Методы определения свойств горных пород
Определение свойств горных пород с учётом структурных неоднородностей высших и низших порядков. Основные методы испытаний пород в условиях объемного напряженного состояния. Методы определения плотностных, деформационных и прочностных свойств породы.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.06.2015 |
Размер файла | 575,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Методы определения свойств горных пород
План
1. Общие положения
2. Определение свойств горных пород с учётом структурных неоднородностей высших порядков
2.1 Методы определения плотностных свойств
2.2 Методы определения деформационных и акустических свойств
2.3 Методы определения прочностных свойств
2.4 Методы определения запредельных характеристик
2.5 Методы испытаний пород при динамических нагрузках
2.6 Методы определения реологических параметров
2.7 Методы испытаний пород в условиях объёмного напряжённого состояния
3. Определение свойств горных пород с учётом структурных неоднородностей низких порядков
3.1 Методы определения плотностных свойств
3.2 Методы определения деформационных свойств
3.3 Методы определения прочностных свойств
3.4 Методы изучения геометрических характеристик структурных неоднородностей
4. Классификации горных пород
1. Общие положения
С учётом изложенных ранее представлений о иерархично-блочной структуре горных пород и массивов и принципиально возможных двух путей определения различных характеристик - интегрального и дифференциального рассмотрим более детально принципы определения отдельных свойств.
В частности, для изучения плотностных характеристик целесообразно применять как первый, так и второй путь определения свойств многокомпонентных сред, поскольку им присущи свойства “аддитивности - независимости - равноправности”, т.е. все компоненты действуют равноправно и независимо друг от друга, а интегральная характеристика агрегата является средневзвешенным из характеристик каждой компоненты, в данном случае структурных блоков и структурных неоднородностей.
Таким образом для определения интегральных плотностных характеристик массива, представленного различными петрографическими разновидностями пород и различными типами структурных неоднородностей, в принципе достаточно определить эти характеристики для каждой разновидности пород и для каждого типа структурных неоднородностей (раздельно или в какой-либо совокупности), а затем найти их средневзвешенное значение в зависимости от степени распространённости указанных компонент в массиве.
Деформационные и, в частности, упругие характеристики горных пород, в отличие от плотностных, обусловливаются не только свойствами отдельных разновидностей пород, слагающих массив, но и свойствами их контактов, а потому и особенностями взаимного расположения слагающих компонент. Именно вследствие этого для деформационных показателей справедлива схема“аддитивности - взаимозависимости - равноправносги”. Аддитивность влияния неоднородностей в этом случае проявляется в суммарном вкладе каждой из компонент, при этом вполне очевидна и их равноправность. Вместе с тем, например, для упругих колебаний интегральная скорость прохождения упругих волн в многокомпонентной среде не является усредненным значением скоростей волн в отдельных компонентах.
Вследствие отмеченной особенности для определения скоростей прохождения упругих колебаний также целесообразен первый путь получения информации о физических характеристиках многокомпонентной среды. Однако, в отличие от плотностных характеристик, и именно из-за свойства “взаимозависимости” в сферу экспериментов при этом необходимо вовлекать объемы массива, где обеспечивается представительность интересующих порядков структурных неоднородностей.
Например, применительно к вопросам оценки устойчивости буровых скважин в сферу экспериментов должны быть вовлечены структурные неоднородности IV - го порядка, и определение деформационных характеристик в этом случае возможно выполнять на образцах-цилиндрах стандартных размеров - с диаметром 40-45 мм и высотой, равной 1-2 диаметрам.
В то же время для решения задач оценки устойчивости горных выработок в экспериментах должны проявлять себя структурные неоднородности более низких порядков - до II включительно. Здесь уже нельзя ограничиваться испытанием образцов, необходима постановка специальных измерений непосредственно в натурных условиях.
В отличие от плотностных и деформационных характеристик прочностные свойства подчиняются схеме "избирательности-независимости", поскольку разрушение происходит в наиболее слабом звене и не зависит от прочности других структурных элементов. В соответствии с двухкомпонентной моделью строения массива скальных пород наиболее слабым звеном является "структурная неоднородность", причем в зависимости от масштаба рассматриваемых объектов разрушение будет определяться различными порядками структурных неоднородностей - от IV - го для буровых скважин до II - го включительно - для крупногабаритных подземных сооружений. Отсюда возникает задача применительно к каждому типу рассматриваемых сооружений определять прочностные характеристики тех структурных неоднородностей, которые в данном случае оказывают основное влияние на устойчивость объектов (т.е. эффективных структурных неоднородностей).
Поскольку вид, размеры и свойства структурных неоднородностей отдельных порядков резко отличаются друг от друга, применяют различные методические подходы для экспериментального определения прочностных характеристик. В частности, для структурных неоднородностей IV - го порядка определения ведут путем испытания образцов горных пород в виде цилиндров или призм.
К образцам предъявляются требования достаточной представительности и однородности, с тем чтобы они не включали структурных неоднородностей других, более низких порядков. Последнее требование обычно достигается путем применения весьма небольших по размерам (стандартных) образцов, а также путем статистического анализа получаемых результатов с отбраковкой резких выбросов в получаемых значениях характеристик. При этом в силу принципа "избирательности" разрушение образцов происходит именно по структурным неоднородностям 1У порядка, и получаемые результаты можно уверенно относить к этому типу.
Для структурных неоднородностей III - го порядка представительными, как правило, являются объемы с существенно большими линейными размерами (50-100 см). В принципе и в этом случае испытания могут быть проведены на образцах соответствующих больших размеров, но это требует специального камнерезного и уникального силового оборудования. Вследствие этого при изучении уже III, а тем более II порядка структурных неоднородностей путь испытания образцов становится малоприемлемым и более целесообразно применять метод непосредственного определения прочностных характеристик по поверхностям структурных неоднородностей того или иного порядка. При этом для правильного последующего применения полученных результатов необходимо знать геометрические характеристики и закономерности расположения в пространстве отдельных структурных неоднородносгей. Вследствие этого их изучение целесообразно начинать с установления их геометрических параметров.
Изучение закономерностей пространственного расположения структурных неоднородностей должно сопровождаться изучением вида заполнения и характера контактирующих поверхностей структурных неоднородностей. Ведь именно от вида и состояния минералов - заполнителей трещин или других типов структурных неоднородностей, а также от степени шероховатости и извилистости поверхностей контактов зависят механические характеристики по поверхностям структурных неоднородностей.
В отличие от геометрических параметров более сложную и существенно менее разработанную задачу представляют собой методы определения прочностных характеристик по поверхностям структурных неоднородноcтей низких порядков. При этом, поскольку с физической точки зрения разрушение материалов вообще и горных пород, в частности, происходит либо под воздействием растягивающих напряжений в форме отрыва, либо вследствие касательных напряжений в форме сдвига (скола), наибольший интерес представляет определение пределов прочности при одноосном растяжении [?р], сцепления [?] и ? - углов внутреннего трения. В условиях, когда необходимо принимать во внимание взаимные подвижки отдельных структурных блоков, существенное значение приобретает характеристика f - коэффициент трения (внешнего) породы о породу по контактам структурных неоднородностей.
Методы определения конкретных свойств пород рассмотрим раздельно:
при вовлечении в эксперименты сравнительно небольших объёмов пород, т.е с учётом структурных неоднородностей высших порядков;
при исследованиях больших областей массива, охватывая тем самым низкие порядки структурных неоднородностей.
2. Определение свойств горных пород с учётом структурных неоднородностей высших порядков
Методы определения свойств пород с учётом структурных неоднородностей высших порядков традиционно относят к лабораторным методам исследований. Свойства определяют на образцах, размеры которых в настоящее время стандартизированы.
2.1 Методы определения плотностных свойств
Наибольший интерес в геомеханике из плотностных свойств представляют объемный вес, объёмная масса (плотность), удельный вес, и пористость.
В лабораторных условиях на образцах пород обычно определяют объемный вес g и удельный вес g0. Далее рассчитывают плотность (объемную массу) r и удельную массу r0. Общую пористость также определяют расчетным путем, используя полученные экспериментально значения удельного g0 и объемного веса g.
(1)
Для экспериментального определения объемного веса породы требуется знать вес и объем образца. Если определения ведут на образцах правильной геометрической формы, то вес устанавливают путем взвешивания на лабораторных весах, а объем - путем измерения линейных размеров. В случае испытания образцов неправильной геометрической формы для определения объемного веса используют метод гидростатического взвешивания.
В последние годы для лабораторного определения плотности (и объемного веса) пород широко используют гамма-метод (в модификации узкого пучка). При этом испытуемый образец породы помещают между источником радиоактивного гамма-излучения и детектором (рис. 1).
Рис 1. Схема лабораторной установки для измерения плотности горных пород гамма-методом: 1 - источник гамма-излучения; 2 - детектор; 3 - образец породы; 4 - радиометр для регистрации гамма-излучения.
Зная гамма-активность источника, расстояние r между источником и детектором и толщину d образца и регистрируя интенсивность гамма-излучения, прошедшего через образец породы, определяют по специальным номограммам плотность породы r. Гамма-метод определения плотности отличается простотой и высокой производительностью измерений с применением несложной серийной аппаратуры и обеспечивает точность 1-3 %.
Определение удельной массы r0 (удельного веса g0) в принципе не отличается от определений объёмного веса и плотности, но при этом необходимо обеспечить вскрытие всех пор и удаление газовой и жидкостной составляющих испытуемой породы.
В некоторых задачах геомеханики, и особенно при физической интерпретации результатов наблюдений, в ряде случаев требуются сведения о влажности пород. Влажность выражают процентным отношением веса воды, содержавшейся в образце породы, к весу образца после его высушивания. Для определения влажности образец сначала взвешивают в естественном состоянии, а затем доводят до постоянного веса в эксикаторе или в сушильном шкафу при температуре 105-110°С. Сопоставляя вес влажного образца G1 и вес сухого образца G2, влажность вычисляют по формуле
(2)
2.2 Методы определения деформационных и акустических свойств
Из деформационных свойств горных пород обычно определяют модуль деформации (для упругого участка деформирования - модуль упругости Е) и коэффициент поперечных деформаций (коэффициент Пуассона) n.
При этом методы их определения можно подразделить на статические и динамические.
Статические методы основаны на измерении деформаций образцов исследуемых пород под нагрузкой. Для измерения продольных и поперечных деформаций образцов при их нагружении применяют проволочные тензометры сопротивления, либо механические индикаторы часового типа.
В процессе нагружения и разгрузки с помощью автоматической записывающей аппаратуры ведут непрерывную запись деформаций, либо фиксируют деформации через определенные ступени нагружения и разгрузки.
Динамические методы определения деформационных (упругих) свойств пород основаны на измерении скоростей упругих колебаний, возбуждаемых в исследуемых образцах в диапазоне звуковых и ультразвуковых частот, т.е. фактически являются в то же самое время методами определения акустических свойств пород.
Эти методы разработаны значительно позднее, чем статические, но получают все большее распространение благодаря простоте, малой трудоемкости измерений и применению удобных в работе и надежных серийных измерительных приборов.
Наибольшее распространение в практике исследования свойств горных пород получил импульсный динамический метод, в основе которого лежит пропускание через образец исследуемой породы повторяющихся импульсов ультразвуковых колебаний, по значениям скоростей распространения которых рассчитывают упругие характеристики.
Определение акустических, а затем и упругих свойств импульсным динамическим методом обычно ведут путем прямого прозвучивания и продольного профилирования образцов горных пород. Для прозвучивания образца (рис. 6.3, а) к одному из его торцов прижимают ультразвуковой излучатель, а к другому - приемник (кристаллы кварца, сегнетовой соли, керамика титаната бария, магнитострикционные преобразователи и др.).
Для измерения скорости поверхностных волн VR излучатели располагают правильно.
Следует заметить, что модуль упругости, определяемый динамическими методами, обычно бывает несколько выше, чем при статических измерениях. Это расхождение обусловлено неидеальной упругостью пород, оно минимально для весьма плотных разновидностей и возрастает по мере снижения плотности пород.
Экспериментально определив модуль продольной упругости Е и коэффициент поперечных деформаций v, можно вычислить значения модуля сдвига G и модуля всестороннего сжатия К.
2.3 Методы определения прочностных свойств
Наибольшее использование в задачах геомеханики имеют характеристики прочности при одноосных сжатии [sсж] и растяжении [sр], а также при срезе (сдвиге) [tср].
В своё время был разработан ГОСТ 21153.2-84, в соответствии с которым определение прочности пород при одноосном сжатии производится на цилиндрических образцах диаметром 40-50 мм с отношением высоты к диаметру, равным 0,9-1,1. Допускается также проводить испытания на кубических образцах со стороной размером 45?5 мм. Торцовые поверхности образцов шлифуют, их выпуклость (вогнутость) после шлифования не должна быть более 0,05 мм. Торцовые поверхности должны быть параллельны друг другу (отклонение не более 0,1 мм) и перпендикулярны к образующим цилиндра (отклонение 1,0 мм).
Для строго центрированного нагружения образца между ним и одной из плит пресса помещают шариковое центрирующее устройство. Нагружение образца производят с равномерной скоростью в пределах 1-30 кгс/(см2.с), повышая нагрузку вплоть до разрушения образца и фиксируя значение разрушающей нагрузки.
Цилиндрические образцы пород стандартных размеров могут быть использованы и для определения предела прочности при растяжении. Определение производят методом диаметрального сжатия (рис. 6.5), так называемым “бразильским методом”.
Рис. 6.5. Определение прочности пород при растяжении методом диаметрального сжатия: 1 - испытуемый образец породы; 2 - плиты пресса.
В результате диаметрального сжатия в образцах возникают растягивающие напряжения.
При массовых определениях прочностных свойств горных пород весьма удобен метод комплексного определения пределов прочности при многократном раскалывании и сжатии.
Из проб изготавливают породные пластины толщиной 20 мм со строго параллельными шлифованными гранями. Одну из граней расчерчивают на квадраты со стороной, равной толщине пластины. Затем пластину раскалывают по прочерченным линиям стальными клиньями, определяя прочность породы на растяжение.
Получаемые в результате раскалывания кубовидные образцы используют для определения предела прочности на сжатие. При этом образцы нагружают по двум параллельным шлифованным граням.
Прочность на срез (сдвиг) определяют в специальных стальных матрицах (рис. 6.7). Образец находится в условиях среза со сжатием. При испытаниях важно обеспечить равномерное распределение усилия пресса по сечению испытуемого образца. Испытания проводят на цилиндрических образцах указанных выше стандартных размеров. Зазор между разъемными половинами матрицы при вложенном в нее образце должен иметь постоянную ширину не более 2 мм.
Рис. 6.7. Схема определения прочности пород при срезе.
2.4 Методы определения запредельных характеристик
Поведение горных пород под нагрузкой в полной мере характеризуется так называемой полной кривой "напряжение-деформация", которая состоит из двух ветвей - восходящей до значения [?сж], равного пределу прочности испытуемой породы, и ниспадающей от [?сж] до [?ост] - остаточной прочности (рис. 6.8).
Рис. 6.8. Типичные кривые "напряжение-деформация" для горных пород, получаемые на обычных испытательных прессах (а) и машинах с повышенной жесткостью (б). l-V - области: I - закрытия структурных дефектов, II - линейного деформирования, III - образования микротрещиноватости, IV - разветвления и слияния трещин, V - снижения грузонесущей способности.
В процессе экспериментов на испытательной машине или прессе наряду с деформациями испытуемого образца деформируется и сама испытательная машина. При достижении образцом предела прочности и начале разрушения упругая энергия, накопленная испытательным оборудованием, сообщается образцу и реализуется обычно в виде очень быстрого (лавинообразного) его разрушения. При этом вид и характеристики восходящей ветви кривой деформирования практически не зависят от деформационных характеристик испытательного оборудования.
Если при испытаниях применять силовые устройства, не способные накапливать упругую энергию или исключающие ее передачу образцу после начала разрушения, то деформирование горных пород за пределом прочности будет происходить достаточно спокойно и может быть зафиксировано в виде ниспадающей ветви. Вполне естественно, что параметры ниспадающей ветви кривой деформирования в весьма существенной степени определяются деформационными характеристиками испытательного оборудования.
Деформационные характеристики силового оборудования - испытательных машин, прессов, нагрузочных приспособлений и установок - оцениваются показателем жесткости, представляющим собой отношение усилия, развиваемого оборудованием, к абсолютным деформациям, возникающим в нем. Обычные испытательные машины и прессы имеют жесткость в пределах (0,05 - 0,1) 105 кгс/см.
В настоящее время разработаны многочисленные конструкции специальных компенсаторов, позволяющих увеличивать жесткость обычных испытательных машин до (1,5 - 2,5) 106 кгс/см. Вместе с тем предложены и принципиально отличающиеся конструкции специальных прессов с весьма высокой степенью жесткости, позволяющие испытывать широкий круг пород в том числе и весьма хрупких. Одна из таких конструкций с жесткостью 2.107 кгс/см (автор - профессор А.Н. Ставрогин) приведена на рис. 6.9.
Рис. 6.9. Схема жесткого пресса.
А - плунжерный насос; Б, Г - самотормозящиеся клиновые пары; В - гидродомкрат: 1 - винт для возвращения клиновой пары Б в исходное положение; 2 - нутромер; 3 - испытываемый образец; 4 - экстензометр; 5 - жесткая рама; 6 - регулировочный винт; 7 - корпус; 8 - груз.
При проведении испытаний образцы практически любых пород (вплоть до самых хрупких) деформируются без динамических явлений, спокойно, при этом, как правило, образец после испытаний сохраняет свою форму, хотя и не способен нести внешнюю нагрузку.
На рис. 6.10 представлены типичные кривые деформирования разнообразных пород, из которых следует, что остаточная прочность исследованных пород составляет не более 5% от максимальной, модули деформирования для различных ветвей кривой противоположны по знаку, причем крутизна спада всех кривых, характеризуемых модулями спада М, за исключением мрамора, превосходит модуль деформирования для восходящих ветвей деформационных кривых.
Рис.6.10. Полные кривые деформирования образцов горных пород.
1 мрамор; 2 - гранит биотитовый; 3 - плагио-гранит биотитовый; 4 - песчаник; 5 диабаз; 6 - тальк-хлорит.
2.5 Методы испытаний пород при динамических нагрузках
В реальных условиях горные породы подвергаются воздействию различных нагрузок, при этом режимы нагружения могут быть самыми разнообразными - от статического до импульсного.
В принципе любые процессы нагружения являются динамическими, так как протекают в реальном времени, однако степень их динамичности различна, и в зависимости от того, насколько велик вклад сил инерции в общем балансе сил, действующих на образец или деформирующийся объем, тот или иной режим нагружения относят к категории статических или динамических.
В настоящее время не существует общепринятого критерия динамичности процесса, хотя были предложены различные классификации режимов нагружений.
По-видимому, наиболее общей характеристикой режима нагружения является скорость относительной деформации, поскольку эта характеристика определяет процесс деформирования в каждой точке деформируемого объема независимо от способа нагружения.
Различные технологические процессы в массивах горных пород можно соотнести с определенными скоростями деформации. Так, скорость деформации пород
·в выработках при длительных статических нагрузках составляет Ve = 10-12 - 10-10 с-1 и менее (реологические процессы);
·при статическом режиме испытаний образцов горных пород со стандартной скоростью нагружения Ve = 10-3 c-1;
·при внезапных обрушениях пород кровли Ve = (10-3 - 101) c-1;
·при взрывах Ve = (101 - 105) c-1.
В соответствии с этим к статическому способу нагружения могут быть отнесены скорости деформации Ve <10-3 с-1; при скоростях деформирования 10-3 < Ve <102 процесс нагружения может считаться квазистатическим и, наконец, скорости деформирования Ve >102 с-1 характеризуют динамические режимы нагружения.
Для изучения закономерностей изменения деформационно - прочностных характеристик с увеличением скорости приложения нагрузок и возрастанием скорости деформирования пород наиболее рациональным является применение таких методов испытаний, которые без существенных изменений позволили бы в широком диапазоне изменять скорость деформирования пород от статических до динамических режимов приложения нагрузок.
С этой точки зрения к настоящему времени наиболее разработана методика, основанная на принципе разрезного (составного) стержня Гопкинсона. Она позволяет определять деформационно-прочностные характеристики горных пород при одноосном сжатии и растяжении (рис. 6.11).
Для автоматической регистрации усилий и деформаций на упругие элементы стержней-динамометров и боковую (или торцовую) поверхность образцов наклеивают тензодатчики, сигналы от которых фиксируются обычно светолучевыми осциллографами.
Рис. 6.11. Схема испытаний горных пород при динамическом сжатии (а) и динамическом растяжении (б). 1 - боек; 2, 3 - входной и выходной стержни-динамо-метры: 4 - образец горной породы; 5 - тензодатчики для регистрации деформаций в стержнях-динамометрах; 6 - тензодатчики для регистрации деформаций в образце.
В зависимости от применяемых нагрузочных устройств испытания проводятся в различных режимах приложения нагрузок. В диапазоне статических скоростей (V? <10-3 с-1) образец нагружается стационарной универсальной испытательной машиной (прессом) с усилием, необходимым для разрушения испытуемой породы. В диапазоне динамических скоростей деформаций применяют ударный способ нагружения с помощью вертикальных или горизонтальных механических или пневматических копров, пороховых или пневматических пушек, устройств взрывного типа, электрогидравлического удара и др.
Значение среднего напряжения ?сж(t) в образце при сжатии определяется как полусумма напряжений, возникающих на контактных поверхностях образца и стержней. Максимальное значение?сж(t), зарегистрированное при разрушении образца, принимается в качестве его предела прочности при сжатии. Максимальное значение ?р(t) считают пределом прочности горной породы на растяжение.
Анализ экспериментальных данных показывает, что с увеличением скорости деформирования пределы прочности пород на сжатие и растяжение, а также соответствующие значения модуля упругости возрастают (рис. 6.12).
Рис 6.12. Зависимости прочностных (1) и деформационных (2) характеристик пород от скорости деформирования.a - [sсж] и Есж; б - [sр] и Еp
Однако для прочностных характеристик, в отличие от деформационных (модуля упругости Е), изменение носит очень неравномерный характер. Так, до скоростей деформирования Ve = (10-2- 100) с-1 коэффициент динамичности
K = sД/sСТ
характеризующий возрастание динамических пределов прочности по отношению к статическим, составляет 0,4-1,2, а далее резко возрастает до 6-8. Значения коэффициента динамичности для модуля упругости плавно возрастают от К = 0,2 - 0,4 до К = 1,6- 1,8.
2.6 Методы определения реологических параметров
Как отмечалось выше, реологические свойства горных пород описывают обычно на основе теории линейных наследственных сред с использованием в качестве функции ползучести степенной зависимости.
Для такого описания необходимо экспериментально определить значения параметров ползучести aп и d. Эти параметры определяют в лабораторных условиях при простейших напряженных состояниях испытываемых образцов - поперечном изгибе или одноосном сжатии.
В режиме поперечного изгиба испытания ведут, как правило, на образцах-балочках, размещая их на двух опорах и нагружая сосредоточенной нагрузкой в середине пролета. Для испытаний в условиях одноосного сжатия образцы, как обычно, изготавливают в виде призм или цилиндров.
При испытаниях по схеме поперечного изгиба в условиях неизменной нагрузки в течение значительного промежутка времени (многих месяцев) фиксируют изменения прогиба образцов-балочек. При испытаниях образцов в условиях одноосного сжатия измеряют продольные деформации образцов.
Результаты определения параметров ?П и ? обоими способами удовлетворительно согласуются между собой.
Обычно параметры ползучести горных пород определяют в два этапа. На первом этапе устанавливают пределы прочности и общий характер деформирования испытываемых образцов. С целью экономии времени испытания на этом этапе ведут в режиме последовательного ступенчатого нагружения серии из 4-5 образцов равными нагрузками, причем ступень нагружения составляет около 20 % от разрушающей нагрузки.
На втором этапе устанавливают характер развития реологических процессов и определяют собственно параметры ползучести образцов пород во всем диапазоне изменения нагрузок, вплоть до разрушающих. На этом этапе каждый образец испытываемой серии нагружают определенной нагрузкой (20; 40; 60 или 80 % разрушающей) и измеряют деформации образца во времени до момента стабилизации процесса ползучести, либо до момента разрушения образца.
Реологические испытания отличаются, прежде всего, своей длительностью и непрерывностью. Обычно их проводят в течение нескольких тысяч часов (нескольких, а иногда и многих месяцев). Это накладывает жесткие требования к надежности и стабильности работы нагружающих устройств и регистрирующей аппаратуры.
Наиболее часто в качестве нагружающих устройств применяют механические и пружинные прессы либо нагружение осуществляют фиксированными грузами (гирями).
2.7 Методы испытаний пород в условиях объёмного напряжённого состояния
Горные породы в массиве, в условиях естественного залегания, находятся в объемном напряженном состоянии. Поэтому для наиболее полного изучения их механических свойств проводят испытания на специальных лабораторных установках. Наиболее известны установки типа Т. Кармана, в которых усилием пресса создают вертикальное давление на образец, а боковое давление по периметру образца создают гидравлическим путем с помощью гидромультипликатора (рис. 6.13, а). Подобные установки, называемые стабилометрами, позволяют создавать в испытываемом образце напряженные состояния, характеризуемые следующим соотношением главных нормальных напряжений:
s1 > s2 = s3 (6.3)
горный порода деформационный прочностной
Рис. 6.13. Испытание образцов пород в объемном напряженном состоянии: а - схема установки типа Т. Кармана; б - конструкция стабилометра КП-3 (ВНИМИ). 1 - корпус; 2 - образец породы; 3 - плунжер осевого сжатия; 4 - плунжер гидромультиплика-тора; 5 - штуцер боковой нагрузки; 6-манометры для определения осевой и боковой нагрузок; 7 - шаровые шарниры; 8 - поршень осевого сжатия; 9 - штуцер осевой нагрузки; 10 - насос; 11 - редукторы.
На рис. 6.13, б приведена схема конструкции одного из стабилометров. Нагрузки на образец осуществляются всесторонним сжатием до заданных пределов и последующим приложением возрастающей осевой сжимающей нагрузки при неизменном значении боковой.
Подвергая образец породы одновременно с механическим нагружением нагреву с помощью специальных устройств, монтируемых в стабилометр, можно определять механические свойства пород при высоких всесторонних давлениях и температурах, моделируя тем самым условия нахождения пород на больших глубинах.
В условиях всестороннего сжатия в горных породах проявляется эффект изменения упругих, пластических и прочностных свойств. В пределах нескольких процентов возрастают значения модуля продольной упругости Е и модуля сдвига G. Несколько возрастает также коэффициент поперечных деформаций v. Значительно возрастают показатели пластических свойств пород. Прочностные свойства растут весьма существенно, причем относительное увеличение пределов прочности на сжатие и на срез больше для менее прочных пород.
3. Определение свойств горных пород с учётом структурных неоднородностей низких порядков
Испытания пород с учётом низких порядков структурных неоднородностей традиционно относили всегда к испытаниям в натурных условиях массивов горных пород или их ещё иногда называли испытаниями в местах естественного залегания пород (in situ). Однако это не полностью соответствует современным представлениям и методам проведения испытаний и определения характеристик рассматриваемых неоднородностей, поскольку сами понятия “образец” и “массив” теперь утрачивают первоначальный смысл.
Определение свойств пород с учётом структурных неоднородностей низких порядков представляет собой весьма сложную задачу, поскольку обычный путь испытаний представительных объёмов пород здесь становится крайне трудоёмким и зачастую мало реальным. Причём это определяется не только техническими или организационными трудностями постановки экспериментов, но и особенностями проявления свойств массива пород при тех или иных воздействиях. Практически только свойства, подчиняющиеся схеме “независимости - аддитивности” могут быть корректно определены на соответственно выбранных экспериментальных участках. Другие свойства требуют специальных подходов, совмещающих экспериментальные методы с расчётными.
3.1 Методы определения плотностных свойств
Изучение плотностных характеристик - удельного веса g0; объёмного веса g; удельной массы r0; плотности (объёмной массы) r обычно сложностей не вызывает вследствие присущего им свойства “аддитивности - независимости - равноправности”. Все компоненты действуют равноправно и независимо друг от друга, а интегральная характеристика агрегата является средневзвешенным значением из характеристик каждой компоненты, в данном случае структурных блоков и структурных неоднородностей. Исходя из этого, можно определять плотностные характеристики на специальных образцах для каждого из структурных элементов по отдельности, а затем рассчитать интегральную характеристику, но можно также определять плотностные характеристики и интегральным путём в натурных условиях массива пород, т.е. с учётом конкретных видов структурных неоднородностей.
Плотность пород в массиве с достаточной степенью точности (с погрешностью 1-3%) можно определить с помощью гамма-метода, основанного на эффекте различной степени поглощения и рассеяния радиоактивного гамма-излучения в средах с различной плотностью.
С этой целью в изучаемом участке массива пород бурят на расстоянии 20-70 см друг от друга параллельные шпуры или скважины. В одном из шпуров помещают закрытый источник гамма-излучения (обычно радиоактивный изотоп 60Со, 137Cs или 226Ra), имеющий активность 0,5-2,0 мг-экв радия. Работа с источниками такой малой активности вполне безопасна и не требует особых мер защиты. Во втором параллельном шпуре помещают регистрирующий зонд с детектором (счетчиком гамма-квантов). Перемещая зонды с источником и детектором вдоль скважин, фиксируют интенсивность гамма-излучения, прошедшего через толщу горной породы между скважинами, и по тарировочным графикам или номограммам устанавливают плотность пород на исследуемых участках.
3.2 Методы определения деформационных свойств
Поскольку для деформационных и, в частности, упругих характеристик горных пород, в отличие от плотностных, справедлива схема “аддитивности - взаимозависимости - равноправносги”,для этих свойств также приемлем первый (интегральный) путь определения, т.е. определение на соответствующих образцах или представительных участках массива пород. Однако при этом, в отличие от плотностных характеристик, в сферу экспериментов необходимо вовлекать объемы массива, где обеспечивается представительность интересующих порядков структурных неоднородностей.
Деформационные и, в частности, упругие характеристики горных пород в последнее время определяют в большинстве случаев так называемым динамическим методом с применением ультразвуковых методов. Исходными величинами при этом, определяемыми непосредственно из экспериментов, являются скорости продольных и поперечных упругих колебаний.
Скорости упругих волн в массиве могут быть измерены различными способами, из которых наиболее распространены следующие:
а) ультразвуковой способ с использованием аппаратуры типа УКБ, УК-10П, УК-15 и т. д.;
б) импульсный метод с использованием нагрузок единичного удара или взрыва для измерения времени распространения колебаний между заданными точками в массиве;
в) сейсмический метод.
Ультразвуковой метод может быть использован для определения скоростей упругих волн на сравнительно небольших базах (0,3-1,5 м), т.е. для определения деформационных свойств пород с учётом структурных неоднородностей не ниже III - го порядка.
Сущность метода заключается в том, что в массиве пород пробуривают шпуры или скважины и затем, помещая в одни из них приемник, а в другие излучатель, определяют время прохождения импульсов по прозвучиваемому участку массива. Зная время прохождения импульса и измеряя расстояние между шпурами, вычисляют скорость упругих волн.
Для измерений применяют комплект аппаратуры со специальными датчиками. Плотный контакт излучателя и приемника с породой обеспечивается механическим или (в последнее время) пневматическим способами. Для повышения качества акустического контакта применяют воду или масло, которые заливают в шпуры, либо используют прокладки из вакуумной резины. На рис. 6.14 показан комплект ультразвуковой аппаратуры, разработанный в Горном институте КНЦ РАН.
При импульсном методе в качестве возбудителя колебаний обычно используют механический удар или взрыв, а время пробега упругих волн измеряют какими-либо счетчиками времени. В качестве приемников применяют пьезодатчики, электрические импульсы от которых поступают на многоканальные осциллографы или могут быть записаны на магнитофонную ленту.
Рис. 6.14 Общий вид комплекта шахтной аппаратуры (а) и схема ультразвуковых измерений (б) в массиве пород. 1 - ультразвуковые скважинные датчики; 2 - досылочные штанги; 3 - фиксирующее устройство с распределительным вентилем; 4 - координатное устройство; 5 - ёмкость с запасом воздуха; 6 - регистрирующий прибор.
Сейсмический метод находит применение при геофизических исследованиях больших участков массива горных пород (сотни метров) и позволяет, кроме определения скоростей упругих волн, также анализировать затухание колебаний по мере прохождения волной разных баз.
Деформационные характеристики также могут быть определены с помощью методов искусственного нагружения участков массива.
Обычная схема таких испытаний состоит в том, что испытуемый участок породного массива оконтуривают с нескольких сторон, сохраняя связь с остальным массивом лишь по одной или двум плоскостям. Затем с помощью гидравлических домкратов или иных нагрузочных устройств оконтуренный участок нагружают, фиксируя нагрузки и соответствующие им деформации пород и при необходимости доводя усилия вплоть до разрушения нагружаемого участка массива. Одна из схем такого нагружения приведена на рис. 6.15.
Рис. 6.15. Схема определения деформа-ционных характеристик и прочности породных призм при нагружении гидравлическими домкратами в натурных условиях. а - вид на породную призму в стенке выработки, подготовленную к срезу; б - боковая проекция срезаемой призмы; в - срезаемая призма с установленными гидравлическими домкратами (в плане).
Среди методов этой группы заслуживают внимания также методы определения деформационных характеристик участков массива, основанные на тензометрических дистанционных измерениях радиальных смещений пород в стенках буровых скважин при распирании скважин с помощью специального гидравлического устройства - прессиометра.
Наконец, к этой же группе методов относятся и методы определения деформационных свойств пород на основе опытных горных работ. Эти методы связаны с применением "обратных расчетов". Сущность этих методов состоит в том, что с помощью горных работ исследуемый элемент массива (участок кровли выработки, целик или группа целиков и т. п.) подвергают деформированию, обычно вплоть до разрушения. В процессе опытных горных работ фиксируют происходящие при этом смещения, деформации, изменения напряжений в изучаемом участке массива и соответствующие им геометрические параметры целиков, обнажении кровли и т. п.
Если прямые задачи геомеханики состоят в том, чтобы на основе известных механических свойств рассчитать возможные смещения, деформации и напряжения в участках массива при различных геометрических параметрах горных разработок, то в данном случае ставят обратную задачу: определить механические, в частности деформационные, свойства пород в массиве на основе фиксируемых геометрических параметров и наблюдаемых смещений, деформаций и изменения напряжений. Для правильного определения механических свойств пород в натурных условиях необходимо, чтобы аналитические зависимости, используемые в расчетах, надежно отражали действительный механизм процессов в изучаемом участке массива.
В качестве одного из примеров рассматриваемой группы методов можно назвать опытное распирание гидростатическим давлением жидкости или газа стенок камеры или тоннеля и измерение при этом смещений с расчетом упругих характеристик пород в массиве. По своей сущности этот метод аналогичен методу прессиометрических измерений и отличается от последнего значительно большими размерами испытуемого участка массива.
Применяют также опытное нагружение, вплоть до раздавливания, одного или группы междукамерных целиков при выемке смежных с ними целиков; опытное обнажение кровли выработок с установлением деформаций ее изгиба, определением предела прочности на изгиб и расчетом показателей деформационных характеристик пород кровли.
По измерениям деформаций контура подземной выработки во времени, используя математический аппарат наследственной теории ползучести, можно определить реологические показатели массива пород.
По сути дела во всех этих случаях также идёт речь об определении характеристик некоторых объёмов пород с учётом тех или иных видов структурных неоднородностей в зависимости от параметров испытуемого участка и конкретной структуры данного массива.
Следует подчеркнуть, что методы определения механических свойств на основе опытных горных работ дороги, отличаются высокой трудоемкостью и сложностью организации работ, поэтому их применяют сравнительно редко. Поскольку возможное число таких опытов крайне ограничено, особое внимание необходимо обращать на соответствие участков опытных горных работ поставленным задачам эксперимента и степени общности получаемых при этом результатов.
3.3 Методы определения прочностных свойств
Как уже говорилось, при изучении III - го, а тем более II - го и ниже порядка структурных неоднородностей интегральный путь определения прочностных характеристик, т. е. путь испытания образцов становится малоприемлемым и более целесообразно применять дифференциальный путь определения свойств, т.е. путь непосредственного определения прочностных характеристик по поверхностям структурных неоднородностей того или иного порядка. Это также является тем более оправданным, поскольку прочностные свойства подчиняются схеме "избирательности-независимости", разрушение происходит в наиболее слабом звене и не зависит от прочности других структурных элементов.
Вообще необходимо признать, что определение прочностных характеристик непосредственно по поверхностям структурных неоднородностей низких порядков представляет собой до настоящего времени мало разработанную проблему геомеханики. Общепринятых методик проведения подобных испытаний нет, имеются лишь отдельные предложения и весьма небольшой опыт определения указанных характеристик.
При этом основные трудности заключаются в подготовке специальных образцов для проведения испытаний, а также в выборе подходящих методик проведения экспериментов.
К числу возможных методов, которые могут быть применены для непосредственного определения прочностных свойств структурных неоднородностей низких порядков можно отнести методы, которые носят название точечных испытаний пробниками.
Эти методы получили развитие, главным образом, в связи с задачами оценки свойств пород, пересекаемых при бурении разведочных, нефтяных или газовых скважин. Они основаны, как правило, на определении усилий при статическом или динамическом внедрении специального индентора в массив на заданную глубину, либо на определении глубины и площади внедрения индентора при дозированном усилии внедрения.
Известны также методы, основанные на определении геотехнологических свойств, в частности, показателей вращательного бурения (сверления) пород при стандартных режимах бурения.
Все эти методы отличаются невысокой степенью точности определений, но позволяют экспрессно оценивать прочность непосредственно структурных неоднородностей низких порядков (как впрочем и для объёмов пород с высшими порядками неоднородностей), а в некоторых случаях и деформационные свойства.
Однако необходимо подчеркнуть, что на определяемые показатели в случае применении этих методов оказывает существенное влияние напряжённое состояние массива.
Также находят применение и другие схемы испытаний и определения прочностных характеристик по поверхностям структурных неоднородностей низких порядков.
В частности, сцепление [t] может быть определено путем среза породных призм, оконтуриваемых в породном массиве. Породную призму в массиве оконтуривают таким образом, чтобы она сохранила связь с массивом лишь по тем поверхностям структурных неоднородностей, по которым надлежит установить сцепление. К этим поверхностям прикладываются нормальные и касательные напряжения, создаваемые специальными нагрузочными приспособлениями - гидравлическими домкратами или гидравлическими подушками (последние применяются в массивах слабых пород). На рис. 6.16, 6.17 приведены различные схемы оконтуривания породных призм и приложения сдвигающих сил.
Рис. 6.16. Схемы оконтуривания и нагружения породных призм при определении сцепления по поверхностям естественных трещин при условии одностороннего наг-ружения (а), двустороннего нагружения (б) и среза одновременно по двум поверхностям трещин (в).
При использовании указанных методов, также как и в предыдущем случае точечными испытаниями пробниками, большие погрешности в определяемые величины вносит напряжённое состояние массивов пород.
Указанного влияния можно избежать, если испытания проводить на специальных образцах исследуемых структурных неоднородностей.
К числу первых подобных попыток относятся результаты непосредственного определения прочностных характеристик по поверхностям структурных неоднородностей III - го и II - го порядков для условий месторождений Чупинских слюдоносных пегматитов. При этом определялись предел прочности при одноосном растяжении [sр], сцепление [t], j - угол внутреннего трения и f - коэффициент трения (внешнего) породы о породу по контактам структурных неоднородностей.
Для определения предела прочности на растяжение [sр] весьма удобно применять метод раскалывания клиньями, при этом клинья могут устанавливаться точно на трещину, а образцы могут представлять собой пластины или призмы. Другими словами, практически без всяких изменений здесь применима методика определения прочности на растяжение для образцов-объёмов с высшими порядками структурных неоднородностей.
Иное положение с определением сцепления, угла внутреннего трения и коэффициента трения по поверхностям структурных неоднородностей.
В настоящее время наибольшее применение для определения сцепления и угла внутреннего трения находят методы испытаний специально подготовленных образцов в условиях одновременного действия сжимающих и срезающих нагрузок (схемы подобны испытаниям на срез в матрицах для образцов-объёмов с высшими порядками структурных неоднородностей).
Необходимо отметить, что помимо основных трудностей подготовки и закрепления образцов с целью обеспечения среза именно по исследуемой поверхности структурных неоднородностей, в плоскости среза создаётся крайне неоднородное поле напряжений, достаточно сильно проявляется эффект дилатансии (увеличение объёма образца вседствие его разрушения в момент среза) и по мере развития среза уменьшается площадь контакта сдвигающихся поверхностей. Всё это способствует возникновению существенных погрешностей и большому разбросу получаемых значений [t] и j.
В некоторой степени позволяет уменьшить возникающие погрешности методика испытаний, в основу которой положена схема кручения. При такой схеме в плоскости среза также создаётся неоднородное поле напряжений, однако оно поддаётся расчёту и может быть учтено при вычислении [t]. Эффект от дилатансии здесь может быть снижен путём применения статической нагрузки, а площадь контакта всё время остаётся постоянной для цилиндрических или близкой к постоянной для призматических образцов.
Для реализации испытаний методом кручения была специально сконструирована и изготовлена лабораторная установка (рис. 6.18), с помощью которой могут испытываться цилиндрические (или призматические) образцы диаметром 42 мм и высотой от 80 до 200 мм. Структурные неоднородности в образце в момент испытаний должны быть расположены по отношению к продольной оси образца под углом не менее 700. Величина крутящего момента может быть измерена любым способом, например, с помощью динамометрического ключа.
Наконец, определение коэффициента трения производится в ходе тех же испытаний после разрушения образца по поверхности структурной неоднородности в процессе дальнейшего вращения и вычисляется по формуле
f = Мк / wР, (6.4)
где Мк - величина крутящего момента после разрушения образца по поверхности структурной неоднородности, кГ.см.
Для отбора образцов с выделенным типом структурных неоднородностей на базе ручного алмазного пробоотборника конструкции ЦНИГРИ была изготовлена установка для выпиливания образцов непосредственно из стенок выработок или других обнажений горных пород.
Наконец, учитывая, что разрушение пород в массиве происходит по слабейшему звену и вне зависимости от прочностных характеристик других элементов, для определения прочностных характеристик структурных неоднородностей низких порядков могут применяться методы, основанные на применении маркшейдерской или стереофотограмметрической съемки площадей обрушения пород под землей или обрушений налегающей толщи на земной поверхности, обрушений и оползаний бортов карьеров и т.д. Эти методы позволяют методом обратных расчётов оценивать разрушающие напряжения, а по ним находить прочностные характеристики слабейшего элемента массива пород, определять характеристики сопротивления пород сдвигу для конкретного типа структурных неоднородностей, устанавливать для них значения коэффициентов структурного ослабления.
...Подобные документы
Проведение на электронных вычислительных машинах имитационных лабораторных испытаний горных пород и определение их механических свойств (пределов прочности, модуля упругости и коэффициента Пуассона). Теории определения прочности горных пород Кулона-Мора.
курсовая работа [3,8 M], добавлен 27.06.2014Основные стадии процесса добычи полезного ископаемого. Предел прочности горных пород при растяжении, методы и схемы определения, количественная оценка. Деформация твердого тела. Методы определения хрупкости горных пород. Хрупкое разрушение материала.
реферат [303,3 K], добавлен 14.02.2014Способы определения плотности горных пород. Механические свойства, твердость и абразивность. Основные характеристики магнитных и акустических свойств горной породы. Характеристика электромагнитных свойств, их роль в разведке полезных ископаемых.
контрольная работа [101,4 K], добавлен 14.06.2016Понятие о геологическом времени. Дегеологическая и геологическая стадии развития Земли. Возраст осадочных горных пород. Периодизация истории Земли. Общие геохронологическая и стратиграфическая шкалы. Методы определения изотопного возраста горных пород.
реферат [26,1 K], добавлен 16.06.2013Методы определения возраста горных пород, слагающих Землю. Возраст пород слоя Базальт Карденас в восточной части Большого Каньона. Геологическая “блоковая" схема расположения пластов горных пород Большого Каньона. Ошибки радиологического датирования.
реферат [1,4 M], добавлен 03.06.2010Общая схема образования магматических, осадочных и метаморфических горных пород. Петрографические и литологические методы определения пород. Макроскопическое определение группы кислотности. Формы залегания эффузивных пород. Породообразующие минералы.
контрольная работа [91,7 K], добавлен 12.02.2016Группы горных пород литосферы по структуре слагающего вещества. Алгоритмы второго порядка определения для обломочных, глинистых, кристаллических и аморфных пород. История разработки классификаций горных пород. Пример общей генетической классификации.
монография [315,4 K], добавлен 14.04.2010Исследование характера и закономерностей проявления горного давления в очистных выработках. Техника проведения измерений методом разгрузки. Классификация методов оценки напряженного состояния массива горных пород. Измерение деформаций области массива.
реферат [2,8 M], добавлен 23.12.2013- Измерение магнитных свойств горных пород под повышенным давлением сдвиговой деформации и температуры
Магнитные свойства горных пород в условиях сдвигового воздействия под повышенным квазивсесторонним давлением. Установка для испытания горных пород и минералов при повышенных давлениях и деформациях сдвига. Автоматические вакуумные магнитные микровесы.
курсовая работа [560,9 K], добавлен 03.03.2013 Характеристика твердости, абразивности, упругости, пластичности, пористости, трещиноватости, устойчивости как основных физико-механических свойств горных пород, влияющих на процесс их разрушения. Классификация складкообразований по разным критериям.
контрольная работа [5,4 M], добавлен 29.01.2010Типы пород-коллекторов нефти, газа и воды, их разнообразие по минералогическому составу, геометрии пустотного пространства и генезису. Типы нефтяных залежей. Пористость, проницаемость и удельная поверхность горных пород, лабораторные методы их измерения.
курсовая работа [463,4 K], добавлен 20.03.2013Изучение механических свойств пород и явлений, происходящих в породах в процессе разработки месторождений полезных ископаемых. Классификация минералов по химическому составу и генезису. Кристаллическая решетка минералов. Структура и текстура горных пород.
презентация [1,6 M], добавлен 24.10.2014Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.
презентация [949,2 K], добавлен 13.11.2011Обоснование роли инженерной геологии для строительства железных дорог и их эксплуатации. Анализ физико-механических свойств горных пород, необходимых для проектирования и строительства. Методы определения абсолютного и относительного возраста пород.
контрольная работа [1,8 M], добавлен 26.04.2010Характеристика структуры, изучение строения и определение размеров пор горных пород. Исследование зависимости проницаемости и пористости горных пород. Расчет факторов проницаемости и методов определения содержания в пористой среде пор различного размера.
курсовая работа [730,4 K], добавлен 11.08.2012Образование магматических, осадочных и метаморфических горных пород. Основные виды горных пород и их классификация по группам. Отличие горной породы от минерала. Процесс образования глинистых пород. Породы химического происхождения. Порода горного шпата.
презентация [1,2 M], добавлен 10.12.2011Характеристика основных условий образования глинистых горных пород. Особенности их классификации: элювиальные и водно-осадочные генетические группы глин. Анализ химического, минерального состава, структуры, текстуры и общих свойств глинистых горных пород.
курсовая работа [35,7 K], добавлен 29.09.2010Общее описание и характерные черты осадочных горных пород, их основные свойства и разновидности. Типы слоистости осадочных горных пород и структура. Содержание и элементы обломочных пород. Характеристика и пути образования химических, органогенных пород.
реферат [267,1 K], добавлен 21.10.2009Типы трещин, понятия о трещиноватости и её видах. Ее значение в горном деле и геологии. Инженерно-геологические условия Нойон-Тологойского месторождения полиметаллических руд. Влияние трещиноватости на изменение физико-механических свойств горных пород.
курсовая работа [899,3 K], добавлен 15.01.2011Подготовка горных пород к выемке. Вскрышные работы, удаление горных пород, покрывающих и вмещающих полезное ископаемое при открытой разработке. Разрушение горных пород, буровзрывные работы, исторические сведения. Методы взрывных работ и способы бурения.
реферат [25,0 K], добавлен 19.03.2009