизонтальными скважинами.

Это потребовало создания новых технических средств и технологий бурения, освоения скважин, вскрытия пластов и эксплуатации месторождений.

Оказались ограниченными методы оптимизации процесса бурения и геофизических исследований пологих и горизонтальных скважин аппаратурой на каротажном кабеле, систем с проводными каналами связи.

Рассмотренные в работе вопросы оптимизации процесса проводки точно направленных скважин и геофизических исследований в процессе бурения бескабельными системами открывают новые перспективы повышения эффективности разведки и разработки месторождений нефти и газа.

Исследования по оценке возможностей каналов связи, накопленный опыт конструирования телеметрических систем различного назначения, позволили определить область применения канала "забой - устье", их перспективность для решения конкретных технических и геологических задач.

Следует заметить, что некоторая ограниченность пропускной способности разработанных каналов передачи сообщений требуют их использования для передачи оперативной информации, необходимой для управления процессом бурения и прогнозирования геологического разреза с целью выделения зон аномального пластового давления, обнаружения тектонических нарушений, уверенной проводки скважины по продуктивному пласту.

Большая часть данных измерений может быть записана в память для последующего извлечения на поверхность, воспроизведения и анализа.

Достаточно заметить, что более 80 % всех нефтяных и газовых скважин в мире бурятся с горизонтальным окончанием. Выполненный нами анализ эффективности применения новой технологии дает эффект тогда, когда все этапы проводки скважины, ее освоения и эксплуатации выполняются квалифицированно совместными усилиями геологов, геофизиков, буровиков, нефтяников и технологов.

Скважинные измерительные системы с различными каналами связи уже сейчас решают широкий круг производственных задач при бурении скважин, их исследовании, и промышленной эксплуатации.

Бескабельные и комбинированные измерительные системы надо рассматривать как средство получения дополнительной, а порой и единственной информации об объекте исследований при решении конкретной геологической или технической задачи в общем комплексе геологоразведочных работ, в различных отраслях промышленности и научных исследованиях.

Инклинометрия и применение дополнительных геофизических модулей занимает одно из самых существенных положений в проводке, исследовании и документировании траекторий и геофизических параметров наклонно-направленных и горизонтальных скважин.

Повышение требований к точности проводки таких скважин потребовали разработки более точных систем, встраиваемых в буровой инструмент, спускаемых на бурильных трубах.

бескабельный скважина бурение

Литература

1. А.А. Молчанов, Г.С. Абрамов. Бескабельные системы для исследований нефтегазовых скважин (теория и практика). /Под общей редакцией А.А. Молчанова - Москва: ОАО "ВНИИОЭНГ", 2003.-450 с.

2. Молчанов А. А., Абрамов Г. С., Терехов Г. В. Электромагнитный канал связи "забой-устье", Наука в СПГГИ (ТУ), № 2, 1999, Санкт-Петербург.

3. Молчанов А. А., Абрамов Г. С., Сараев А. А. Телеизмерительные системы с электромагнитным каналом связи для проводки и геофизических исследований наклонно-направленных и горизонтальных скважин Западной Сибири (опыт применения и перспективы). НТВ АИС "Каротажник", №59,1999.-С.85-91.

4. Абрамов Г. С., Барычев А. В., Камнев Ю. М., Молчанов А. А., Сараев А. А., Сараев А.Н.Опыт эксплуатации и перспективы развития забойных инклинометрических систем с электромагнитным каналом связи. НТЖ "Автоматизация, телемеханизация и связь в нефтяной промышленности", №1-2, 2001г., с.23-26.

5. Харкевич А. А. Борьба с помехами.-М.: Наука, 1965.-212 с. с ил.

6. Чупров В. П., Епишев О. Е., Якимов В. А., Камоцкий В. А., Григорьев В. М. Телесистема ЗИС-4 с беспроводным электромагнитным каналом связи. Десять лет эксплуатации.- В кн.: Состояние и перспективы использования геофизических методов для решения актуальных задач поисков, разведки и разработки месторождений полезных ископаемых".-Октябрьский, 1999.-С. 362-366.

Размещено на Allbest.ru

...

Подобные документы

  • История развития метода наклонно-направленного бурения. Общая характеристика наклонно-направленных скважин, а также особенности их бурения с помощью забойной компоновки. Анализ основных способов наклонно-направленного бурения в местах залежи нефти и газа.

    реферат [1,2 M], добавлен 16.11.2010

  • Методы кривления стволов скважин. Характеристика компоновок низа бурильной колонны, применяемых для гидромонирторного и роторного направленного бурения. Прогнозирование поведения КНБК. Влияние геологических факторов на траекторию ствола скважины.

    презентация [722,8 K], добавлен 20.09.2015

  • Причины и механизм самопроизвольного искривления ствола скважин, их предупреждение. Назначение и область применения наклонно-направленных скважин. Цели и способы направленного бурения. Факторы, определяющие траекторию перемещения забоя скважины.

    курсовая работа [1,4 M], добавлен 21.12.2012

  • Проектирование наклонно направленных скважин. Схема определения пространственного положения любой точки на оси. Элементарный участок профиля. Типы профилей наклонно направленных скважин и особенности их выбора. Методика расчёта элементов траектории.

    курсовая работа [102,8 K], добавлен 08.01.2014

  • Сооружение нескольких скважин, как правило наклонно направленных, устья которых сгруппированы на близком расстоянии друг от друга. Требования к строительству кустов скважин. Условия использования метода кустового бурения. Преимущества кустового бурения.

    презентация [139,2 K], добавлен 28.10.2016

  • Метод ударно-канатного бурения скважин. Мощность привода ротора. Использование всех типов буровых растворов и продувки воздухом при роторном бурении. Особенности турбинного бурения и бурения электробуром. Бурение скважин с забойными двигателями.

    курсовая работа [1,5 M], добавлен 10.10.2011

  • Краткие физико-географические сведения о Федоровском месторождении, история его освоения, геологическое строение и физические свойства горных пород. Анализ путей совершенствования геофизических методов геоинформационных систем для горизонтальных скважин.

    дипломная работа [2,7 M], добавлен 07.09.2010

  • Характеристика геологического разреза на территории нефтяного месторождения, классификация породы. Выбор способа бурения и построение конструкции скважин, расчет глубины спуска кондуктора. Мероприятия по борьбе с самопроизвольным искривлением скважин.

    курсовая работа [460,2 K], добавлен 01.12.2011

  • Геологическое строение северо-уренгойского месторождения. Проектирование профиля ствола скважины. Буровые промывочные жидкости. Технологические решения, принятые по проводке скважин на Северо-Уренгойском месторождении. Параметры телесистемы "Orienteer".

    дипломная работа [3,3 M], добавлен 12.11.2014

  • Анализ компьютерных технологий геолого-технологических исследований бурящихся нефтяных и газовых скважин. Роль геофизической информации в построении информационных и управляющих систем. Перспективы российской службы геофизических исследований скважин.

    практическая работа [32,1 K], добавлен 27.03.2010

  • История развития и проблемы сверхглубокого бурения скважин. Особенности Кольской и Саатлинской сверхглубоких скважин. Характеристика способов бурения и измерение физических свойств пород. Новая техника и новые технологии бурения, их научные результаты.

    курсовая работа [130,5 K], добавлен 02.03.2012

  • Особенности буровых работ. Методы контроля и регулирования, применяемые в процессе бурения скважины. Общая характеристика некоторых прогрессивных методик, обеспечивающих процесс бурения. Критерии оценки технического состояния скважин. Организация ГИС.

    шпаргалка [73,1 K], добавлен 22.03.2011

  • Исследование основных способов бурения нефтяных и газовых скважин: роторного, гидравлическими забойными двигателями и бурения электробурами. Характеристика причин и последствий искривления вертикальных скважин, естественного искривления оси скважин.

    курсовая работа [2,0 M], добавлен 15.09.2011

  • Виды скважин, способы добычи нефти и газа. Вскрытие пласта в процессе бурения. Причины перехода газонефтепроявлений в открытые фонтаны. Общие работы по ремонту скважин. Обследование и подготовка ствола скважины. Смена электрического центробежного насоса.

    учебное пособие [1,1 M], добавлен 24.03.2011

  • Геологическое строение месторождения и залежей. Испытание и опробование пластов в процессе бурения скважин. Оценка состояния призабойной зоны скважин по данным гидродинамических исследований на Приобском месторождении. Охрана окружающей среды и недр.

    курсовая работа [3,5 M], добавлен 06.03.2010

  • Цели и задачи геофизических исследований газовых скважин. Классификация основных методов исследования по виду и по назначению: акустический, электрический и радиоактивный каротаж скважин; кавернометрия. Схематическое изображение акустического зонда.

    реферат [2,0 M], добавлен 21.02.2013

  • Геолого-технические условия бурения нефтегазовых скважин Западной Сибири, условия и принципы работы телеметрических систем. Геологическое строение участка: литолого-стратиграфический разрез, доюрские образования, нефтеносность. Оборудование для бурения.

    отчет по практике [1,6 M], добавлен 22.04.2011

  • Характеристика Тугтунской эксплуатационной скважины. Пластовые давления и давления гидроразрыва. Температурная характеристика и свойства горных пород разреза, конструкция скважины. Материалы и технология забуривания вторых наклонно-направленных стволов.

    дипломная работа [521,0 K], добавлен 12.03.2013

  • Особенности породоразрущающего инструмента при бурении наклонно направленных скважин. Общая характеристика породоразрущающих долот (шарочные и лопастные, алмазные и фрезерные буровые), их устройство и степень фрезерования стенок ствола скважины.

    курсовая работа [1,2 M], добавлен 19.06.2011

  • Характеристика района в географо-экономическом плане, геолого-геофизическая изученность района. Выбор участка работ и методов ГИС. Методика геофизических исследований скважин. Камеральная обработка и интерпретация материалов. Смета объемов работ.

    дипломная работа [2,4 M], добавлен 04.02.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.