Инженерная геология

Значение инженерной геологии для строительства железных дорог и их эксплуатации, ее понятие и принципы. Классификация и типы, сравнительная характеристика горных пород: магнетических, осадочных и метаморфических. Физико-механические свойства образований.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 27.05.2015
Размер файла 102,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Значение инженерной геологии для строительства железных дорог и их эксплуатации

Инженерная геология является одной из геологических дисциплин. Она разрабатывает широкий круг научных и практических проблем, решает многие задачи, возникающие при проектировании, строительстве сооружений (тоннелей, плотин, мостов, дорог и различных промышленных и гражданских зданий) и при проведении инженерных работ по улучшению территорий (осушение, борьба с оползнями, карстом и другими геологическими явлениями).

Инженерная геология включает следующие основные разделы: инженерную петрологию, инженерную геодинамику и специальную инженерную геологию. Инженерная петрология изучает состав, строение, физико-механические свойства горных пород. В задачу инженерной петрологии входит также прогноз изменения свойств пород под влиянием возводимых сооружений.

Инженерная геодинамика изучает геологические процессы, как природные, так и возникающие под воздействием сооружений, влияющие на устойчивость и эксплуатацию сооружений, и разрабатывает защитные мероприятия.

Специальная инженерная геология изучает условия строительства гражданских, дорожных, гидротехнических и подземных сооружений в различных геологических условиях.

Возникновение инженерной геологии и ее развитие на первых этапах были связаны со строительством, когда строители изучали горные породы как основание, среду и материал для различных сооружений. Началом же научных исследований инженерно-геологического плана следует считать первые десятилетия XIX века. Строительство путей сообщения, заводов, фабрик, плотин и других сооружений требовало обеспечения их надежности. В этом большую роль сыграли первые русские инженеры путей сообщения, воспитанники и профессора старейшего вуза страны - Института корпуса инженеров путей сообщения, ныне Петербургского государственного университета путей сообщения (ПГУПС), основанного в 1810 г.

Уже в первые годы работы института в нем изучался курс минералогии и геологии. Можно считать, что зарождение инженерной геологии в приложении к строительству путей сообщения в России относится к началу XIX века и первые работы в этой области принадлежат перу инженеров путей сообщения. Выполнение геологических исследований для целей железнодорожного строительства в России относится к 1842 г. - началу постройки первой железной дороги нормальной колеи. В этой связи строители начали уделять горным породам большое внимание. Растущие масштабы строительных работ требовали привлечения геологов к изысканиям под строительство. Поэтому уже в начале XX века геологи начали привлекаться к решению вопросов, связанных со строительством железных дорог. Среди геологов в этой работе принимали активное участие: И.В. Мушкетов, В.А. Обручев, А.В. Львов, Ф.Ю. Левинсон-Лессинг, А.П. Павлов и др. Они работали как эксперты и изыскатели на различных стройках, проводили исследования с целью изучения оползней, карста, обвалов, вечной мерзлоты на железных дорогах. По результатам обследования объектов появилась литература, касающаяся условий проведения железнодорожных линий.

Основными задачами инженерной геологи являются:

1. Изучение горных пород как грунтов основания, среды для размещения сооружения и строительного материала для различного сооружения.

2. Изучение геологических процессов, влияющих на инженерную оценку территории, выяснения причин, обуславливающих возникновения и развития процессов.

3. Разработка мероприятии по обеспечению устойчивости сооружении и защите их от вредного влияния различных геологических явлении.

2. Горные породы - природные и геологические образования, состоящие из агрегата минералов. По своему происхождению делятся на три класса:

1. Магнетические

2. Осадочные

3. Метаморфические

Магнетические породы возникают из остывающей в недрах земли или на ее поверхности магмы (газово - жидкого, в основном - силикатного, расплава - раствора).

Осадочной породы образуются в процессе разрушения, переноса, накопления преобразования продуктов переработки ранее возникших горных пород, остатков организмов и продуктов их жизни деятельности. Их формирование происходит на поверхности земли при обычных температурах, нормальном давлении и, большинстве случаях, в водной среде.

Метаморфические породы формируются в результате преобразования осадочных и магнетических пород на значительных глубинах под действием, главным образом, высоких давлении, температур и проникающих флюидов.

Пылеватые породы (алевритовая структура). Рыхлые породы с размером частиц от 0,05 до 0,005 мм. Эти породы по своим свойствам занимают промежуточное положение между песками и глинистыми образованиями.

Примером пылеватых пород служит лессовые породы. Эти отложения, в состав которых входит более 50% фракции размером от 0,005 до 0,0002 мм, обладают высокой пористостью до 50% и макропористостью. Число минералов в лессах

не редко превышает 50, но породообразующую роль играет кварц, полевые шпаты, карбонаты и глинистые минералы. Важнейшей особенностью лессов является их просадочность. Она выражается в самоуплотнении при увлажнении под собственным весом за счет разрушения части агрегатов и уменьшения пористости.

Лесс используется для приготовления кирпича, в качестве добавки в бетоны, а также как сырьё для получения низкотемпературного цемента.

3. Опишите горные породы вашего геолого-литологического разреза

1. Суглинок - почва с преимущественным содержанием глины и значительным количеством песка

Суглинки - рыхлые молодые континентальные отложения, состоящие из частиц менее 0,01 мм, содержащиеся примерно в количестве 30-50%, и обломочного материала крупнее 0,01 мм, составляющего соответственно 70-60%. В суглинках обычно присутствует около 10-30% глинистых частиц диаметром менее 0,005 мм, которые и обусловливают основные их физико-технические показатели. За характерный признак суглинков обычно принимается изменение числа пластичности в пределах от 7 до 17

2. Песомк-осадочная горная порода, а также искусственный материал, состоящий из зёрен горных пород. Очень часто состоит из почти чистого минерала кварца (вещество - диоксид кремния).

Слово «песок» часто употребляется во множественном числе («пески»), но форма множественного числа имеет и другие значения

Природный песок - рыхлая смесь зёрен крупностью 0,10-5 мм, образовавшаяся в результате разрушения твёрдых горных пород.

Природные пески в зависимости от генезиса могут быть аллювиальными,

делювиальными, морскими, озёрными, эоловыми. Пески, возникшие в результате деятельности водоёмов и водотоков, имеют более округлую,

окатанную форму.

3.Сумпесь - рыхлая горная порода, состоящая, главным образом, из песчаных и пылеватых частиц с добавлением около 3-10% алевритовых, пелитовых или глинистых частиц. Число пластичности для супеси составляет от 0,01 до 0,07. Супесь менее пластична, чем суглинок. Жгут, скатанный из суглинка, не рассыпается, в отличие от жгута из супеси. Более глинистые супеси называются тяжёлыми, менее глинистые-лёгкими. В зависимости от содержания песчаных зёрен соответствующих размерностей и пылеватых частиц различают грубо песчаные, мелкопесчаные и пылеватые супеси. В супесях присутствуют глинистые минералы (каолинит, монтмориллонит).

Минералогический состав супесей разнообразен. Песчаные и пылеватые супеси содержат кварц. Более глинистая супесь применяется в качестве сырья при производстве строительной керамики.

Термин супесь обычно применяют к породам континентального происхождения, а соответствующие им морские отложения относят к группе глинистых песков.

Термин супесь также применяется для обозначения гранулометрического состава почв в почвоведении. В Классификации Н.А. Качинского к супесям относятся почвы с содержанием физической глины от 10 до 20%. Однако имеются современные исследования, показывающие целесообразность разделения супесчаной почвы на лёгкую супесчаную (10-15% физической глины) и тяжёлую супесчаную (15-20%).

Усреднённое значение сопротивления грунта - 300 кПа.

4. Мергель - смешанная по составу порода. Состоит из мелко - (ериистого кальцита и глинистого материала. Распределение составных частей в породе равномерное. По внешнему виду это мягким, реже твердая камневидная порода, окрашенная в белый, желтовато-серый или зеленовато-серый цвет.

Применяется для изготовления цемента. Кремнистые породы состоят из кремнистых раковин, скелетных остатков и хемогенного кремнезема. Основные минералы кремнистых пород - опил и халцедон.

Мергель-осадочная камнеподобная горная порода смешанного глинисто-карбонатного состава: 50 - 75% карбонат (кальцит, реже доломит), 25 - 50% - нерастворимый остаток (SiO2 + R2O3). В зависимости от состава породообразующих карбонатных минералов мергели делятся на известковые и доломитовые. У обычных мергелей в нерастворимом осадке содержание кремнезёма превышает количество полуторных окислов не более чем в 4 раза. Мергели с соотношением SiO2: R2O3> 4 относятся к группе кремнезёмистых.

5. Алевролит - твёрдая осадочная горная порода. Образуется из алеврита в процессе литификации.

Состоит из зёрен неправильной формы, размером от 0,01-0,1 мм (по другим данным 0,005-0,05 мм). Имеются три разновидности алевролитов по форме слагающих частиц: крупнозернистые, разнозернистые и мелкозернистые. Основой алевролита является кварц, могут присутствовать также частицы полевого шпата, глинистых минералов, иногда присутствуют карбонаты и гидроксиды железа.

Добывают алевролит преимущественно для производства цемента и садовых дорожек. Его можно обнаружить в угольных шахтах между пластами угля. Используется в производстве

6. Дресвам - рыхлые осадочные горные породы, образовавшиеся в результате механического разрушения самых разных горных пород обломочные. Они представляют собой скопление крупных (200?20 мм щебень, 20?2 мм - дресва) угловатых обломков. Если таких обломков в составе грунта содержится более 50%, то грунт называют щебенистым, либо дресвяным. Породы типично континентальные: не несут на себе следов переноса и обработки водой. Могут быть получены искусственно путём дробления различных горных пород.

геология инженерный магнетический порода

4. Физико-механические свойства горных пород

Состояние окружающего породного массива характеризуют определенными физико-механическими свойствами.

Достоверные сведения о физико-механических свойствах горных пород позволяют заблаговременно составить представление о характере возможных деформаций и степени устойчивости обнажений массива, а также служат

основанием для разработки и внедрения наиболее эффективных методов разрушения горных пород при ведении горных работ, креплении и поддержании горных выработок.

Под механическими свойствами горных пород понимают характеристики, определяющие способность пород противодействовать деформированию и разрушению в сочетании со способностью упруго или пластически деформироваться под действием внешних механических сил. Механические свойства пород можно подразделить на прочностные, упругие и др.

Прочность характеризует сопротивляемость породы раздавливающим, разрывающим и скалывающим нагрузкам.

Пределом прочности называют напряжение, при котором образец породы разрушается.

Большинство горных пород имеет зернистую структуру (например, песчаники), причем межкристаллическое сцепление значительно меньше прочности самих зерен. Такие горные породы являются хрупкими и разрушаются без предварительной пластической деформации. Глины и некоторые виды известняков обладают пластическими свойствами. Горные породы обладают достаточно высокой прочностью только на сжатие, сопротивление же их растяжению, сдвигу и изгибу очень мало и составляет десятые и сотые доли сопротивления сжатию.

При сложных процессах механического разрушения горных пород (бурение шпуров, применение проходческих комбайнов и т.д.) чаще находит применение термин «крепость горной породы».

Крепость - величина, приближенно характеризующая относительную сопротивляемость породы разрушению при добыче.

Данные о физико-механических свойствах горных пород получают путем испытания их образцов на сопротивление сжатию, разрыву, изгибу и сдвигу.

К свойствам горных пород относят также обобщающие характеристики разрушаемости механическими способами: дробимость, абразивность и контактную прочность.

Дробимость - относительная сопротивляемость породы измельчению при

воздействии ударной нагрузки.

Абразивность горных пород и угля - способность истирать металлы, твердые сплавы и др. Поэтому абразивность горной породы обычно оценивают по износу материала, контактирующего с нею.

Контактная прочность - сопротивляемость породы разрушению в приповерхностном слое при местных контактных воздействиях.

По величине контактной прочности все горные породы делят на 12 классов.

Первый класс составляют слабые породы с контактной прочностью менее 300 МПа, к двенадцатому классу относят крепчайшие породы с пределом прочности более 5650 МПа.

Хрупкость - свойство горных пород разрушаться без пластических деформаций.

Пластичность - свойство породы под воздействием сил претерпевать остаточную деформацию без микроскопических нарушений сплошности. Она растет с увеличением температуры и давления. Наиболее пластичны, например, глины.

Между хрупкими и пластичными породами нельзя провести резкой грани, так как одна и та же порода в зависимости от рода и скорости приложения нагрузки может быть хрупкой или пластичной.

Твердость - сопротивляемость породы при местных контактных воздействиях пластической деформации или хрупкому разрушению в поверхностном слое.

Сопротивляемость горной породы внедрению инструмента или вдавливанию при статическом воздействии называют статической твердостью.

Вязкость - свойство, характеризующее сопротивляемость усилиям, стремящимся отделить часть породы от массива. Вязкость часто выражают через работу деформации - работу, необходимую для разрушения породы. Вязкость зависит от прочности и пластичности породы. В однородных породах вязкость равномерна во всех направлениях. В неоднородных породах вязкость вдоль слоев меньше, чем в направлении, перпендикулярном к ним.

Плотность горной породы - масса единицы ее объема в естественном состоянии со всеми содержащимися в ее порах жидкостями и газами.

Различают среднюю и минералогическую плотности.

Пористость - суммарный относительный объем пор, содержащихся в горной породе. Наличие в породе пор и трещин уменьшает силы сцепления и облегчает разрушение породы под действием бурового инструмента. Чем больше объем пор, тем меньше ее плотность.

Пористость горных пород колеблется в широких пределах и зависит от размеров и формы зерен, слагающих породу, а также от минералогического состава, однородности, плотности ее сложения. Пористые горные породы обладают сжимаемостью, т.е. их объем уменьшается после сжатия. Однако практически сжимаемость горных пород незначительна.

Упругость - свойство тела восстанавливать свою первоначальную форму после прекращения действия на него силы.

Деформация горных пород - изменение относительного положения частиц массива горных пород под действием сил.

Ползучестью горной породы называют медленное нарастание во времени пластической деформации породы при силовых воздействиях, меньших, чем те, которые могут вызвать остаточную деформацию при испытаниях обычной длительности. Величина ползучести горных пород имеет большое значение при поддержании горных выработок, так как от нее зависит смещение горных пород на контуре выработок и, следовательно, нагрузка на крепь.

Ползучесть горных пород в большей мере проявляется на больших глубинах от поверхности.

Разрыхляемость - свойство горной породы занимать в разрыхленном состоянии больший объем по сравнению с тем, который она занимала в массиве.

Отношение объемов горной породы в разрыхленном состоянии и в массиве называют коэффициентом разрыхления. Величина этого коэффициента зависит от крепости породы, ее строения и сложения, степени разрыхления, способа добычи, наличия воды. Наиболее разрыхляемы твердые и прочные породы, наименьшей разрыхляемостью обладают малосвязанные и рыхлые.

Трещиноватость - нарушенность монолитности пород трещинами. Трещиноватость горных пород значительно ослабляет устойчивость массива, существенно влияет на параметры буровзрывных работ, способы проведения и крепления горных выработок.

Влажностью горных пород называют количество воды, содержащейся в их порах, трещинах и других полостях.

Количество воды, содержащейся в породе в естественных условиях, называют естественной влажностью.

Предельно возможная влажность соответствует полной влагоемкости породы.

Влагоемкость - свойство горных пород удерживать воду (в порах и трещинах). Влагоемкость определяют по количеству оставшейся воды после свободного стекания ее избытка из образца, который предварительно был погружен в воду. По влагоемкости горные породы делят на влагоемкие (глины, торф и др.), слабовлагоемкие (пески, мел, мергели и др.), невлагоемкие (гравий, галечник, каменистые породы).

Водопроницаемость - способность горных пород пропускать через себя воду при некотором перепаде давления. Водопроницаемость зависит от скорости фильтрации, равной количеству воды, протекающей через единицу площади поперечного сечения фильтрующей породы. Водопроницаемость характеризуют коэффициентом фильтрации, т.е. скоростью фильтрации при напорном градиенте, равном единице.

Способность поглощать и проводить воду у различных пород различна. Лишенные полостей кристаллические изверженные породы, большинство метаморфических пород (например, мрамор и кварцит) практически не поглощают и не проводят воду. Пластичная глина обладает значительным водопоглощением, но лишена водопроводящей способности. Обломочные породы с крупностью частиц больше 0,1-0,2 мм быстро поглощают и проводят большое количество воды.

Водоотдачу горной породы характеризуют количеством воды, которое может быть от нее отобрано путем свободного стекания под влиянием силы тяжести.

Газонасыщенность пород - степень заполнения пустот (пор, каверн, трещин) в породах природными газами. Она обусловлена сорбционной способностью горных пород, пористостью, трещиноватостью и давлением газов. Ее оценку осуществляют по коэффициенту газонасыщения, равному отношению объема газа, заполняющего породу, к объему открытых пор и пустот. Газонасыщенность определяют, как объемное количество свободных и сорбированных газов, содержащихся в единице объема или массы породы, извлекаемых путем откачки, вакуумирования или вытеснения жидкостью.

Газопроницаемость - способность горной породы (угля) при некотором перепаде давления пропускать через себя газ. Газопроницаемость является основным свойством горной породы, проявляющимся при фильтрации газа, и зависит в основном от свойств породы и частично от свойств самого газа.

5. Опишите сущность процессов внутренней динамики Земли (эндогенных процессов). Приведите схемы нарушений форм залегания пород. Покажите зависимость силы землетрясения от геоморфологического строения участка, состава и обводненности пород

Эндогенные процессы (греч. еndon - внутри + genes - рождающий, рожденный) - рельефообразующие геологические процессы, связанные с энергией, возникающей в недрах твёрдой земли и обусловленные ее внутренней энергией, силой тяжести и силами, возникающими при вращении Земли. Эндогенные процессы проявляются в виде тектонических движений земной коры, магматизма, метаморфизма горных пород, сейсмической активности. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация). Эндогенные процессы играют главную роль при образовании крупных форм рельефа.

Глубинное тепло Земли имеет преимущественно радиоактивное происхождение. Непрерывная генерация тепла в недрах Земли ведёт к образованию потока его к поверхности. Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинной магмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов или изливается на поверхность, образуя вулканы.

Гравитационная дифференциация вела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям.

Осадочные породы первоначально залегают горизонтально или почти горизонтально. Это положение сохраняется даже при колебательных движениях земной коры. Складчатые тектонические движения выводят пласты из горизонтального положения, придают им наклон или сминают в складки. Так возникают складчатые дислокации. Все формы складчатых дислокаций образуются без разрыва сплошности слоев (пластов). Это их характерная особенность.

Моноклиналь является самой простой формой нарушения первоначального залегания пород и выражается в общем наклоне слоев в одну сторону. Представляет собой обычно крыло какого-либо обширного и пологого поднятия или прогиба слоев. В результате интенсивных тектонических движений могут происходить разрывы сплошности пластов. Разорванные части пластов смещаются относительно друг друга. Смещение происходит по плоскости разрыва, которая проявляется в виде трещины. Величина амплитуды смещения бывает различной - от сантиметра до километров.

Моноклинальное залегание горных пород в крыле разрушенной складки.

Флексура - одна из разновидностей складчатых форм. Флексура представляет собой пологий коленообразный изгиб слоев горных пород, связанных обычно с перемещением нижележащих слоев (или глыб фундамента) по сбросам, наблюдается как в разрезе, так и в плане. Элементами флексуры являются два параллельных крыла и смыкающего крыло, а также угол наклона смыкающего крыла и амплитуда флексуры.

Зависимость силы землетрясения от геоморфологического строения участка, состава и обводненности пород

В зависимости от геологических особенностей конкретного района оценка силы землетрясения может меняться в большую или меньшую сторону. По сейсмическим свойствам породы делят на категории:

Породы I категории уменьшают оценку силы землетрясений на 1 балл от общей оценки по сейсмической карте района, т.е. последствия землетрясений будут менее катастрофичны. К ней относятся: скальные, например, граниты, гнейсы, известняки, песчаники; полускальные, например, мергель, глинистые песчаники, туфы, гипсы породы, крупнообломочные особо плотные породы при глубине залегания грунтовых вод более 15 метров.

Породы II категории по своим сейсмическим свойствам свою исходную бальность сохраняют без изменения. Это глины и суглинки, находящиеся в твердом состоянии, пески и супеси при глубине залегания грунтовых вод менее 8 метров, крупнообломочные породы при глубине залегания грунтовых вод от 8 до 10 метров.

Породы III категории на участках таких пород при оценке последствий землетрясений балл повышают на единицу, т.е. последствия землетрясения на такой площадке будут более разрушительными. К таким породам относят: глины и суглинки, находящиеся в пластичном состоянии, пески и супеси при глубине залегания грунтовых вод менее 4 метров, крупнообломочные породы при глубине залегания грунтовых вод 3 метров.

Крайне опасным для строительства являются участки с сильно расчлененным рельефом, склоны оврагов и ущелий, берега рек. Весьма затруднительно строить при высоком залегании уровня грунтовых вод (1-3 метра). Опасны для строительства оползневые и карстовые участки. Следует учитывать, что наибольшие разрушения происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотнённых породах.

6. Объясните сущность процессов внешней динамики Земли (экзогенных процессов). Опишите процессы и возможные защитные мероприятия

Экзогенные процессы - геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся: выветривание, геологическая деятельность ветра (эоловые процессы, дефляция), проточных поверхностных и подземных вод (эрозия, денудация), озёр и болот, вод морей и океанов (абразия), ледников (экзарация). Главные формы проявления экзогенных процессов на поверхности Земли: разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание); удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками; отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы (седиментогенез, диагенез, катагенез). Экзогенные процессы в сочетании с эндогенными процессами участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Так, например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органические вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

Многолетняя мерзлота

Существуют зоны земной коры, в которых на некоторой глубине в течение тысячелетий сохраняется отрицательная температура. Это явление называют вечной мерзлотой, устойчивой мерзлотой или многолетней мерзлотой. Многолетнемерзлые породы имеют широкое развитие, и площадь их распространения составляет около 25% всей суши земного шара.

Многолетнемерзлые горные породы развиты в северных, северо-восточных и восточных районах России. Южная граница их распространения имеет весьма прихотливые очертания. В пределах Кольского полуострова и севера европейской части России она оконтуривает относительно узкую полосу, постепенно расширяющуюся к Уралу. После резкого изгиба к югу вдоль Уральского хребта она несколько отклоняется к северу и проходит на огромных пространствах западной Сибири почти в широтном направлении, пересекая реки Обь и Енисей. Далее она круто поворачивает к югу, протягивается вдоль правого берега р. Енисей и, огибая Алтай, уходит за пределы России, вновь появляясь на юго-востоке страны, проходя по левобережью Амура.

Достаточно широкое распространение многолетнемерзлые горные породы имеют на Северо-Американском континенте, на островах Северного

Ледовитого океана, в Гренландии, Антарктиде.

Мощность вечномерзлых пород колеблется от десятков сантиметров до сотен метров. Жители Якутска в 1632 г., намереваясь черпать воду из колодца, рыли колодец до 16 м и оставили его в вечномерзлых грунтах. Эту попытку для получения питьевой воды повторил в 1826 г. житель Якутска Ф. Шергин. Но, несмотря на большую глубину (116,4 м), колодец не вышел из мерзлого грунта. Установлено, что мощность толщи вечномерзлых грунтов в районе Якутска составляет 250 м. максимально установленная мощность толщи многолетнемерзлых пород составляет 1450 м. Это в южной части Анабарского массива в верховьях р. Мархи. В районе хребтов Удокан и Жодарский мощность толщи вечномерзлых пород достигает 1300 м.

Защитные мероприятия

Выбор того или иного метода зависит от конструктивных термических характеристик возводимых зданий и сооружений от геоморфологических и геотехнических характеристик условий залегания толщи вечномерзлых пород.

Метод строительства без учета температурного режима грунтов может применяться в тех случаях, когда основание сооружений на всю глубину оттаивания являются скальные породы.

Метод строительства с сохранением режима вечной мерзлоты применяется для неотапливаемых зданий и сооружений, также для зданий, отапливаемых с применением мер по сохранению вечномерзлого состояния грунтов основания. Этот метод используется, главным образом, в тех случаях, когда мерзлые грунты имеют большую мощность (15-20 м и более), а сооружение не выделяет большого количества тепла. В этих условиях мерзлое состояние грунтов может быть сохранено без сложных конструктивных решений и значительных затрат. В этом случае устраивают продуваемые крупнопористые каменные подсыпки под всей площадью основания здания или устанавливают сооружение на свайном фундаменте с проветриваемым подпольев Ленточные фундаменты почти не применяются. Известны некоторые старинные здания (двухэтажный дом архиерея в Якутии и инженерные склады в Чите), имеющие проветриваемые подполья, которые сохранились без значительных деформаций. четно-теоретическое и конструктивное обоснование принцу использования вечномерзлых грунтов в качестве оснований зданий и сооружений с сохранением их мерзлого состояния был произведено в конце 20-х годов XX в. в связи с проектированием и строительством Петровско-Забайкальского металлургического завода и Якутской ЦЭС. В настоящее время этот метод является общепризнанным и универсальным.

Метод возведения сооружений с предварительным протаиванием вечномерзлой толщи применяется главным образом в тех случаях, когда сооружения выделяют большое количество тепла сохранение мерзлого состояния грунтов, оказывается технического невозможным или экономически невыгодным. Если мерзлый слой не более 10 м, то рекомендуется: летом снять верхний утепленный слой грунта (мох, дерн, торф) и оставить его протаивать. В зимнее время на участке предусмотреть снегозадержании для утепления поверхности грунта. Таким образом, в течение 2-3 лет вечномерзлые породы оттаивают на 5-6 м. Оттаивание можно производить с помощью пара: через паровые иглы пропускают горячий пар и породы оттаивают на 7-10 м.

Метод строительства и эксплуатации сооружений с последующим оттаиванием вечномерзлых пород применим, когда:

1. температурный режим грунтовой толщи близок к 0°С;

2. грунты при оттаивании не являются сильно просадочными и осадка их меньше предельной величины для данного сооружения.

По этому методу рекомендуется возводить сооружения лишь на

гравелистых, щебенистых, песчаных грунтах, уплотняющихся при оттаивании под нагрузкой, но не выдавливающихся из-под подошвы фундамента.

Строительство насыпей железных дорог. Строители железных дорог впервые встретились с вечномерзлыми породами в начале XX века на участке Транссибирской магистрали в пределах Читинской и Амурской областей. Стремление сохранить в мерзлом состоянии льдистые породы в основании земляного полотна выражалось в назначении высоты насыпей не менее 2 м. При отсыпке их использовались любые горные породы. Последующая эксплуатация железных дорог показала, что сохранить грунты основания в мерзлом состоянии не удалось, на значительном протяжении имелась неравномерная осадка земляного полотна. В 30-40 годы XX в. строительство железных дорог в районах Севера, Сибири и Дальнего Востока велось по принципу сохранения вечномерзлых пород в основании земляного полотна дорог. С целью сохранения вечной мерзлоты намечалась укладка термоизоляции из торфа и мха в основании насыпей, а также покрытие ими откосов насыпей и выемок. На состояние земляного полотна оказывают влияние:

· состав и свойства грунтов насыпи и ее основания;

· высота насыпи;

· температура вечномерзлых грунтов;

· характер растительного покрова;

· климатические условия;

· динамическое воздействие поездной нагрузки.

В разных климатических районах при одинаковых грунтах земляного полотна и основания и других равных условиях существенное влияние на режим вечномерзлых грунтов основания оказывает их температура.

Почвообразование

Одним из важнейших факторов почвообразования, оказывающих огромное влияние на генезис почв, структуру почвенного покрова, его контрастность и пространственную неоднородность, является рельеф местности.

Основными элементами рельефа являются водораздельные

пространства, склоны и долины.

В практике полевых почвенных исследований установилась следующая систематика типов рельефа:

1) макрорельеф; 2) мезорельеф; 3) микрорельеф; 4) нанорельеф.

Каждый из перечисленных типов рельефа играет определенную роль в процессах почвообразования, т.е. в генезисе почв и географии почв, в формировании структуры почвенного покрова.

Макрорельеф как рельеф, определяющий строение земной поверхности на больших территориях, определяет и отражает, в соответствии с биоклиматическими условиями, зональность почвенного покрова, его структуру и характер макро-комбинаций почв, типичных для данной зоны.

Мезорельеф определяет структуру почвенного покрова в пределах конкретного ландшафта и характер мезокомбинаций почв, их сочетания.

Микро- и нанорельеф влияют на пятнистость и комплексность почвенного покрова и определяют характер микро-комбинаций, микро-комплексность.

Оценить роль рельефа в почвообразовании можно только учете совокупного взаимодействия всех факторов почвообразования в пределах конкретной местности. Так, например, в гумидных и субгумидных регионах при господстве увлажнения над испарением, в пониженных элементах рельефа (депрессии, долины) близкий уровень грунтовых вод всегда способствует образованию почв гидроморфного ряда - болотных, лугово-болотных, дерново-глеевых, болотно-подзолистых и др. По своему морфологическому строению, режимам и химическому составу эти почвы резко отличаются от автоморфных почв, сформированных на водораздельных пространствах. В аридных и семиаридных условиях залегание близкого уровня грунтовых вод в понижениях рельефа приводит к образованию почв засоленного ряда - солончаков и в различной степени засоленных почв зонального ряда, в то время как на водоразделе признаки засоленности почв отсутствуют.

Размещено на Allbest.ru

...

Подобные документы

  • Обоснование роли инженерной геологии для строительства железных дорог и их эксплуатации. Анализ физико-механических свойств горных пород, необходимых для проектирования и строительства. Методы определения абсолютного и относительного возраста пород.

    контрольная работа [1,8 M], добавлен 26.04.2010

  • Значение инженерной геологии для строительства. Физико-механические свойства горных пород. Суть процессов внешней динамики Земли (экзогенных процессов). Классификация подземных вод, основной закон фильтрации. Методы инженерно-геологических исследований.

    контрольная работа [1,5 M], добавлен 26.07.2010

  • Значение инженерной геологии для проектирования и строительства. Задачи, решаемые этой наукой. Происхождение, минералогический и химический составы, структура, текстура и условия залегания. Основные физико-механические показатели свойств горных пород.

    контрольная работа [260,9 K], добавлен 14.07.2010

  • Значение инженерной геологии для промышленного и гражданского строительства. Описание условий образования и строительные свойства грунтовых отложений (аллювиальных). Относительный и абсолютный возраст горных пород. Основной закон фильтрации подземных вод.

    курсовая работа [1,4 M], добавлен 24.06.2011

  • Основные этапы развития инженерной геологии как науки. Особенности определения абсолютного возраста горных пород. Ключевые методы борьбы с подвижными песками. Анализ строительства в районе вечной мерзлоты. Способы определения притока воды к водозаборам.

    курсовая работа [1017,4 K], добавлен 10.09.2013

  • Сущность интрузивного магматизма. Формы залегания магматических и близких к ним метасоматических пород. Классификация хемогенных осадочных пород. Понятие о текстуре горных пород, примеры текстур метаморфических пород. Геологическая деятельность рек.

    реферат [210,6 K], добавлен 09.04.2012

  • Особенности определения возраста горных пород (осадочных, магматических, метаморфических) и геологического времени. Главные задачи геологии и палеонтологии в установлении закономерностей эволюционного развития. Основные этапы формирования земной коры.

    реферат [26,3 K], добавлен 16.05.2010

  • Общее описание и характерные черты осадочных горных пород, их основные свойства и разновидности. Типы слоистости осадочных горных пород и структура. Содержание и элементы обломочных пород. Характеристика и пути образования химических, органогенных пород.

    реферат [267,1 K], добавлен 21.10.2009

  • Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.

    презентация [949,2 K], добавлен 13.11.2011

  • Сущность понятия "инженерная геология". Минерал мусковит и порода сенит-порфит, супесь, мел. Условия образования и строительные свойства грунтовых отложений. Процесс просадки леса и обвала, возможные защитные мероприятия. Классификация подземных вод.

    контрольная работа [59,7 K], добавлен 23.04.2010

  • Общая характеристика осадочных горных пород как существующих в термодинамических условиях, характерных для поверхностной части земной коры. Образование осадочного материала, виды выветривания. Согласное залегание пластов горных пород, типы месторождений.

    курсовая работа [2,6 M], добавлен 08.02.2016

  • Физико-химические свойства нефти и газа. Принципы и показатели классификации видов нефти и применение тригонограмм. Макроскопическое описание осадочных горных пород. Особенности пород-коллекторов и покрышек. Аспекты построения геологического профиля.

    методичка [379,3 K], добавлен 25.10.2012

  • Образование магматических, осадочных и метаморфических горных пород. Основные виды горных пород и их классификация по группам. Отличие горной породы от минерала. Процесс образования глинистых пород. Породы химического происхождения. Порода горного шпата.

    презентация [1,2 M], добавлен 10.12.2011

  • Показатели физических и водно-физических свойств горных пород. Механические свойства и сопротивление рыхлых пород сжатию. Мероприятия по борьбе с плывунами. Химический анализ подземной воды, ее тип. Расчет притока воды к совершенной дренажной канаве.

    контрольная работа [3,9 M], добавлен 21.01.2011

  • Исторический образ, обзор первобытной обработки камня. Залегания горных пород и их внешний вид. Структура, текстура горных пород Южного Урала. Способы и оборудование для механической обработки природного камня. Физико-механические свойства горных пород.

    курсовая работа [66,9 K], добавлен 26.03.2011

  • Цели и задачи структурной геологии. Основные положения геотектоники. Формы залегания горных пород в земной коре. Элементы геологических карт. Цвета плутонических и субвулканических образований. Номенклатуры топографических листов различных масштабов.

    презентация [3,4 M], добавлен 09.02.2014

  • Типы трещин, понятия о трещиноватости и её видах. Ее значение в горном деле и геологии. Инженерно-геологические условия Нойон-Тологойского месторождения полиметаллических руд. Влияние трещиноватости на изменение физико-механических свойств горных пород.

    курсовая работа [899,3 K], добавлен 15.01.2011

  • Изучение структуры, текстуры и форм залегания осадочных горных пород. Классификация метаморфических горных пород. Эндогенные геологические процессы. Тектонические движения земной коры. Формы тектонических дислокаций. Химическое и физическое выветривание.

    контрольная работа [316,0 K], добавлен 13.10.2013

  • Особенности строения Земли, свойства ее слоев. Характеристика земной коры и ее значение для людей. Строение мантии и ядра. Понятие горной породы, классификация по способу происхождения. Описание и свойства осадочных, магматических и метаморфических пород.

    презентация [824,1 K], добавлен 04.04.2012

  • Общая схема образования магматических, осадочных и метаморфических горных пород. Петрографические и литологические методы определения пород. Макроскопическое определение группы кислотности. Формы залегания эффузивных пород. Породообразующие минералы.

    контрольная работа [91,7 K], добавлен 12.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.