Разработка и освоение новых газовых месторождений

Физико-химические свойства нефти, природного газа, углеводородного конденсата и пластовых вод. Состав и некоторые свойства влаги нефтяных и газовых месторождений. Условия притока жидкости в скважины. Борьба с отложением парафина в подъемных трубах.

Рубрика Геология, гидрология и геодезия
Вид шпаргалка
Язык русский
Дата добавления 11.05.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По полученному в результате исследования скважины коэффициенту продуктивности устанавливают режим ее работы, подбирают необходимое эксплуатационное оборудование. По изменениям этого коэффициента судят об эффективности обработок призабойной зоны скважин, а также о качестве подземных ремонтов. Сравнивая газовые факторы и коэффициенты продуктивности до и после обработки или ремонта скважины, судят о состоянии скважины.

15. ОБЛАСТЬ ПРИМЕНЕНИЯ ГАЗЛИФТА

Область применения газлифта - высокодебитные скважины с большими забойными давлениями, скважины с высокими газовыми факторами и забойными давлениями ниже давления насыщения, песочные (содержащие в продукции песок) скважины, а также скважины, эксплуатируемые в труднодоступных условиях (например, затопляемость, паводки, болота и др.). Газлифт характеризуется высокой технико-экономической эффективностью, отсутствием в скважинах механизмов и трущихся деталей, простотой обслуживания скважин и регулирования работы.

Логическим продолжением фонтанной эксплуатации является газлифтная эксплуатация, при которой недостающее количество газа для подъема жидкости закачивают в скважину с поверхности. Если притекающую пластовую энергию, характеризуемую газовым фактором, дополняют энергией газа, закачиваемого в скважину с поверхности, происходит искусственное фонтанирование, которое называется газлифтным подъемом, а способ эксплуатации - газлифтным.

Газлифтная (компрессорная) эксплуатация нефтяных скважин осуществляется путем закачки в скважину газа; метод эксплуатации носит название газлифтный. Газ в нефтяную скважину можно подать под давлением без его дополнительной компрессии из газовых пластов. Такой способ называют бескомпрессорным.

Принцип действия газлифта. В скважину опускают два ряда насосных труб. По затрубному пространству между наружной и внутренней трубами подают под давлением газ или воздух. Наружную трубу называют воздушной. Внутреннюю трубу, по которой нефть в смеси с газом или воздухом поднимается на поверхность, называют подъемной. Подъемная труба имеет меньшую длину по сравнению с воздушной. До закачки газа жидкость в подъемной и воздушной трубах находится на одном уровне. Этот уровень называют статическим -Нст. В этом случае давление жидкости на забое соответствует пластовому давлению.

Рпл= Нст· ?·g , отсюда Нст = Рпл???·g

По воздушной трубе (затрубному пространству) в скважину под давлением этого газа жидкость полностью вытесняется в подъемную трубу, после этого газ проникает в подъемную трубу и перемешивается с жидкостью. Плотность газированной жидкости уменьшается и по мере ее насыщения газом достигается разность в плотности газированной и негазированной жидкостей.

Вследствие этого более плотная (негазированная) жидкость будет вытеснять из подъемной трубы газированную жидкость. Если газ подавать в скважину непрерывно, то газированная жидкость будет подниматься и выходить из скважины в систему сбора.

Для оборудования газлифтных подъемников применяют НКТ следующих диаметров: в однорядных подъемниках - от 48 до 89 мм и редко 114 мм, в двухрядных подъемниках - для наружного ряда труб 73, 89 и 114 мм, а для внутреннего - 48, 60 и 73 мм. При выборе диаметров НКТ необходимо иметь в виду, что минимальный зазор между внутренней обсадной колонны и наружной поверхностью НКТ должен составлять 12 15 мм.

Достоинства газлифтного метода:

простота конструкции (в скважине нет насосов);

расположение технологического оборудования на поверхности (облегчает его наблюдение, ремонт), обеспечение возможности отбора из скважин больших объемов жидкости (до 1800 ч1900 т/сут);

возможность эксплуатации нефтяных скважин при сильном обводнении и большом содержании песка, простота регулирования дебита скважин.Недостатки газлифтного метода:

1) большие капитальные затраты; 2) низкий КПД;

3) повышенный расход НКТ, особенно при применении двухрядных подъемников;

4) быстрое увеличение расхода энергии на подъем 1 т нефти по мере снижения дебита скважин с течением времени эксплуатации.

В конечном счете, себестоимость добычи 1 т нефти при газлифтном методе ниже за счет низких эксплуатационных расходов, поэтому он перспективен.

Насосная эксплуатация скважин

Наиболее распространённый способ добычи нефти - с помощью глубинных насосов - штанговых и бесштанговых.

16. ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ)

Две трети фонда (66%) действующих скважин стран СНГ (примерно 16,3% всего объема добычи нефти) эксплуатируются ШСНУ. Дебит скважин составляет от десятков килограммов в сутки до нескольких тонн. Насосы спускают на глубину от нескольких десятков метров до 3000 м., а в отдельных скважинах на 3200 3400 м.

Рис. Схема установки штангового скважинного насоса

ШСНУ включает:

1. Наземное оборудование: станок-качалка (СК), оборудование устья.

2. Подземное оборудование: насосно-компрессорные трубы (НКТ), насос-ные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг (рис. ).

Штанговая глубинная насосная установка (рис.) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

17. ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСЫ

ШСН обеспечивают откачку из скважин жидкости, обводненностью до 99% , абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0,5%, свободного газа на приеме до 25%, объемным содержанием сероводорода до 0,1%, минерализацией воды до 10 г/л и температурой до 1300С.

По способу крепления к колонне НКТ различают вставные (НСВ) и невставные (НСН) скважинные насосы (рис. 3, 4). У невставных (трубных) насосов цилиндр с седлом всасывающего клапана опускают в скважину на НКТ. Плунжер с нагнетательным и всасывающим клапаном опускают в скважину на штангах и вводят внутрь цилиндра. Плунжер с помощью специального штока соединен с шариком всасывающего клапана. Недостаток НСН - сложность его сборки в скважине, сложность и длительность извлечения насоса на поверхность для устранения какой-либо неисправности. Вставные насосы целиком собирают на поверхности земли и опускают в скважину внутрь НКТ на штангах. НСВ состоит из трех основных узлов: цилиндра, плунжера и замковой опоры цилиндра.

В трубных же насосах для извлечения цилиндра из скважины необходим подъем всего оборудования (штанг с клапанами, плунжером и НКТ). В этом коренное отличие между НСН и НСВ. При использовании вставных насосов в 2 2,5 раза ускоряются спуско-подъемные операции при ремонте скважин и существенно облегчается труд рабочих. Однако подача вставного насоса при трубах данного диаметра всегда меньше подачи невставного.

Насос НСВ-1 - вставной одноступенчатый, плунжерный с втулочным цилиндром и замком наверху, нагнетательным, всасывающим и противо-песочным клапанами (рис. 3).

Рис. 3. Насосы скважинные вставные

1 - впускной клапан; 2 - цилиндр; 3 - нагнетательный клапан;

4 - плунжер; 5 - штанга; 6 - замок.

Рис. 4. Невставные скважинные насосы:

1 - всасывающий клапан; 2 - цилиндр; 3 - нагнетательный клапан;

4 - плунжер; 5 - захватный шток; 6 - ловитель

Насос НСВ спускается на штангах. Крепление (уплотнение посадками) происходит на замковой опоре, которая предварительно опускается на НКТ. Насос извлекается из скважины при подъеме только колонны штанг. Поэтому НСВ целесообразно применять в скважинах с небольшим дебитом и при больших глубинах спуска.

Невставной (трубный) насос представляет собой цилиндр, присоединенный к НКТ и вместе с ними спускаемый в скважину, а плунжер спускают и поднимают на штангах. НСН целесообразны в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом.

В зависимости от величины зазора между плунжером и цилиндром изготавливают насосы следующих групп посадок (исполнение «С» - т.е. с составным цилиндром):

Группа

Зазор, мм

0

До 0,045

1

0,02 - 0,07

2

0,07 - 0,12

3

0,12 - 0,17

Чем больше вязкость жидкости, тем выше группа посадки.

Условный размер насосов (по диаметру плунжера) и длина хода плунжера соответственно приняты в пределах:

для НСВ 29 - 57 мм и 1,2 ч 6 м;

НСН 32 - 95 мм и 0,6 4,5 м.

Обозначение НСН2-32-30-12-0:

0 - группа посадки;

12х100 - наибольшая глубина спуска насоса, м;

30х100 - длина хода плунжера, мм;

32 - диаметр плунжера, мм.

Насосная штанга предназначена для передачи возвратно-поступательного движения плунжер насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах. Выпускаются штанги из легированных сталей диаметром (по телу) 16, 19, 22, 25 мм и длиной 8 м - для нормальных условий эксплуатации.

Для регулирования длины колонн штанг с целью нормальной посадки плунжера в цилиндр насоса имеются также укороченные штанги (футовки) длиной 1; 1,2; 1,5; 2 и 3 м.

Штанги соединяются муфтами. Имеются также трубчатые (наружный диаметр 42 мм, толщина 3,5 мм).

Начали выпускать насосные штанги из стеклопластика (АО «Очерский машиностроительный завод»), отличающиеся большей коррозионной стойкостью и позволяющие снизить энергопотребление до 20%.

Применяются непрерывные штанги «Кород» (непрерывные на барабанах, сечение - полуэллипсное).

Особая штанга - устьевой шток, соединяющий колонну штанг с канатной подвеской. Поверхность его полирована (полированный шток). Он изготавливается без головок, а на концах имеет стандартную резьбу.

Для защиты от коррозии осуществляют окраску, цинкование и т.п., а также применяют ингибиторы.

Устьевое оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ.

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует выход устьевого штока с помощью сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Колонна НКТ подвешена на конусе в крестовине и расположена эксцентрично относительно оси скважины, что позволяет проводить спуск приборов в затрубное пространство через специальный устьевой патрубок с задвижкой.

Станки-качалки - индивидуальный механический привод ШСН (табл. 1-2).

Таблица 1

Станок-качалка

Число ходов

балансира в мин.

Масса, кг

Редуктор

СКД-1,5-710

5ч15

3270

Ц2НШ-315

СКД4-2,1-1400

5ч15

6230

Ц2НШ-355

СКД6-2,5-2800

5ч14

7620

Ц2НШ-450

СКД8-3,0-4000

5ч14

11600

НШ-700Б

СКД10-3,5-5600

5ч12

12170

Ц2НШ-560

СКД12-3,0-5600

5ч12

12065

Ц2НШ-560

В шифре станка - качалки типа СКД, например СКД78-3-4000, указано: буквы - станок качалка дезаксиальный, 8 - наибольшая допускаемая нагрузка Рmax на головку балансира в точке подвеса штанг в тоннах (1т = 10 кН); 3 - наибольшая длина хода устьевого штока в м; 4000 - наибольший допускаемый крутящий момент М кр max на ведомом валу редуктора в кгс/м ( 1 кгс/м = 10-2кН·м).

Станок-качалка (рис.3.15) является индивидуальным приводом скважинного насоса.

Таблица 2

Станок-качалка

Номинальная нагрузка на устьевом штоке, кН

Длина устьевого штока, м

Число качаний балансира, мин

Мощность электро-двигателя, кВт

Масса, кг

СКБ80-3-40Т

80

1,3ч3,0

1,8ч12,7

15ч30

12000

СКС8-3,0-4000

80

1,4ч3,0

4,5ч11,2

22ч30

11900

ПФ8-3,0-400

80

1,8ч3,0

4,5ч11,2

22ч30

11600

ОМ-2000

80

1,2ч3,0

5ч12

30

11780

ОМ-2001

80

1,2ч3,0

2ч8

22/33

12060

ПНШ 60-2,1-25

80

0,9ч2,1

1,36ч8,33

7,5ч18,5

8450

ПНШ 80-3-40

80

1,2ч3,0

4,3ч12

18,5ч22

12400

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 (рис.4). Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока - 7 ) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Рис. 4. Станок-качалка типа СКД:

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун;

5 -кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10-ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 -проти-вовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью на головке балансира от 2 до 20 т.

Электродвигателями к СК служат короткозамкнутые асинхронные во влагоморозостойком исполнении трехфазные электродвигатели серии АО и электродвигатели АО2 и их модификации АОП2.

Частота вращения электродвигателей 1500 и 500 мин -1.

В настоящее время российскими заводами освоены и выпускаются новые модификации станков-качалок: СКДР и СКР (унифицированный ряд из 13 вариантов грузоподъемностью от 3 до 12 т.), СКБ, СКС, ПФ, ОМ, ПШГН, ЛП-114.00.000 (гидрофицированный). Станки-качалки для временной добычи могут быть мобильными (на пневмоходу) с автомобильным двигателем.

Эксплуатация скважин погружными электроцентробежными насосами

Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.

На заключительной стадии эксплуатации вместе с нефтью из скважин поступает большое количество пластовой воды, применение штанговых насосов становится малоэффективным. Этих недостатков лишены установки погружных электронасосов УЭЦН .

Погружные насосы - это малогабаритные (по диаметру) центробежные, секционные, многоступенчатые насосы с приводом от электродвигателя. Обеспечивают подачу 10ч1300 м3/сут и более напором 450ч2000 м вод.ст. (до 3000 м).

В зависимости от поперечного размера погружного агрегата, УЭЦН делят на три условные группы: 5, 5А и 6 с диаметрами соответственно 93, 103, 114 мм, предназначенные для эксплуатационных колонн соответственно не менее 121,7; 130; 114,3 мм.

Пример условного обозначения - УЭЦНМК5-50-1200, где У _ установка; Э _ привод от погружного электродвигателя; Ц _ центробежный; Н - насос; М _ модульный; К - коррозионно-стойкого исполнения; 5 - группа насоса; 50 _ подача, м3/сут; 1200 - напор, м.

Рис. 5. Установка погружного центробежного насоса

1 - оборудование устья скважин; 2 - пункт подключательный выносной; 3 - трансформаторная комплексная подстанция; 4 - клапан спускной; 5 - клапан обратный; 6 - модуль-головка; 7 - кабель; 8 - модуль-секция; 9 - модуль насосный газосепаратор; 10 - модуль исходный; 11 - протектор; 12 - электродвигатель; 13 _ система термоманометрическая

Электродвигатели в установках применяются асинхронные, 3 фазные с короткозамкнутым ротором вертикального исполнения ПЭД40-103 - обозначает: погружной электродвигатель, мощностью 40 кВт, диаметром 103 мм. Двигатель заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим для охлаждения и смазки.

Для погружных электродвигателей напряжение составляет 380-2300 В, сила номинального тока 24,5ч86 А при частоте 50 Гц, частота вращения ротора 3000 мин -1, температура окружающей среды +50ч900С.

Модуль-секция насос - центробежный многоступенчатый, секционный. Число ступеней в насосном агрегате может составлять от 220 до 400.

При откачивании пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25% (до 55%) по объему свободного газа, к насосу подсоединяется газосепаратор, который отводит в затрубное пространство часть газа из пластовой жидкости и улучшает работу насоса.

Таблица 3

Наименование установок

Минималь-ный (внутр.) диаметр эксплуатационной колонны

Попереч-ный габарит установки, мм

Пода-ча, м3/сут

Напор, м

Мощность двигателя, кВт

Тип

газосепа-ратора

УЭЦНМ5-50

121,7

112

50

990ч1980

32ч45

УЭЦНМ5-80

80

900ч1950

32ч63

УЭЦНМК5-80

УЭЦНМ5-125

125

745ч1770

1МНГ5

УЭЦНМК5-125

УЭЦНМ5-200

200

640ч1395

45ч90

1МНГК5

УЭЦНМ5А-160

130,0

124

160

790ч1705

32ч90

МНГА5

УЭЦНМ5А-250

250

795ч1800

45ч90

МНГА5

УЭЦНМК5-250

УЭЦНМ5А-400

400

555ч1255

63ч125

МНГК5А

УЭЦНМК5А-400

УЭЦНМ6-250

144,3

137

250

920ч1840

63ч125

УЭЦНМ6-320

320

755ч1545

УЭЦНМ6-500

144,3

или

148,3

137

или

140,5

500

800ч1425

90ч180

УЭЦНМ6-800

148,3

140,5

800

725ч1100

125ч250

УЭЦНМ6-1000

148,3

140,5

1000

615ч1030

180ч250

Погружной насос, электродвигатель, гидрозащита соединяются между собой фланцами и шпильками. Валы насоса двигателя и гидрозащита имеют на концах шлицы и соединяются между собой шлицевыми муфтами.

Гидрозащита предназначена для защиты ПЭД от проникновения в его полость пластовой жидкости и смазки сальника насоса и состоит из протектора и компенсатора.

Кабель с поверхности до погружного агрегата подводят питающий, полиэтиленовый бронированный (эластичная стальная оцинкованная лента) круглый кабель (типа КГБК), а в пределах погружного агрегата - плоский типа (КПБП).

Станция управления обеспечивает включение и отключение установки, самозапуск после появления исчезнувшего напряжения и аварийное отключение (перегрузки, короткое замыкание, колебания давления, отсутствие притока и др.).

Станции управления (ШГС-5804 для двигателей с мощностью IV до 100 кВт, КУПНА-79 для двигателей с N больше 100 кВт). Они имеют ручное и автоматическое управление, дистанционное управление с диспетчерского пункта, работают по программе.

Имеется отсекатель манифольдного типа РОМ-1, который перекрывает выкидную линию при повышении или резком снижении давления (вследствие прорыва трубопровода).

Трансформаторы регулируют напряжение питания с учетом потерь в кабеле (25 125 В на 1000 м).

Погружные винтовые и гидропоршневые насосы. Это новые виды погружных насосов.

Винтовой насос - это тоже погружной насос с приводом от электродвигателя, но жидкость в насосе перемещается за счет вращения ротора-винта. Особенно эффективны насосы этого типа при извлечении из скважин нефтей с повышенной вязкостью.

Применяются насосы с приводом на устье скважин, производительность которых до 185 м3/сут; напор до 1830 м.

Гидропоршневой насос - это погружной насос, приводимый в действие потоком жидкости, подаваемой в скважину с поверхности насосной установкой. При этом в скважину опускают два ряда концентрических труб диаметром 63 и 102 мм. Насос опускают в скважину внутрь трубы диаметром 63 мм и давлением жидкости прижимают к посадочному седлу, находящемуся в конце этой трубы. Поступающая с поверхности жидкость приводит в движение поршень двигателя, а вместе с ним и поршень насоса. Поршень насоса откачивает жидкость из скважины и вместе с рабочей жидкостью подает ее по межтрубному пространству на поверхность.

Осложнения в эксплуатации насосных скважин обусловлены большим газосодержанием на приеме насоса, повышенным содержанием песка в продукции (пескопроявлением), наличием высоковязких нефтей и водоносных эмульсий, существенным искривлением ствола скважины, отложениями парафина и минеральных солей, высокой температурой и др.

Производительность насоса зависит также от пригонки плунжера к цилиндру, износа деталей насоса, деформации насосных штанг и труб, негерметичности труб.

Значительное количество свободного газа на приеме насоса приводит к уменьшению коэффициента наполнения насоса вплоть до нарушения подачи. Основной метод борьбы - уменьшение газосодержания в жидкости, поступающей в насос. При поступлении жидкости в насос газ частично сепарируется в затрубное пространство. Сепарацию газа характеризуют коэффициентом сепарации, который представляет собой отношение объема свободного газа, уходящего в затрубное пространство, ко всему объему свободного газа при термодинамических условиях у приема насоса.

Сепарацию (отделение) газа можно улучшить с помощью защитных устройств и приспособлений, называемых газовыми якорями (газосепараторами), которые устанавливаются при приеме насоса. Работа их основана на использовании сил гравитации (всплывания), инерции, их сочетания.

Понятие о разработке нефтяных и газовых месторождений

Под системой разработки нефтяных месторождений и залежей понимают форму организации движения нефти в пластах к добывающим скважинам.

Систему разработки нефтяных месторождений определяют:

порядок ввода эксплуатационных объектов многопластового месторождения в разработку;

сетки размещения скважин на объектах, темп и порядок ввода их в работу;

способы регулирования баланса и использования пластовой энергии.

Следует различать системы разработки многопластовых месторождений и отдельных залежей (однопластовых месторождений).

Объект разработки - один или несколько продуктивных пластов месторождения, выделенных по геолого-техническим условиям и экономическим соображениям для разбуривания и эксплуатации единой системой скважин.

При выделении объектов следует учитывать:

1. геолого-физические свойства пород-коллекторов;

2. физико-химические свойства нефти, воды и газа;

3. фазовое состояние углеводородов и режим пластов;

4. технику и технологию эксплуатации скважин.

Объекты разработки подразделяют на самостоятельные и возвратные. Возвратные объекты в отличие от самостоятельных предполагается разрабатывать скважинами, эксплуатирующими в первую очередь какой-то другой объект.

18. СЕТКА РАЗМЕЩЕНИЯ СКВАЖИН

Сетка скважин - характер взаимного расположения добывающих и нагнетательных скважин на эксплуатационном объекте с указанием расстояний между ними (плотность сетки). Скважины располагают по равномерной сетке и неравномерной сетке (преимущественно рядами). Сетки по форме бывают квадратными, треугольными и многоугольными. При треугольной сетке на площади размещается скважин больше на 15,5 %, чем при квадратной в случае одинаковых расстояний между скважинами.

Под плотностью сетки скважин подразумевают отношение площади нефтеносности к числу добывающих скважин. Вместе с тем это понятие очень сложное. Плотность сетки определяется с учетом конкретных условий. С конца 50-х годов месторождения эксплуатируются с плотностью сетки (30ч60)·104 м2/скв.

19. СТАДИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ

Стадия - это период процесса разработки, характеризующийся определенным закономерным изменением технологических и технико-экономических показателей. Под технологическими и технико-экономическими показателями процесса разработки залежи понимают текущую (среднегодовую) и суммарную (накопленную) добычу нефти, текущую и суммарную добычу жидкости (нефти и воды), обводненность добываемой жидкости nв (отношение текущей добычи воды к текущей добыче жидкости), текущий и накопленный водонефтяной фактор (отношение добычи воды к добыче нефти), текущую и накопленную закачку воды, компенсацию отбора закачкой (отношение закачанного объема к отобранному при пластовых условиях), коэффициент нефтеотдачи, число скважин (добывающих, нагнетательных), пластовое и забойное давления, текущий газовый фактор, средние дебит добывающих и приемистость нагнетательных скважин, себестоимость продукции, производительность труда, капитальные вложения, эксплуатационные расходы, приведенные затраты и др.

Первая стадия - освоение эксплуатационного объекта - характеризуется:

· интенсивным ростом добычи нефти до максимально заданного уровня быстрым увеличением действующего фонда скважин до 0,6 0,8 от максимального;

· резким снижением пластового давления;

· небольшой обводненностью продукции nв

· достигнутым текущим коэффициентом нефтеотдачи Кн (около 10%).

Продолжительность стадии зависит от промышленной ценности залежи и составляет 4 5 лет, за окончание стадии принимается точка резкого перегиба кривой темпа добычи нефти Тдн (отношение среднегодового отбора нефти к балансовым ее запасам).

Вторая стадия - поддержание высокого уровня добычи нефти - характеризуется:

· более или менее стабильным высоким уровнем добычи нефти ростом числа скважин, как правило, до максимума за счет резервного фонда;

· нарастанием обводненности продукции nв

· отключением небольшой части скважин из-за обводнения и переводом многих на механизированный способ добычи нефти;

· текущим коэффициентом нефтеотдачи ?, составляющим к концу стадии 30 50 %,

Третья стадия - значительное снижение добычи нефти - характеризуется:

· снижением добычи нефти

· темпом отбора нефти на конец стадии 1 2,5 %;

· уменьшением фонда скважин из-за отключения вследствие обводнения продукции, переводом практически всего фонда скважин на механизированный способ добычи;

· прогрессирующим обводнением продукции nв до 80 85 % при среднем росте обводненности 7 8 % в год, причем с большей интенсивностью для месторождений с нефтями повышенной вязкости;

· повышением текущих коэффициентов нефтеотдачи Кн на конец стадии до 50 60 % для месторождений с вязкостью нефти не более 5 мПа·с и до 20 30 % для месторождений с нефтями повышенной вязкости;

· - суммарным отбором жидкости 0,5 1 объема от балансовых запасов нефти.

Эта стадия наиболее трудная и сложная для всего процесса разработки, ее главная задача - замедление темпа снижения добычи нефти. Продолжительность стадии зависит от продолжительности предыдущих стадий и составляет 5 10 и более лет. Совместно первую, вторую и третью стадии называют основным периодом разработки. За основной период отбирают из залежей 80 90 % извлекаемых запасов нефти.

Четвертая стадия - завершающая - характеризуется:- малыми, медленно снижающимися темпами отбора нефти Тдн

· большими темпами отбора жидкости Тдж высокой медленно возрастающей обводненностью продукции

· более резким, чем на третьей стадии, уменьшением действующего фонда скважин из-за обводнения

· отбором за период стадии 10 20% балансовых запасов нефти.

Продолжительность четвертой стадии сопоставима с длительностью всего предшествующего периода разработки залежи, составляет 15 20 лет и более, определяется пределом экономической рентабельности, т. е. минимальным дебитом, при котором еще рентабельна эксплуатация скважин. Предел рентабельности обычно наступает при обводненности продукции примерно на 98%.

20. РАЗМЕЩЕНИЕ ЭКСПЛУАТАЦИОННЫХ И НАГНЕТАТЕЛЬНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИИ

Для поддержания пластового давления и увеличения коэффициента отдачи пласта, который на разных месторождениях колеблется в широких пределах, применяют закачку под давлением в продуктивные пласты воды или газа через нагнетательные скважины. Первый метод связан с закачкой под большим давлением (порядка 20 МПа) в нефтяные пласты воды, прошедшей специальную подготовку. Различают законтурное, внутриконтурное и площадное заводнение нефтяных пластов.

При законтурном заводнении воду закачивают в пласт через нагнетательные скважины, размещаемые за внешним контуром нефтеносности по периметру залежи. Эксплуатационные скважины располагают внутри контура нефтеносности рядами параллельно контуру. Суммарный объем отбираемой жидкости равен количеству нагнетаемой в пласт воды (рис.).

На больших месторождениях применяют внутриконтурное заводнение - разрезание нагнетательными рядами на отдельные эксплуатационные блоки. На 1 т извлекаемой нефти необходимо нагнетать 1,62 м3 воды.

Площадное заводнение применяется как вторичный метод добычи нефти при разработке нефтяных залежей на ненапорных режимах, когда запасы пластовой энергии в значительной степени израсходованы, а в недрах есть значительное количество нефти. Закачка воды в пласт осуществляется через систему нагнетательных скважин, расположенных равномерно по всей залежи.

Нормальный расход воды - 10 15 м3 на 1 т нефти.

Заводнение позволило повысить нефтеотдачу залежей (по сравнению с режимом растворенного газа), но в настоящее время оно практически исчерпало свои возможности, и для повышения его эффективности разрабатываются более совершенные его виды.

К таким относятся: щелочное заводнение, полимерное заводнение, использование пен и эмульсий, вытеснение нефти горячей водой и паром. Вытеснение нефти возможно также двуокисью углерода, растворителями и газами высокого давления, продуктами внутрипластового горения нефти. Кроме этих методов внедряют в практику цикличное заводнение, изменение направлений фильтрационных потоков жидкостей в пласте, нагнетание воды при высоких давлениях, сформированный отбор жидкостей, микробиологическое воздействие на нефтяной пласт и т.д.

21. ПРОМЫСЛОВЫЙ СБОР И ПОДГОТОВКА НЕФТИ, ГАЗА И ВОДЫ

Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).

Пластовая вода - это сильно минерализованная среда с содержанием солей до 300 г/л. Содержание пластовой воды в нефти может достигать 80%. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо.

Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти (рис.). Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН - установка по комплексной подготовке нефти.

Рис. Схема сбора и подготовки продукции скважин на нефтяном промысле:

1 - нефтяная скважина; 2 - автоматизированные групповые замерные установки (АГЗУ); 3 - дожимная насосная станция (ДНС); 4 - установка очистки пластовой воды; 5 - установка подготовки нефти; 6 - газокомпрессорная станция; 7 - центральный пункт сбора нефти, газа и воды; 8 - резервуарный парк

Обезвоженная, обессоленная и дегазированная нефть после завершения окончательного контроля поступает в резервуары товарной нефти и затем на головную насосную станцию магистрального нефтепровода.

УКПН представляет собой небольшой завод по первичной (промысловой) подготовке нефти (т.е. дегазация, обезвоживание, обессоливание, стабилизация). В сырую нефть (рис.), поступающую по линии I, подается деэмульгатор (по линии II). Насосом 1 нефть направляется в теплообменник 2, в котором нагревается до 50 60°С горячей стабильной нефтью, поступающей по линии III, после стабилизационной колонны 8, Подогретая нефть в отстойнике первой ступени обезвоживания 3 частично отделяется от воды и проходит через смеситель 4, где смешивается с пресной водой, поступающей по линии V, для отмывки солей, и направляется в отстойник второй ступени 5 и по линии VI в электродегидратор 6. Отделенная вода отводится по линиям IY. При необходимости улучшения степени обессоливания применяют несколько смесителей, отстойников и электродегидраторов, включенных последовательно. Обессоленная нефть насосом 14 направляется в отпарную часть стабилизационной колонны 8 через теплообменник 7. Нагрев нефти в теплообменнике 7 до 1501600С осуществляется за счет тепла стабильной нефти, поступающей непосредственно снизу стабилизационной колонны 8, В стабилизационной колонне происходит отделение легких фракций нефти, которые конденсируются и передаются на ГПЗ. В нижней (отпарной) и верхней частях стабилизационной колонны установлены тарелочные устройства, которые способствуют более полному отделению легких фракций. Внизу отпарной части стабилизационной колонны поддерживается более высокая температура (до 2400С), чем температура нефти, поступающей вверх отпарной части. Температура поддерживается циркуляцией стабильной нефти из нижней части стабилизационной колонны через печь 13. Циркуляция стабильной нефти осуществляется насосом 12 по линии X. В печи 13 может также подогреваться часть нестабильной нефти, которая затем подается вверх отпарной колонны по линии XI. В результате нагрева из нефти интенсивно испаряются легкие фракции, которые поступают в верхнюю часть стабилизационной колонны, где на тарелках происходит более четкое разделение на легкие и тяжелые углеводороды. Пары легких углеводородов и газ по линии VII из стабилизационной колонны поступают в конденсатор-холодильник 9, где они охлаждаются до 30°С, основная их часть конденсируется и накапливается в емкости орошения 10. Газ и несконденсировавшиеся пары направляются по линии VIII на горелки печи 13. Конденсат (широкая фракция легких углеводородов) насосом 11 и перекачивается в емкости хранения, а часть по линии IX направляется вверх стабилизационной колонны на орошение. Часто для перемещения нефти от АГЗУ до ЦПС применяют ДНС - дожимную насосную станцию, т.к. пластового давления оказывается недостаточно. На ЦПС расположены также установки по подготовке воды - УПВ, на которой вода, отделенная на УКПН от нефти, подвергается очистке от частиц механических примесей, окислов железа и т.д. и направляется в систему поддержания пластового давления (ППД). В системе ППД подготовленная вода с помощью кустовых насосных станций (КНС) под большим давлением (до 2025 МПа) через систему трубопроводов-водоводов подается к нагнетательным (инжекционным) скважинам и затем в продуктивные пласты.

Рассмотрим основные принципы технологических процессов промысловой подготовки нефти и воды. Продукция нефтяных скважин прежде всего подвергается процессу сепарации (отделению от нефти газа, а также воды). Сепарацию нефти выполняют в специальных агрегатах-сепараторах, которые бывают вертикальными и горизонтальными. Вертикальный сепаратор (рис. ) состоит из четырех секций.

Рис. Технологическая схема УКПН:

1 - насос; 2 - теплообменник; 3 - отстойник (ступень обезвоживания); 4 - смеситель (с чистой водой); 5 - отстойник (1 ступени); 6 - электродегитратор; 7 - теплообменник (150 - 1600С); 8 - стабилизированная колонна (отпарная); 9 - холодильный конденсатор (до 300С); 10 - емкость орошения; 11, 12 - насос; 13 - печь; 14 - насос

Рис. Вертикальный сепаратор:

I - основная сепарационная секция; II _ осадительная секция;

III - секция сбора нефти; IV _ секция каплеудаления.

1 - патрубок ввода газожидкой смеси; 2 - раздаточный коллектор со щелевым выходом; 3 - регулятор давления "до себя" на линии отвода; 4 - жалюзный каплеуловитель; 5 _ предохранительный клапан; 6 _ наклонные полки; 7 - поплавок; 8 _ регулятор уровня и линии отвода нефти; 9 - линия сбора шлама; 10 _ перегородки; 11 - уровнемерное стекло; 12 - дренажная труба

Рис. Горизонтальный сепаратор с предварительным отбором газа

1 - входной трубопровод; 2 - вилка для предварительного отбора газа; 3 - каплеуловитель (сепаратор газа); 4 - жалюзийные насадки; 5 - газопровод с регулятором давления "до себя"; 6 _ предохранительный клапан; 7 - корпус сепаратора; 8 - поплавок; 9 - пеногасители; 10 _ наклонные полки

Секция 1 - это секция интенсивного выделения газа из нефти. Газоводонефтяная смесь под большим давлением поступает в рабочее пространство сепаратора с увеличенным объемом. За счет резкого снижения скорости потока вода и газ отделяются от нефти и поступают: вода в нижние секции, а газ удаляется из сепаратора через верхний патрубок. Повышенный эффект сепарации обеспечивается при тангенциальном подводе газа в сепаратор. В этом случае поток газоводонефтяной смеси попадает в рабочее пространство цилиндрического корпуса сепаратора по касательной и перемещается путем вращения по стенкам корпуса, что создает оптимальные условия для отделения воды и газа, затем нефть поступает в секцию II сепаратора, где стекает под действием тяжести вниз по наклонным полкам тонким слоем. Это создает лучшие условия для выделения газа из нефти за счет снижения толщины ее слоя и увеличения времени пребывания смеси в секции II. После секции II нефть попадает в секцию III - сбора нефти. Секция IV - каплеудаления предназначена для улавливания капель жидкости, увлекаемых выходящим потоком газа.

Горизонтальные сепараторы имеют ряд преимуществ перед вертикальными: большую пропускную способность и более высокий эффект сепарации. Принцип работы горизонтальных сепараторов аналогичен вертикальным. Но за счет того, что в горизонтальных сепараторах капли жидкости падают перпендикулярно к потоку газа, а не навстречу ему, как в вертикальных сепараторах, горизонтальные сепараторы имеют большую пропускную способность.

Для повышения эффективности процесса сепарации в горизонтальных сепараторах используют гидроциклонные устройства и предварительный отбор газа перед входом в сепаратор. В гидроциклоне входящий газожидкостный поток приводится во вращательное движение, капли нефти как более тяжелые под давлением центробежной силы отбрасываются на стенки трубы, а газовая струя перемещается в корпусе сепаратора. Горизонтальный сепаратор с предварительным отбором газа отличается тем, что нефтегазовая смесь вводится в корпус сепаратора по наклонным участкам трубопровода (рис. ). Уклон входного трубопровода 1- 10ч150. При подъеме и последующем спуске по входному трубопроводу происходит разделение жидкости и газа, и газ по газоотводящим трубкам отводится к каплеулавливателю и после этого направляется в газовод, вместе с газом, отделенным в корпусе сепаратора, направляется на ГПЗ. Обезвоживание и обессоливание нефти - взаимосвязанные процессы, т.к. основная масса солей сосредоточена в пластовой воде и удаление воды приводит одновременно к обессоливанию нефти.

Обезвоживание нефти затруднено тем, что нефть и вода образуют стойкие эмульсии типа "вода в нефти". В этом случае вода диспергирует в нефтяной среде на мельчайшие капли, образуя стойкую эмульсию. Следовательно, для обезвоживания и обессоливания нефти необходимо отделить от нее эти мельчайшие капли воды и удалить воду из нефти. Для обезвоживания и обессоливания нефти используют следующие технологические процессы: гравитационный отстой нефти, горячий отстой нефти, термохимические методы, электрообессоливание и электрообезвоживание нефти. Наиболее прост по технологии процесс гравитационного отстоя. В этом случае нефтью заполняют резервуары и выдерживают определенное время (48 ч и более). Во время выдержки происходят процессы коагуляции капель воды, и более крупные и тяжелые капли воды под действием сил тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды.

Однако гравитационный процесс отстоя холодной нефти - малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда за счет предварительного нагрева нефти до температуры 50 -700С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является его малая эффективность.

Более эффективны методы химические, термохимические, а также электрообезвоживание и обессоливание. При химических методах в обводненную нефть вводят специальные вещества, называемые деэмульгаторами. В качестве деэмульгаторов используют ПАВ. Их вводят в состав нефти в небольших количествах от 510 до 5060 г на 1 т нефти. Наилучшие результаты показывают так называемые неионогенные ПАВ, которые в нефти не распадаются на анионы и катионы. Это такие вещества, как дисолваны, сепаролы, дипроксилины и др. Деэмульгаторы адсорбируются на поверхности раздела фаз "нефть-вода" и вытесняют или заменяют менее поверхностно-активные природные эмульгаторы, содержащиеся в жидкости. Причем пленка, образующаяся на поверхности капель воды, непрочная, что отмечает слияние мелких капель в крупные, т.е. процесс коалесценции. Крупные капли влаги легко оседают на дно резервуара. Эффективность и скорость химического обезвоживания значительно повышается за счет нагрева нефти, т.е. при термохимических методах, за счет снижения вязкости нефти при нагреве и облегчения процесса коалесценции капель воды.

Наиболее низкое остаточное содержание воды достигается при использовании электрических методов обезвоживания и обессоливания. Электрообезвоживание и электро-обессоливание нефти связаны с пропусканием нефти через специальные аппараты-электродегидраторы, где нефть проходит между электродами, создающими электрическое поле высокого напряжения (2030 кВ). Для повышения скорости электрообезвоживания нефть предварительно подогревают до температуры 5070°С. При хранении такой нефти в резервуарах, при транспортировке ее по трубопроводам, в цистернах по железной дороге или водным путем значительная часть этих углеводородов теряется за счет испарения. Легкие углеводороды являются инициаторами интенсивного испарения нефти, так как они увлекают за собой и более тяжелые углеводороды.

В то же время легкие углеводороды являются ценным сырьем и топливом (легкие бензины). Поэтому перед подачей нефти из нее извлекают легкие низкокипящие углеводороды. Эта технологическая операция и называется стабилизацией нефти. Для стабилизации нефти ее подвергают ректификации или горячей сепарации. Наиболее простой и более широко применяемой в промысловой подготовке нефти является горячая сепарация, выполняемая на специальной стабилизационной установке. При горячей сепарации нефть предварительно подогревают в специальных нагревателях и подают в сепаратор, обычно горизонтальный. В сепаратор из подогретой до 40800С нефти активно испаряются легкие углеводороды, которые отсасываются компрессором и через холодильную установку и бензосепаратор направляются в сборный газопровод. В бензосепараторе от легкой фракции дополнительно отделяют за счет конденсации тяжелые углеводороды.

Вода, отделенная от нефти на УКПН, поступает на УПВ, расположенную также на ЦПС. Особенно большое количество воды отделяют от нефти на завершающей стадии эксплуатации нефтяных месторождений, когда содержание воды в нефти может достигать до 80%, т.е. с каждым кубометром нефти извлекается 4 м3 воды. Пластовая вода, отделенная от нефти, содержит механические примеси, капли нефти, гидраты закиси и окиси железа и большое количество солей. Механические примеси забивают поры в продуктивных пластах и препятствуют проникновению воды в капиллярные каналы пластов, а следовательно, приводят к нарушению контакта "вода-нефть" в пласте и снижению эффективности поддержания пластового давления. Этому же способствуют и гидраты окиси железа, выпадающие в осадок. Соли, содержащиеся в воде, способствуют коррозии трубопроводов и оборудования. Поэтому сточные воды, отделенные от нефти на УКПН, необходимо очистить от механических примесей, капель нефти, гидратов окиси железа и солей, и только после этого закачивать в продуктивные пласты. Допустимые содержания в закачиваемой воде механических примесей, нефти, соединений железа устанавливают конкретно для каждого нефтяного месторождения. Для очистки сточных вод применяют закрытую (герметизированную) систему очистки.

В герметизированной системе в основном используют три метода: отстой, фильтрования и флотацию. Метод отстоя основан на гравитационном разделении твердых частиц механических примесей, капель нефти и воды. Процесс отстоя проводят в горизонтальных аппаратах - отстойниках или вертикальных резервуарах-отстойниках. Метод фильтрования основан на прохождении загрязненной пластовой воды через гидрофобный фильтрующий слой, например через гранулы полиэтилена. Гранулы полиэтилена «захватывают» капельки нефти и частицы механических примесей и свободно пропускают воду. Метод флотации основан на одноименном явлении, когда пузырьки воздуха или газа, проходя через слой загрязненной воды снизу вверх, осаждаются на поверхности твердых частиц, капель нефти и способствуют их всплытию на поверхность. Очистку сточных вод осуществляют на установках очистки вод типа УОВ-750, УОВ-1500, УОВ-3000 и УОВ-10000, имеющих пропускную способность соответственно 750, 1500, 3000 и 10000 м3/сут. Следует отметить, что установка УОВ-10000 состоит из трех установок УОВ-3000. Каждая такая установка состоит из четырех блоков: отстойника, флотации, сепарации и насосного.

Вместе с очищенной пластовой водой в продуктивные пласты для поддержания пластового давления закачивают пресную воду, полученную из двух источников: подземных (артезианских скважин) и открытых водоемов (рек). Грунтовые воды, добываемые из артезианских скважин, отличаются высокой степенью чистоты и во многих случаях не требуют глубокой очистки перед закачкой в пласты. В то же время вода открытых водоемов значительно загрязнена глинистыми частицами, соединениями железа, микроорганизмами и требует дополнительной очистки. В настоящее время применяют два вида забора воды из открытых водоемов: подрусловый и открытый. При подрусловом методе воду забирают ниже дна реки - " под руслом". Для этого в пойме реки пробуривают скважины глубиной 20-30 м диаметром 300 мм. Эти скважины обязательно проходят через слой песчаного грунта. Скважину укрепляют обсадными трубами с отверстиями на спицах и в них опускают водозаборные трубы диаметром 200 мм. В каждом случае получают как бы два сообщающихся сосуда - "река - скважина", разделенных естественным фильтром (слоем песчаного грунта). Вода из реки профильтровывается через песок и накапливается в скважине. Приток воды из скважины форсируется вакуум-насосом или водоподъемным насосом и подается на кустовую насосную станцию (КНС). При открытом методе воду с помощью насосов первого подъема откачивают из реки и подают на водоочистную станцию, где она проходит цикл очистки и попадает в отстойник. В отстойнике с помощью реагентов-коагуляторов частицы механических примесей и соединений железа выводятся в осадок. Окончательная очистка воды происходит в фильтрах, где в качестве фильтрирующих материалов используют чистый песок или мелкий уголь.

Все оборудование системы сбора и подготовки нефти и воды поставляют в комплектно-блочном исполнении в виде полностью готовых блоков и суперблоков.

22. ОБЩИЕ ПОНЯТИЯ О ПОДЗЕМНОМ И КАПИТАЛЬНОМ РЕМОНТЕ СКВАЖИН

Все работы по вводу скважин в эксплуатацию связаны со спуском в них оборудования: НКТ, глубинных насосов, насосных штанг и т.п.

В процессе эксплуатации скважин фонтанным, компрессорным или насосным способом нарушается их работа, что выражается в постепенном или резком снижении дебита, иногда даже в полном прекращении подачи жидкости.

Работы по восстановлению заданного технологического режима эксплуатации скважины связаны с подъемом подземного оборудования для его замены или ремонта, очисткой скважины от песчаной пробки желонкой или промывкой, с ликвидацией обрыва или отвинчивания насосных штанг и другими операциями.

Изменение технологического режима работ скважин вызывает необходимость изменения длины колонны подъемных труб, замены НКТ, спущенных в скважину, трубами другого диаметра, УЭЦН, УШСН, ликвидации обрыва штанг, замены скважинного устьевого оборудования и т.п. Все эти работы относятся к подземному (текущему) ремонту скважин и выполняются специальными бригадами по подземному ремонту.

...

Подобные документы

  • Теоретические основы проектирования и разработки газовых месторождений. Характеристика геологического строения месторождения "Шхунное", свойства и состав пластовых газа и воды. Применение численных методов в теории разработки газовых месторождений.

    дипломная работа [4,8 M], добавлен 25.01.2014

  • Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа [367,2 K], добавлен 22.01.2012

  • Условия залегания продуктивных пластов. Состав и физико-химические свойства пластовых жидкостей и газа месторождения. Характеристика запасов нефти. Режим разработки залежи, применение системы поддержания пластового давления, расположение скважин.

    курсовая работа [323,6 K], добавлен 13.04.2015

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Общая характеристика месторождения, химические и физические свойства нефти. Условия, причины и типы фонтанирования. Особенности эксплуатации скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Технология и оборудование для бурения скважин.

    отчет по практике [2,1 M], добавлен 28.10.2011

  • Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат [1,1 M], добавлен 14.07.2011

  • Извлечение нефти из пласта. Процесс разработки нефтяных и газовых месторождений. Изменение притока нефти и газа в скважину. Механические, химические и тепловые методы увеличения проницаемости пласта и призабойной зоны. Гидравлический разрыв пласта.

    презентация [1,8 M], добавлен 28.10.2016

  • Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.

    реферат [363,1 K], добавлен 02.12.2015

  • Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике [4,5 M], добавлен 23.10.2011

  • Геологическое строение месторождения. Стратиграфия и литология осадочного разреза. Физико-химические свойства и состав нефти, газа и вод. Анализ технологических показателей разработки залежи. Анализ современного этапа разработки, проводимых мероприятий.

    дипломная работа [1,6 M], добавлен 11.12.2013

  • Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация [20,4 M], добавлен 10.06.2016

  • Площадка вахтового поселка и нефтеналивного железнодорожного терминала. Степень воздействия производства на компоненты окружающей природной среды. Свойства и состав нефти, газа. Расчет пластового давления. Эксплуатация газовых, конденсатных месторождений.

    курсовая работа [122,8 K], добавлен 13.03.2013

  • Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

    учебное пособие [3,1 M], добавлен 09.01.2010

  • Общие сведения о месторождении, его стратиграфия, тектоника, нефтегазоводоностность. Свойства и состав нефти, газа, конденсата, воды. Физико-химические свойства пластовых вод. Гидравлический разрыв пласта, применяемое при нем скважинное оборудование.

    дипломная работа [1,1 M], добавлен 18.04.2014

  • Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа [101,6 K], добавлен 21.10.2014

  • Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.

    курсовая работа [1,8 M], добавлен 18.12.2014

  • История возникновения и особенности развития нефтяных и газовых месторождений. Методы сбора, подготовки, способы транспортировки и хранение газа и нефти, продукты их переработки. Обеспечение технической и экологической безопасности при транспортировке.

    дипломная работа [162,1 K], добавлен 16.06.2010

  • Описание содержания и структуры курсовой работы по бурению нефтяных и газовых скважин. Рекомендации и справочные данные для разработки конструкции скважины, выбора режима бурения, расхода промывочной жидкости. Разработка режима цементирования скважины.

    методичка [35,5 K], добавлен 02.12.2010

  • Павловское месторождение нефти и газа. Стратиграфия и нефтегазоносность. Тектоническое районирование Пермского края. Физико-химические свойства газа и воды. Осложнения при эксплуатации газовых скважин. Причины гидратообразования, методы предупреждения.

    курсовая работа [3,5 M], добавлен 21.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.