Подземные хранилища газа
Общая характеристика подземных хранилищ газа (ПХГ), их классификация по режиму работы, объекту эксплуатации и виду пластовой энергии. Оборудование ПХГ, технологическая схема закачки и отбора газа из хранилища. Расчет количества эксплуатационных скважин.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.04.2015 |
Размер файла | 208,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Характеристика подземных хранилищ газа
Подземное хранилище газа (ПХГ) -- это комплекс инженерно-технических сооружений в пластах-коллекторах геологических структур, горных выработках, а также в выработках-емкостях, созданных в отложениях каменных солей, предназначенных для закачки, хранения и последующего отбора газа, который включает участок недр, ограниченный горным отводом, фонд скважин различного назначения, системы сбора и подготовки газа, компрессорные цеха.[1]
1.1 Классификация подземных хранилищ газа
По режиму работы ПХГ в пористых пластах подразделяются на:
- базисные - для обеспечения сезонной (несколько месяцев) неравномерности газопотребления, характеризующиеся относительно стабильными режимами в сезоне отбора газа;
- пиковые - для обеспечения кратковременной (несколько суток) неравномерности газопотребления, характеризующиеся значительными изменениями суточной производительности в период отбора;
- газгольдерные - для обеспечения кратковременной (несколько суток) неравномерности газопотребления, характеризующиеся кратковременными закачками газа в сезоне отбора;
- стратегические - для образования долгосрочного запаса газа, используемого в исключительных случаях.
По назначению ПХГ делятся на базовые, районные и локальные:
- Базовое ПХГ характеризуется объемом активного газа до нескольких десятков миллиардов кубических метров и производительностью до нескольких сотен миллионов кубических метров в сутки, имеет региональное значение и влияет на газотранспортную систему и газодобывающие предприятия.
- Районное ПХГ характеризуется объемом активного газа до нескольких миллиардов кубических метров и производительностью до нескольких десятков миллионов кубических метров в сутки, имеет районное значение и влияет на группы потребителей и участки газотранспортной системы (на газодобывающие предприятия при их наличии).
- Локальное ПХГ характеризуется объемом активного газа до нескольких сотен миллионов кубических метров и производительностью до нескольких миллионов кубических метров в сутки, имеет локальное значение и область влияния, ограниченную отдельными потребителями. По типу различают наземные и подземные газовые хранилища. К наземным относятся газгольдеры (для хранения природного газа в газообразном виде) и изотермические резервуары (для хранения сжиженного природного газа), к подземным -- хранилища газа в пористых структурах, в соляных кавернах и горных выработках.
По объекту эксплуатации подразделяются на ПХГ:
- в водоносных пластах;
- в истощенных газовых, газоконденсатных и нефтяных месторождениях.
По количеству объектов подразделяются на ПХГ:
- однопластовые;
- многопластовые.
По виду пластовой энергии подразделяются на ПХГ:
- с газовым режимом (постоянный газонасыщенный поровый объем);
- с водонапорным режимом (переменный газонасыщенный поровый объем).[2]
1.2 Общие сведения о подземных хранилищах газа
В настоящее время наибольшее распространение получили ПХГ созданные в пористых пластах (истощенные месторождения и водоносные структуры). Кроме пористых пластов пригодны для создания хранилищ и залежи каменных солей (создаваемые путем размыва так называемой каверны), а также в горных выработках залежей каменного угля и др. полезных ископаемых.
Всего в мире действует более 600 подземных хранилищ газа общей активной емкостью порядка 340 млрд мі. [1]
Наибольший объем резерва газа хранится в ПХГ, созданных на базе истощенных газовых и газоконденсатных месторождений. Менее емкими хранилищами являются соляные каверны, есть также единичные случаи создания ПХГ в кавернах твердых пород.
Для подземного хранения газа используют естественные пористые и проницаемые коллекторы, а также непористые и непроницаемые породы. Подземное хранение газа является наиболее приемлемым и основным средством аккумулирования значительных объемов газа и регулирования подачи газа в соответствии с сезонной неравномерностью газопотребления.
В процессе подземного хранения газа могут быть решены следующие основные задачи:
- удовлетворение спроса на газ в период наибольшего газопотребления (пиковые нагрузки), связанного с отопительной нагрузкой в зимнее время;
- уменьшение капитальных вложений в магистральный газопровод и компрессорные станции;
- обеспечение благоприятных условий для наиболее экономичного режима работы источников газа и магистрального газопровода с постоянной пропускной способностью;
- создание необходимых запасов газа в определенных районах страны.
Наилучшими с точки зрения экономики и аккумулирующей способности являются хранилища, созданные в истощенных газовых и нефтяных месторождениях, так как отпадает необходимость детального изучения этого уже эксплуатируемого ранее месторождения и сооружения большего числа эксплуатационных скважин. Циклической эксплуатацией такого хранилища является промышленное заполнение его газом.
Сооружение подземных хранилищ в водоносных пластах связано с детальным изучением самого пласта и разведывательно-промышленной закачкой газа после строительства большого числа новых скважин.
На стадии планового задания на строительство магистрального газопровода рассматривается вопрос о наиболее приемлемых способах обеспечения равномерной работы газопровода независимо от сезонной неравномерности газопотребления. В связи с этим решается вопрос о необходимости, возможности и целесообразности строительства подземного хранилища газа. Решение этого вопроса связано с определением графика потребления газа по месяцам, неделям, суткам и часам. На основании этих данных определяется объем газа, необходимый для выравнивания сезонной неравномерности газопотребления, который может быть определен тремя методами:
- по числу градусной недостаточности и температуре и количеству тепла, необходимого на один градусо-день недостатка температуры;
- по нормам расхода газа на отопление по всем категориям потребителей;
- по коэффициентам месячной неравномерности газопотребления.
Закачка газа происходит при переменном давлении и расходе закачиваемого газа. Компрессорные станции на ПХГ с компрессорными закачкой и отбором должны иметь большой диапазон регулирования подачи -- от 5 % в период первоначального заполнения до 100 % при проектной приемистости коллектора. Диапазон рабочих давлений КС определяется пластовым давлением, давлением в подводящем газопроводе и потерями давления в пласте, скважинах и шлейфах. В зависимости от степени подвижности пластовых вод режим пласта приближается к газовому (для истощенных месторождений) или к водонапорному. Высокое давление закачки увеличивает эффективность ПХГ. Следует учитывать, что давление в призабойной зоне в период хранения может значительно падать.
Закачиваемый в сводовую часть куполообразной структуры газ образует там газовый "пузырь", а вода оттесняется к краям структуры. При вытеснении воду из пласта можно удалить через разгрузочные скважины, а при оттеснении -- перемещать по водоносной системе. Кровля может быть представлена плотными пластичными глинами или крепкими известняками и доломитами при отсутствии трещин и разломов, что при толщине кровли 5- 15 м на глубине 300-1000 м достаточно для предотвращения утечек газа. Наиболее экономичным считают ПХГ на глубине 300- 600 м. В настоящее время ПХГ стремятся создать при каждом крупном районе потребления газа.
Технологическая схема подземного хранилища газа должна позволять производить сбор, замер количества, распределение и обработку газа при отборе и закачке его в хранилище. Перед закачкой в хранилище газ подвергают компримированию до необходимого давления (12-15 МПа). Применяемые технологические схемы ПХГ отличаются в основном только способами очистки газа при закачке в пласт. Когда используют поршневые компрессорные агрегаты, при сжатии газ нагревается и загрязняется парами компрессорного масла. При попадании масла на забой скважины уменьшается сечение поровых каналов и снижается фазовая проницаемость для закачиваемого газа, что приводит к увеличению давления закачки и уменьшению расхода газа. Поэтому газ перед закачкой необходимо очищать от примесей компрессорного масла. При применении многоступенчатых центробежных компрессоров очистка газа от масла не требуется. Для уменьшения дополнительных температурных напряжений в металлической фонтанной арматуре, обсадной колонне и другом оборудовании скважины нагретый газ охлаждается.
В процессе хранения газ обогащается парами воды. При отборе его из хранилища с потоком газа выносятся твердые примеси (частицы глины, песка и др.). Поскольку газ должен поступать в газопровод очищенным, необходимо производить очистку и осушку газа.
1.3 Подземное хранение газа в России
В настоящее время в России создана развитая система подземного хранения газа, которая выполняет следующие функции:
· регулирование сезонной неравномерности газопотребления;
· хранение резервов газа на случай аномально холодных зим;
· регулирование неравномерности экспортных поставок газа;
· обеспечение подачи газа в случае нештатных ситуаций в ЕСГ;
· Создание долгосрочных резервов газа на случай форс-мажорных обстоятельств при добыче или транспортировке газа.
Подземные хранилища газа (ПХГ) являются неотъемлемой частью Единой системы газоснабжения (ЕСГ) России и расположены в основных районах потребления газа.
На территории Российской Федерации расположены 25 объектов подземного хранения газа, из которых 8 сооружены в водоносных структурах и 17 -- в истощенных месторождениях. Все они показаны на карте, в приложении А.
В пределах ЕСГ РФ действует двадцать подземных хранилищ газа, из них 14 созданы в истощенных месторождениях: Песчано-Уметское, Елшано-Курдюмское (два объекта хранения), Степновское (два объекта хранения), Кирюшкинское, Аманакское, Дмитриевское, Михайловское, Северо-Ставропольское (два объекта хранения), Краснодарское, Кущевское, Канчуро-Мусинский комплекс ПХГ (два объекта хранения), Пунгинское, Совхозное. 7 созданы в водоносных пластах: Калужское, Щелковское, Касимовское, Увязовское, Невское, Гатчинское, Удмуртский резервирующий комплекс (два объекта хранения) Кроме того ведется строительство: В водоносных пластах: Беднодемьяновское. В отложениях каменной соли: Калининградское, Волгоградское
1.4 Характеристика ПХГ в России
Техническое перевооружение, реконструкция и расширение действующих объектов хранения, а также строительство новых ПХГ -- одна из стратегических задач «Газпрома». Так, к сезону отбора 2015-2016 гг. планируется увеличение максимальной суточной производительности до 819,6 млн куб. м.
Задачи в области долгосрочного развития системы подземного хранения газа в России определены Генеральной схемой развития газовой отрасли на период до 2030 г. и направлены на увеличение суточной производительности ПХГ по отбору и объемов оперативного резерва газа в них.
В 2011 г. «Газпромом» утверждена Программа развития ПХГ Российской Федерации на период 2011-2020 гг., предполагающая увеличение суточной производительности до 1,0 млрд куб. м. В 2012 г. из российских ПХГ отобрано 44,3 млрд куб м газа, закачано 44,1 млрд куб. м газа, в том числе 100 млн куб. м буферного газа (Невское ПХГ). Максимальная суточная производительность зафиксирована 20 декабря 2012 г. -- 670,7 млн кубометров в сутки. [3]
Характеристика ПХГ в России приведена в таблице 1.4.1
Таблица 1.4.1 - Характеристика ПХГ
По состоянию на 31 декабря |
|||||||
2007 |
2008 |
2009 |
2010 |
2011 |
2012 |
||
Количество объектов подземного хранения газа в России, ед. |
25 |
25 |
25 |
25 |
25 |
25 |
|
Объем активной емкости по обустройству, млрд куб. м |
64,94 |
65,20 |
65,20 |
65,41 |
66,70 |
68,16 |
|
Количество эксплуатационных скважин на ПХГ, ед. |
2618 |
2615 |
2601 |
2564 |
2602 |
2621 |
2. Оборудование подземных хранилищ газа
К основному оборудования подземных хранилищ газа относятся:
- подземный резервуар
- обсадная колонна
- холодильник
- маслоотбойник
- компрессор
- узел замера газа
- фильтр сепаратор
- пылеуловитель
- установка осушки газа
- сепаратор
- теплообменник
Обсадная колонна - предназначена для крепления буровых скважин, а также изоляции продуктивных горизонтов при эксплуатации; составляется из обсадных труб путём последовательного их свинчивания (иногда сваривания). Обсадные трубы, применяемые при бурении нефтяных и газовых скважин, изготовляются в основном из стали с двумя нарезанными концами и навинченной муфтой на одном конце (иногда безмуфтовые с раструбным концом). Пример приведен на рисунке 1.
Рисунок 1 - Обсадная колонна
Теплообменные аппараты подразделяются:
- по назначению: на теплообменники (Т), холодильники (X), конденсаторы (К),испарители;
- конструктивно: на аппараты с неподвижными трубными решетками (тип Н), с температурным компенсатором на кожухе (тип К), с плавающей головкой (тип П) и с U-образными трубами (тип У);
- по типу применяемых труб: гладкие трубы (Г), трубы с накатными кольцевыми канавками -- диафрагмированные трубы (Д).
Кожухотрубчатые теплообменники представляют собой аппараты, выполненные из пучков труб, скрепленных при помощи трубных решеток и ограниченных кожухами и крышками с патрубками.
Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Для повышения эффективности теплообмена оборудование может комплектоваться разнообразными интенсификаторами теплообмена, устанавливаемыми как в трубное пространство, так и в межтрубное.
Внутреннее устройство теплообменного аппарата зависит от проводимого в аппарате процесса и подбирается индивидуально под условия Заказчика. В аппаратах, предназначенных для проведения теплообменных процессов между газами, в межтрубном пространстве могут быть установлены специальные перегородки для увеличения турбулентности газового потока и повышения эффективности теплообмена.
Оборудование изготавливается для проведения всех видов теплообменных процессов. Пример теплообменника приведен на рисунке 2.
Рисунок 2 - Теплообменный аппарат
Фильтр - сепаратор газовый(рисунок 3) предназначен для подготовки природного газа к транспорту:
- на промысловых дожимных компрессорных станциях (ДКС) для защиты компрессорного оборудования от капельной влаги и механических примесей;
- при подготовке газа абсорбционным методом для улавливания капельной жидкости на выходе из установки подготовки газа;
- для тонкой очистки природного газа перед подачей на газотурбинную электростанцию;
- для защиты технологического оборудования, наиболее чувствительного к попаданию мелких аэрозолей и механических примесей;
- для очистки закачиваемого в пласт природного газа от компрессорного масла, уносимого из поршневых компрессоров на ПХГ;
- для предотвращения уноса гликолей на установках осушки газа.[3]
3. Технологическая схема закачки и отбора газа из подземного хранилища
Рассмотрим технологическую схема подземного хранилища газа (рисунок 4)
Рисунок 4 - Технологическая схема закачки и отбора газа из подземного хранилища(1 -- закачка газа; 2 -- откачка воды; 3 -- отбор газа)
В состав подземного хранилища входят компрессорные цехи, блоки очистки газа и газораспределительные пункты (ГРП). На газораспределительных пунктах выполняют индивидуальный замер закачиваемого и отбираемого газа из скважин, а также очистку газа при отборе. Очистку газа осуществляют в газовых сепараторах, которые устанавливают на открытых площадках. Расходомеры и клапаны на каждой скважине монтируют в специальном помещении. При закачке газ с давлением 2- 2,5 МПа подают по отводу из магистрального газопровода, очищают в системе пылеочистки 1 и направляют в компрессорный цех 2 на компримирование до давления 12-15 МПа. Поскольку при сжатии его температура резко возрастает, то газ охлаждают в воздушных холодильниках 3 или градирнях. После этого газ поступает на очистку от компрессорного масла. Очистку производят в несколько ступеней: циклонные сепараторы 4 (обычно две ступени), угольные адсорберы 5 и, наконец, керамические фильтры 6. В первой ступени циклонных сепараторов улавливают сконденсированные тяжелые углеводороды и масло, во второй ступени -- сконденсированные легкие углеводороды и скоагулированные частицы масла. В угольных адсорберах улавливают более мелкие частицы масла (диаметром 20-30 мкм).
В качестве сорбента используют активированный уголь в виде цилиндриков диаметром 3-4 мм и длиной 8 мм. Сорбент регенерируют паром. Тонкую очистку от масляной пыли проводят в керамических фильтрах, состоящих из трубок, изготовленных из фильтрующих материалов, один конец которых закрыт. Газ, пройдя все стадии очистки, содержит 0,4-0,5 г компрессорного масла на 1000 м3 газа. Необходимость в этих процессах вызвана опасностью забивания газовых трактов гидратами при положительных температурах (288 К) и уменьшением проницаемости по- ровых каналов у забоя скважины за счет попадания в них частиц масла, что приводит к необходимости увеличения давления закачки и одновременно к уменьшению производительности при росте энергозатрат. Поэтому целесообразно применение поршневых компрессоров без смазки цилиндров, т. е. тех же газомотокомпрессоров или компрессоров с электроприводом, но оборудованных фторопластовыми кольцами с графитовым наполнением, или с использованием центробежных нагнетателей высокого давления с приводом от газотурбинных двигателей.
После очистки от масла и охлаждения газ по газосборному коллектору поступает на ГРП 7, где направляется по отдельным шлейфам в скважины ПХГ 8 с предварительным замером количества закачиваемого газа в каждую нагнетательно-эксплуатационную скважину и накапливается в пористых структурах, оттесняя воду в случае водоносных пластов к краям структуры. Для ускорения процесса оттеснения воды и в случае геологических особенностей структуры целесообразно отбирать воду с краев структуры по разгрузочным скважинам 9 и закачивать ее после дегазации через поглотительные скважины в другие горизонты. ПХГ в истощенных залежах в результате депрессии давления также подвержены обводнению, но здесь обводнение может играть положительную роль, так как уменьшает буферный объем газа в ПХГ. Поэтому в процессе эксплуатации свойства коллектора систематически исследуют через газовые и наблюдательные скважины. В процессе хранения газ насыщается парами воды, поэтому при его выдаче, происходящей со снижением температуры газа, и его охлаждении, в шлейфах необходимо вводить в скважины 8 и шлейфы ингибиторы гидратообразования. хранилище газ закачка скважина
При отборе газ из эксплуатационных скважин поступает на ГРП по индивидуальным шлейфам. Уменьшают давление газа с помощью редуцирующих штуцеров 16. Газ из скважин, поступающий на ГРП по индивидуальным шлейфам, выносит с собой песок и влагу, которые отделяются в сепараторах первой ступени 17, установленных до штуцера по ходу движения газа, и в сепараторах второй ступени 15, установленных после штуцера. После сепараторов газ подают на установку осушки 14, откуда направляют в магистральный газопровод при температуре точки росы. Осушку таза производят диэтиленгликолем. В ПХГ, расположенном в водоносном пласте, вытесненную воду при закачке газа сначала направляют в трапы высокого 13 и низкого 12 давления и далее насосом 10 в бассейн 11, откуда закачивают через поглотительные скважины в более удаленные пласты. [2]
4. Расчет количества эксплуатационных скважин
Рассчитаем количество эксплуатационных скважин для вывода ПХГ на режим циклической эксплуатации с активным объемом газа 3,5 млрд.м3 и производительностью 35 млн.м3/сут.
На старой промплощадке в настоящее время работает 31 скважина.
- Средняя длина одного шлейфа от скважины до существующего ПХГ 3, 464 км;
- Диаметр проходного сечения шлейфаD = 150 мм;
- Среднее давление на устье скважины рн = 40,4 кг/см2;
- Среднее давление на входе в блок сепарации рк = 36,2 кг/см2;
- Средняя температура грунтаtгр = - 3,5 оС;
- Средняя температура газа на устье скважиныtн = 7,7 оС;
- Средняя температура газа на входе в блок сепарацииtк = 4,9 оС;
- Средний суточный расход одного шлейфаQ = 0,542935 млн. м3/сут.
Для расчётов температуры и давления газа необходимо перевести в абсолютные величины:
Т = (t + 273,15) К; Р = (р+ 1) кг/см2.
Расчёт коэффициента гидравлической эффективности (Е)
;
кг/см2;
;
;
К;
;
Коэффициент сжимаемости газа
,
где: ;
= 0,2344;
тогда: =0,9144;
Коэффициент гидравлического сопротивления теоретический ()
=0,0147;
Коэффициент гидравлического сопротивления фактический ()
где:
=0,3142;
тогда: =0,0179;
Коэффициент гидравлической эффективности шлейфа
= 0,9056.
Расчёт коэффициентов гидравлического сопротивления и гидравлической эффективности "среднего" шлейфа выполнен для одного фактического режима работы шлейфов. В динамике все величины непрерывно меняются. Кроме того, расход газа по шлейфам напрямую зависит от перепада между давлением пласта и создавшимся давлением на замерном узле (в зависимости от режима работы газотранспортной системы). Причём эти зависимости при отборе и закачке разные
На новой промплощадке ПХГ проектируем шлейфы Ду300 мм. Исходя из того, что газ из ПХГ идёт с влагой, и возможны гидратообразования, принимаем для новых шлейфов такую же эффективность. Давление газа на устье скважин для расхода 35 млн. м3/сут рн = 37,9 кг/см2 (при неизменном давлении газа на входе в блок сепарации). Для упрощения расчётов, температуры газа (начальную и конечную) и грунта для шлейфа Ду300 мм принимаем такие же, как и в расчёте шлейфа Ду150 мм.
Расчёт необходимого количества шлейфов и скважин Ду300 мм
Коэффициент гидравлического сопротивления теоретический () шлейфа Ду300 мм
=0,0128;
Коэффициент гидравлического сопротивления фактический () шлейфа Ду300 мм
=0,0156;
=11,52;
Суточный расход одного шлейфа Ду300 мм
=2,058 млн. м3/сут;
Необходимое количество шлейфов для суточного расхода 35 млн. м3
=17.
Так как для статических замеров один раз в декаду шлейфы поочерёдно выключаются из работы, для стабильного расхода газа из ПХГ необходимо 17+1=18 шлейфов и 18 скважин.
Семнадцать новых шлейфов Ду300 мм смогут заменить 32 старых шлейфа Ду150 мм по производительности на тех же режимах работы.
Применение дожимного компрессорного цеха позволит увеличить давление пласта в конце сезона закачки до 80 кг/см2, что, в свою очередь, даст возможность увеличить подачу газа в газотранспортную систему в сезон отбора. В результате: 7 млрд. м3 газа (3,5 млрд. м3 при отборе и 3,5 млрд. м3 при закачке), на которые летом уже затрачена работа, на половине пути по ГТС ООО "Тюментрансгаз" будут заложены на хранение, а зимой, с середины пути, с минимальными затратами, поданы в ГТС.[4]
5. Правила эксплуатации подземного хранилища газа
5.1 Общие требования
ПХГ предназначены для регулирования неравномерности газопотребления, связанной с сезонными колебаниями спроса на природный газ, а также для образования в основных газопотребляющих районах оперативного и стратегического резервных запасов для поддержания стабильности поставок газа, в т.ч. экспортных.
Техническое обустройство ПХГ обеспечивает бесперебойное функционирование технологических процессов закачки, хранения и отбора газа.
ПХГ включают: комплекс производственных зданий крупногабаритных установок; один или несколько цехов ГПА, газовый промысел с газосборными пунктами, внутрипромысловыми трубопроводами и комплексом скважин с подземным и устьевым оборудованием; установки подготовки газа, с распределительными, измерительными и регулирующими устройствами, газопровод подключения к МГ; системы автоматического контроля, защиты и управления; отопительное, химреагентное и другие вспомогательные хозяйства.
Задачи служб и основных производственных бригад, сферу их деятельности определяют в соответствии с положениями, утвержденными руководством службы ПХГ.
Функции и обязанности эксплуатационного персонала регламентируют типовые положения, должностные инструкции и руководство по обслуживанию и эксплуатации оборудования и агрегатов, составленные с учетом конкретных условий выполнения технологических операций и на основании типовых структур, утвержденных ЭО.
Эксплуатацию ПХГ производят в соответствии с настоящим стандартом, ПБ 08-83-95 [5], ПБ 08-621-03[6] .
Изменение режима эксплуатации ПХГ выполняют по распоряжению ЦПДД.
5.2 Организация эксплуатации
Создание и эксплуатацию ПХГ производят в соответствии с настоящим стандартом и ПБ 08-621-03[6] и включает следующие стадии:
- разведку структуры для создания ПХГ, включающую сейсмические исследования, структурное бурение, разведочное бурение скважин, промыслово-геофизические, гидродинамические (гидроразведка), геохимические и др. исследования;
- разработку технологического и технического проектов создания ПХГ;
- бурение скважин;
- пусконаладочные работы на промплощадке до полного вывода всего комплекса на проектный режим эксплуатации;
- опытно-промышленную эксплуатацию ПХГ;
- циклическую эксплуатацию ПХГ;
- оформление горного отвода, получение соответствующих разрешений и лицензий.
При выполнении подготовительных работ перед вводом в эксплуатацию ПХГ, созданных в истощенных месторождениях, в процессе опытно-промышленной закачки газа в водоносный пласт или соляные каверны все смонтированные на территории ПХГ технологические установки, коммуникации и эксплуатационные скважины испытывают на прочность и на величину пробного давления согласно методам, определенным в соответствующих документах, на герметичность и работоспособность при максимальных и минимальных значениях параметров. Наземное оборудование и технологические трубопроводы проходят базовое техническое диагностирование.
На стадии эксплуатации ПХГ технической частью работ на основных производственных объектах ПХГ руководит главный инженер (технический руководитель), геолого-промысловой частью - главный геолог. Техническое и методическое руководство работами в производственных цехах и на газовом промысле осуществляют начальники служб и подразделений в соответствии с должностными инструкциями, а также соответствующими инструкциями и руководствами по обслуживанию оборудования, составленными применительно к конкретным условиям эксплуатации ПХГ.
Технические операции по ремонту скважин проводят на основании утвержденного в установленном порядке плана работ (проекта), согласованного с геологической службой ПХГ и уполномоченными органами надзора и контроля Российской Федерации.
Запрещено проводить какие-либо работы на скважинах ПХГ без соответствующего согласования и контроля со стороны геологической службы.
При эксплуатации ПХГ один раз в пять лет проводят геолого-технологическое обследование (аудит) оценки эффективности функционирования наземного обустройства и герметичности ПХГ (шлейфов скважин, установок очистки, оценки газа, КС и др.).
По результатам геолого-технологического обследования (аудита) наземного обустройства разрабатывают:
- рекомендации по совершенствованию технологии и эксплуатации основных элементов наземного обустройства, их автоматизации;
- заключение о необходимости реконструкции наземного обустройства и модернизации объекта с целью замены устаревшего оборудования.
Ежегодно после завершения сезона отбора (закачки) силами эксплуатационных служб ПХГ проводить анализ эффективности работы промыслового оборудования всей технологической цепочки «скважина - магистральный газопровод». Результаты исследований и предложения по устранению «узких мест» утверждать на ежесезонных заседаниях Комиссии газовой промышленности по разработке месторождений и исследованию недр.
5.3 Техническое обслуживание и ремонт
Периодичность и последовательность технического обслуживания устанавливают индивидуально для технологического узла или участка.
Аварийные скважины, не подлежащие восстановлению или капитальному ремонту, ликвидируют в соответствии с требованиями, установленными НД.
5.4 Техническое диагностирование
Задачами экспертизы промышленной безопасности и диагностирования технических устройств, оборудования и сооружений ПХГ являются:
- определение фактического технического состояния;
- определение возможности продления и продление сроков безопасной эксплуатации при выработке ими нормативного или ранее продленного срока эксплуатации;
- управление техническим обслуживанием и ремонтом по их фактическому техническому состоянию;
- систематизация и обобщение информации, получаемой в ходе экспертизы промышленной безопасности и диагностирования, с целью ее учета при выработке стратегии технического обслуживания, ремонта и реновации.
Организацию, планирование и проведение работ по экспертизе промышленной безопасности и техническому диагностированию объектов ПХГ осуществляют в соответствии с Положением .
Техническое, методическое и организационное руководство проведения экспертизы промышленной безопасности и диагностирования технических устройств, оборудования и сооружений объектов ПХГ осуществляет ОАО «Газпром».
Система обеспечения промышленной безопасности и качества диагностирования ПХГ включает комплекс НД по видам технических устройств, оборудования и сооружений, организационные мероприятия и экспертно-диагностическое обслуживание объектов ПХГ.
Работы по экспертно-диагностическому обслуживанию объектов ПХГ проводят на основании ежегодной Программы работ по экспертизе промышленной безопасности и диагностированию технических устройств, оборудования и сооружений ПХГ ОАО «Газпром», составленной и утвержденной ОАО «Газпром».
Экспертно-диагностическое обслуживание объектов ПХГ состоит из:
- базового (первичного) технического диагностирования;
- периодического технического диагностирования;
- экспертного технического диагностирования, которое проводят в рамках выполнения работ по экспертизе промышленной безопасности объектов ПХГ.
ЭО, осуществляющие эксплуатацию ПХГ, Специализированные организации несут ответственность за достоверность и сохранность информации, полученной в ходе выполнения экспертно-диагностических работ.
5.5 Техническая документация
Служба ПХГ использует следующую техническую документацию:
- ситуационный план с производственными зданиями, сооружениями, скважинами, подземными и наземными коммуникациями, дорогами и подъездами;
- отдельные планы промышленных площадок и цехов с их основными коммуникациями;
- проект, рабочий проект, разработанный на основании технологического проекта;
- исполнительную техническую, строительно-монтажную и другую документацию, необходимую для обслуживания скважин, газопроводов и технологических объектов ПХГ.
Основные производственные службы и подразделения используют следующую документацию:
- паспорта производителя на установленное оборудование и аппаратуру;
- паспорта (формуляры) технического состояния и заключения экспертизы промышленной безопасности на установленное оборудование, технические устройства и сооружения;
- положения о службах, технологические регламенты установок и инструкции по техническому обслуживанию;
- должностные инструкции эксплуатационного персонала.
5.6 Требования безопасности при эксплуатации подземных хранилищ газа
Требования безопасности при эксплуатации объектов ПХГ обеспечивают выполнением требований технологического регламента по соблюдению режима закачки и отбора газа из ПХГ, что связано с выполнением требований настоящего стандарта, ПБ 08-83-95[5] , ПБ 08-621-03 [6]
Безопасность при эксплуатации фонда скважин и технологического оборудования обеспечивают в соответствии с ПБ 08-621-03[6]:
- своевременным устранением дефектов, выявленных по результатам выполненных работ по диагностике оборудования скважин, ГПА, установки подготовки газа;
- соблюдением технологического режима работы скважин и комплекса технологического оборудования;
- выполнением графика плановых ремонтов основного и вспомогательного оборудования объектов ПХГ;
- своевременным проведением диагностических и режимно-наладочных работ на ГПА.
Размещено на Allbest.ru
...Подобные документы
Анализ результатов гидродинамических исследований скважин и пластов, их продуктивной и энергетической характеристик. Оценка технико-экономических показателей разработки Южно-Луговского месторождения с учетом строительства подземного хранилища газа.
дипломная работа [3,2 M], добавлен 25.01.2014Физико-географические сведения о Мозырском подземном хранилище газа. Геологическое строение и гидрогеологические условия. Стратиграфия, гидрогеологические условия. Технология работ по созданию хранилища. Меры контроля и управления строительным процессом.
курсовая работа [929,2 K], добавлен 08.02.2013Трубопроводный транспорт газа. Свойства газов, влияющие на технологию их транспорта. Классификация магистральных газопроводов. Трубопроводная арматура. Объекты и сооружения магистрального газопровода. Газоперекачивающие агрегаты. Подземные хранилища.
отчет по практике [216,7 K], добавлен 20.10.2016Расчет инженерно-технических решений по обустройству систем сбора и внутрипромыслового транспорта нефти, газа и пластовой воды. Особенности системы сбора газа и технологии подготовки газа. Определение технологических параметров абсорбционной осушки газа.
курсовая работа [2,2 M], добавлен 16.11.2022Выделение эксплуатационных объектов. Системы разработки в режиме истощения, с искусственным восполнением пластовой энергии. Разработка нефтяных залежей с газовой шапкой, закачкой газа в пласт и многопластовых месторождений. Выбор плотности сетки скважин.
реферат [260,3 K], добавлен 21.08.2016Методы переработки и способы утилизации попутного нефтяного газа. Особенности энергетического и нефтехимического способов утилизации газа, способа обратной закачки и газлифта. Мембранная очистка попутного газа, его опасность для человека и природы.
реферат [504,3 K], добавлен 12.09.2019Назначение установки комплексной подготовки нефти и газа. Технологический режим ее работы. Предварительный сброс пластовой воды. Осушка попутного нефтяного газа. Пуск и остановка УКПНГ. Характеристика сырья и готовой продукции. Контроль техпроцесса.
курсовая работа [121,1 K], добавлен 04.07.2013Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.
реферат [1,1 M], добавлен 14.07.2011Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.
курсовая работа [53,5 K], добавлен 19.06.2011Общие сведения о Карповском месторождении, его стратиграфия и тектоника, нефтегазоносность. Физико-химические свойства пластовой нефти, газа и воды. Характеристика эксплуатации скважин погружными электроцентробежными насосами, наземное оборудование.
курсовая работа [2,9 M], добавлен 02.04.2014Основные сведения о месторождениях нефти и газа, способы их формирования и особенности разведки полезных ископаемых. Сферы применения и режимы эксплуатации различных видов скважин, используемых для добычи. Промысловый сбор и подготовка нефти, газа и воды.
отчет по практике [3,2 M], добавлен 21.07.2012Способы добычи нефти и газа. Страны-лидеры по добыче газа. Состав сланцев. Полимерные органические материалы, которые расположены в породах. Газ из сланцев. Схема добычи газа. Примерные запасы сланцевого газа в мире. Проблемы добычи сланцевого газа.
презентация [2,4 M], добавлен 19.01.2015Схема эксплуатационной скважины. Работы, проводимые при её освоении. Источники пластовой энергии и режимы дренирования газового пласта. Средние дебиты по способам эксплуатации скважин. Погружное и поверхностное оборудование. Товарные кондиции нефти.
контрольная работа [3,2 M], добавлен 05.06.2013Общая характеристика и стратиграфия месторождения, его тектоника и нефтегазоносность. Анализ текущего состояния разработки, техника и технология добычи нефти и газа. Расчет технологических параметров закачки воды в системе поддержания пластового давления.
дипломная работа [3,0 M], добавлен 02.05.2013Геолого-промысловая характеристика месторождения. Газоносность продуктивного пласта. Система размещения скважин, их конструкция, продуктивность и условия эксплуатации. Характеристика оборудования и технологического процесса адсорбционной осушки газов.
курсовая работа [2,4 M], добавлен 13.03.2014- Усовершенствование технологического процесса подготовки газа на Павловской газокомпрессорной станции
Применяемая на месторождении система сбора попутного (нефтяного) газа, техническая оснащенность и характеристика компрессора 7ВКГ50/7. Требования, предъявляемые к качеству газа, методика его очистки. Общая характеристика промысловых газопроводов.
дипломная работа [155,8 K], добавлен 25.11.2013 Рассмотрение основных способов борьбы с осложнениями при эксплуатации скважин на станции подземного хранения Канчуринского подземного газохранилища. Абсорбционная осушка газа как один более эффективных и распространенных методов извлечения влаги из газа.
курсовая работа [6,6 M], добавлен 11.04.2013Общие сведения о нефтеносных пластах и флюидах Шелкановского месторождения. Физико-химическая характеристика газа и пластовой воды. Конструкция скважин, анализ их аварийности. Оборудование и инструменты для ловильных работ. Расчет подъёмного агрегата.
курсовая работа [1,2 M], добавлен 17.04.2016Общая характеристика применения установок электропогружных центробежных насосов при эксплуатации скважин. Описание принципиальной схемы данной установки. Выбор глубины погружения и расчет сепарации газа у приема насоса. Определение требуемого напора.
презентация [365,9 K], добавлен 03.09.2015Геолого-технический наряд на бурение скважины. Схема промывки скважины при бурении. Физические свойства пластовой жидкости (нефти, газа, воды). Технологический режим работы фонтанных и газлифтных скважин. Системы и методы автоматизации нефтяных скважин.
отчет по практике [3,1 M], добавлен 05.10.2015