Методы геофизических исследований

Геофизические методы исследования скважин. Каротаж на основе естественных и искусственно вызванных электромагнитных полей. Каротаж на основе полей естественной и наведенной (искусственной) радиоактивности. Каротаж на основе сейсмоакустических полей.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 06.08.2015
Размер файла 728,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1.Геофизические методы исследования скважин (ГИС)

геофизический каротаж скважина

Это один из разделов разведочной (прикладной) геофизики, совокупность физических методов, предназначенных для изучения горных пород в околоскваженном и межскваженном пространстве. К ГИС (ГИРС) также относят изучение технического состояния скважин и работы в скважинах (отбор проб из стенок скважин, перфорацию и торпедирование)

ГИС, согласно принятой терминологии, еще называют каротажем, а в нефтегазовых скважинах - промысловой геофизикой. Методы ГИС, служащие для изучения межскваженного пространства называются скважинной геофизикой.

Методы ГИС основаны на использовании тех же физических полей, что и методы полевой геофизики, т.е. это поля (гравитационное, магнитное, электроволновое (элетромагнитное), сейсмоволновое (сейсмо-акустическое), тепловые, радиационные и др. По отношению к полевым (наземным) методам, специфика ГИС в изучении геологических разрезов геологоразведочных скважин, где скважина выступает в качестве геофизического профиля, преимущественно вертикального по отношению к дневной поверхности, реже круто- и пологонаклонного и еще реже горизонтального. В таких условиях технология геофизических работ приобретает самостоятельное значение. Необходимо знание системы бурения скважин, их устройства и способов перемещения в них геофизических приборов (скважинных приборов). Следует учитывать, что скважина заполнена буровым раствором и с глубиной происходит рост давления и температуры. При спуске и подъеме приборов возникают механические столкновения их со стенкой скважин. Все это требует чтобы приборы были помещены в герметизированные механически прочные корпуса и не могли бы подвергаться обрыву. С этих приборов измеряемые параметры должны передаваться и регистрироваться на поверхности. Следовательно, должны быть специальные геофизические (каротажные) кабели и спускоподъемные механизмы. Для регистрации параметров на дневной поверхности должны существовать измерительными приборы. Схема выполнения ГИС приведена на рис. 3.1.

Рис. 3.1. Схема работ методами ГИС

1 - Скважинныйприбор, 2 - каротажный кабель, 3,4 -подвесной и наземный блок-балансы, 5 - каротажная лебедка, 6 - операторская подъемника, 7 - измерительный блок (модуль), 8 - операторская каротажной станции, 9 - соединительные провода.

Для исследования скважин глубиной менее 1 км, каротажную лебедку и измерительную аппаратуру комплектуют на одном транспортном средстве. Мелкие (гидрогеологические, инженерно-геологические и геоэкологические) скважины исследуют с помощью переносной аппаратуры, включающую лебедку, блок-баланс, скважинные приборы и наземную регистрирующую аппаратуру.

В скважине геофизические датчики поля, помещенные в скважинные приборы как нигде (за исключением случаев наземных геофизических съемок на участках коренных невыветрелых пород) приближены к геологическим объектам, т.е. к пластам горных пород. И казалось бы регистрируемые параметры должны быть близкими к истинным. Однако это в большинстве случаев не так. Во-первых, влияет буровой раствор, заполняющий скважину. Во-вторых, под воздействием бурового инструмента частично изменяются физико-химические условия естественного залегания пород в прилегающем к стенке скважины пространстве. Изменяются также геостатическое давление и температура. В-третьих, в рыхлых, хрупких и трещинковатых породах под действием бурового инструмента и промывочной жидкости образуется каверны (увеличивается диаметр скважины). В-четвертых, под действием давления, превышающим пластовое, в пористые, проницаемые породы проникает промывочная жидкость притом, что в силу пор малого размера (от сотен до единиц микрометров) проникает не вся жидкость, а ее фильтрат. Глинистые же частицы оседают на стенке скважины, и образуется глинистая корка, которая препятствует разрушению породы и снижает дальнейшее поступление фильтрата жидкости в пласт. В зоне фильтрата физические свойства изменены, так как фильтрат вытесняет в значительной мере первоначальный флюид (воду, нефть, газ). Образуется так называемая промытая зона (рис. 3.2).

Рис. 3.2Разрез околоскважинного пространства в месте пересечения продуктивного пласта dс - диаметр скважины, dк - диаметр каверны, dзп - диаметр зоны проникновения, dпп - диаметр промытой зоны, dгк - толщина глинистой корки

В-пятых, размер измерительных датчиков не во всех случаях соответствует толщинам пластов и в этом случае наблюдается их взаимное воздействие на деформацию используемого при каротаже поля. Наконец на принятие параметров поля в скважине влияет наклон слоев и тем сильнее, чем больше углы падения. Таким образом, в скважине при каротажных исследованиях, как и в наземной геофизике регистрируют преимущественно кажущие параметры. Следовательно, процесс интерпретации, особенно количественный требует постановки и решения прямых и обратных задач.

Следует в заключении вводного раздела подчеркнуть, что при производстве ГИС требуется применение телеизмерительных систем, причем более сложных и громоздких, чем в полевой (наземной) геофизике. Эти системы соответственно включают: 1) датчик поля (скважинный прибор); 2) канал передачи информации (каротажный кабель) 3) непосредственно телеизмерительную систему (т.е. электрические блоки), в основном кодоимпульсные (цифровой код) и частотно-модулированные (с частотным разделением сигналов) при одновременной регистрации нескольких параметров.

В практике геологоразведочных работ наибольшее применение, и соответственно разработку, получили электромагнитные и радиоактивные методы ГИС, несколько в меньшей степени акустические и еще в меньшей степени собственно магнитные и гравиметрические. Особое место занимают методы контроля технического состояния скважин и сопровождающие работы в скважинах.

2.Каротаж на основе естественных и искусственно вызванных электромагнитных полей

Как и в электроразведке, предпосылками методов электрического каротажа является возможность существования в геологической среде, окружающей скважину, электромагнитного поля. Его исследование и изучение с в зависимости от дифференциации горных пород, включая целевые объекты (нефтегазовые продуктивные горизонты, угольные пласты, рудные тела и пр.) и является основной целью электромагнитных методов ГИС с последующим решением поставленных геологических задач.

Как и в электроразведке, электрических методов ГИС очень много: десятки и даже первые сотни, если учитывать детализационные методы и специальные методы при работах в скважинах. Преимущественно это методы электрического профилирования по стволу скважины, при том, что продуктивные нефтегазовые интервалы или другие целевые объекты подвергаются электрическому (электромагнитному) зондированию.

Классическим электромагнитным методом, появившимся на заре каротажных работ, является электрический каротаж методом КС (кажущихся сопротивлений). Исследования выполняются с использованием искусственно созданного поля, т.е. должен быть источник поля (генератор). Одновременно с методом КС производится регистрация потенциалов постоянного естественного электрического поля, т.е. потенциалов собственной поляризации - ПС. Последние в наземной электроразведке носят название потенциалов естественного электрического поля - ЕП. Схема электрического каротажа КС и ПС приведена на рис. 3.3.

Рис. 3.3. Схема электрического каротажа КС и ПС

1 - генератор, 2 - измеритель, 3, 4 - фильтры,

А,В - питающие электроды,

М, N - измерительные электроды

Рис. 3.4. Теоретические кривые кажущегося удельного электрического сопротивления, полученные потенциал-зондом в пластах высокого сопротивления большой (а) и ограниченной (б) мощности

Форма представления данных каротажа на примере теоретических кривых кажущегося удельного электрического сопротивления, полученных потенциал-зондом в пластах высокого сопротивления большой и ограниченной толщины, показана на рис. 3.4.

Виды каротажа по методу сопротивлений включают: 1) 1. каротаж зондами кажущегося сопротивления (КС), 2) боковой каротаж (БК), 3) индукционный каротаж (ИК), 4) микрокаротаж (МКС). Основными электрическими методами являются КС и БК.

Метод КС выполняется посредством электропрофилирования по стволу скважины с помощью осевых электроразведочных установок. Последние представляют собой зонды КС. Они подразделяются на потенциал- и градиент-зонды (КС-ПЗ и КС-ГЗ).(рис. 3.5).

Рис. 3.5. Схемы последовательного (А) и обращенного (Б) зондов КС I, II - однополюсные и двухполюсные, идеальные (а) и реальные (б) зонды

На каждом конкретном месторождении при записи кривых КС выбираются оптимальные условия их регистрации, то есть те, которые в наилучшей степени позволяют выделить границы пластов и охарактеризовать их литологическую принадлежность. Удельное электрическое сопротивление, как и в электроразведке, определяется по формуле (53).

Рис. 3.6. Схема трехэлектродного зонда БК

Боковой каротаж - один из основных методов исследований нефтяных, угольных и др. скважин. Достоинство метода в фокусировке тока, что достигается специальной конструкцией зондов (рис. 3.6). Размер центрального электрода, как правило, первые сантиметры, следовательно можно выявлять очень тонкие пласты и пропластки при том, что метод глубинный и составляет три длины экранных электродов.

Диаграммы бокового каротажа по своей конфигурации соответствуют кривым потенциал-зондов, что собственно они и представляют, но за счет фокусировки более точно отражают в разрезах скважин дифференциацию пород по удельному электрическому сопротивлению. Преимущество БК еще в том, что одновременно с кривой ск регистрируется кривая удельной электропроводности ук (ед. изм. - сим/м).

На рисунке 3.7 сопоставлены кривые ск и ук. Сопоставление кривых показывает, что тонкие пласты выделяются весьма уверенно.

Рис. 3.7. Сопоставление каротажных диаграмм, зарегистрированных зондом БК по скважине №7. Участок Садкинский-Северный (Восточный Донбасс) 1 - уголь; 2 - углистый сланец; 3 - аргиллит; 4 - алевролит; 5 - песчаник; 6 - известняк

Метод бокового каротажного зондирования (БКЗ) основан на измерении ск в заданном интервале скважины зондамиКС (градиент- или потенциал-) разной длины L. Цель БКЗ - определение истинных значений удельного электрического сопротивления (сп) и мощности (h) продуктивных пластов. БКЗ в скважинах является квазианалогом метода ВЭЗ в электроразведке. Практика показывает, что наиболее эффективно БКЗ проводить градиент-зондами при L = 1 - 30 dc, где dc - диаметр скважины. Показатель L зондов увеличивается от зонда к зонду в геометрической прогрессии.

Индукционный каротаж (ИК) - электромагнитный метод, основанный на измерении кажущейся удельной электрической проводимости ук, то есть параметра уэ = 1/с, который измеряется в единицах Сим/м (сименс - проводимость проводника с сопротивлением R= 1 Ом). Сущность метода в электромагнитном профилировании (ЭМП) по стволу скважины. Осевая установка ЭМП, состоящая из генераторной(Гк) и приемной ( Ик) катушек и представляет собой специальный конструкции зонд. Расстояние между катушками составляет длину зонда L. Зонд является составной частью скважинного прибора, содержащего электронную схему (рис.3.8).

Рис.3.8. Схема скважинного прибора индукционного каротажа

Следует отметить, что в зондах ИК кроме двух главных катушек имеется несколько дополнительных генераторных и измерительных катушек. Они выполняют фокусирующую.

Высокочастотный индукционный каротаж изопараметрических зондирований (ВИКИЗ) отличается от ИК тем, что измеряются не абсолютные сигналы на фоне скомпенсированного прямого поля, а относительные фазовые характеристики. Этим достигается возможность геофизических измерений электрическими методами в скважинах с сильнопроводящим буровым раствором (сс<0,5 Ом?м).

ВИКИЗ - современный высокотехнологичный метод ГИС, с помощью которого не только выполняется электропрофилирование по стволу скважины, но и электромагнитное зондирование по перпендикуляру к оси скважины (боковое зондирование). Физические основы в том, что относительная разность фаз и амплитуд, измеренных в 2-х близрасположенных катушках очень слабо зависит от параметров скважины даже на частотах в диапазоне 10ч15 МГц. Достигается высокий уровень сигналов в среде до 120 Ом*м.

Аппаратура ВИКИЗ включает скважинный прибор, подключаемый к наземной панели с помощью трехжильного кабеля. Наземная панель представляет собой микропроцессорную систему, обеспечивающую питание скважинного прибора, прием и трансформацию сигналов, их обработку и преобразование в аналоговый вид. Скважинный прибор состоит из зондовой части (набор пяти 3-х катушечных зондов) и блока электроники. На зондовой части соосно размещено 5 генераторных и 6 измерительных катушек (рис. 3.9).

Рис. 3.9. Схема зонда ВИКИЗ L - длина зонда, ? L - длина базы - расстояние между измерительными катушками

Для всех пяти 3-х катушечных зондов выполняются условия квазистационарности в немагнитной среде.

Метод потенциалов самопроизвольной поляризации (ПС или СП) основан на измерении естественного постоянного электрического поля Земли, дополнительно деформированного влиянием скважины. Это поле создается в основном вследствие окислительно-восстановительных фильтрационных и диффузионно-адсорбционных процессов. Последние приводят к существованию на границах разделов сред двойных электрических слоев, суммарный потенциал которых и характеризует интенсивность поля ПС.

В нефтегазовых, гидрогеологических и др. скважинах основной интерес представляет диффузионно-адсорбционное активность, проявляющаяся при диффузии ионов электролитов из пластовых вод в промывочную жидкость (буровой раствор) или из бурового раствора в пластовую воду (пласт). Метод ПС простой, но весьма эффективный, входящий в обязательный комплекс ГИС нефтегазовых и др.скважин. Измерение потенциалов естественного поля (Uсп) сводится к замеру разности потенциалов между подвижным электродом М и неподвижным электродом N, находящимся на поверхности (рис.3.10).

Рис. 3.10. Схема измерений методом ПС

3. Каротаж на основе полей естественной и наведенной (искусственной) радиоактивности

Радиоактивный каротаж (РК) - совокупность методов, основанных на изучении распространения естественного или наведенного (искусственного) радиоактивного поля в разрезах скважин и околоскважинном пространстве.

На основе поля естественной радиоактивности создан метод гамма-каротажа (ГК), а на основе наведенной радиоактивности методы гамма- гамма-каротажа (ГГК) и методы нейтронного каротажа (НК).

При каротаже ГК измеряют естественную радиоактивность (Jг) в скважине с помощью специального скважинного прибора, содержащего электронную схему и индикатор гамма-излучения. В современных комплексных приборах РК, ГК являются отдельным модулем. Кроме того, канал ГК может быть частью любого комплексного прибора ГИС. В качестве индикаторов гамма излучения используется газоразрядные и сцинтилляционные счетчики. В качестве сцинтилляторов применяют монокристаллы йодистого натрия NaJ или йодистого цезия СsJ, активированные для увеличения световыхода таллием Tl. Световая вспышка (сцинтилляция) преобразуется в электрический импульс и усиливается в 105-106 раз с помощью фотоэлектронных умножителей. Последний подключается к электронной схеме. Сигналы со скважинного прибора передаются по кабелю в наземную панель и регистрируется либо в цифровом, либо в аналоговом виде.

ГК являются основным методом в стандартном комплексе ГИС и эффективно используется совместно с методами КС и ПС для литологического расчленения разрезов. ГК имеет преимущество перед ПС в случае соленых буровых растворах, а также при равенстве УЭС бурового раствора (сс) и фильтрата глинистого раствора (сф).

Спектрометрическая модификация ГК имеет название спектрометрического гамма-каротажа (СГК). Аппаратура СГК, как правило, имеет четыре канала: три дифференциальные для регистрации раздельного содержания урана, тория и калия и один интегральный для регистрации суммарного излучения Jг (канал ГК). Приборы СГК, как и приборы ГК эталонируют в специальных устройствах, заполненных эталонными средами с известковой концентрацией U, Th, K. По полученным эталонным значениям формируют шкалу записи каротажных диаграмм. То есть при регистрации диаграмм выбирают оптимальный масштаб напряжений. В пластах с пониженной гамма активностью скорость подъема скважинного прибора снижают до 20-50 м/час, а в случаях очень низкой гамма-активностью выполняют точечные наблюдения.

Метод гамма-гамма каротажа (ГГК), или плотностной гамма-гамма метод (ГГК-П) создан на основе комптон-эффекта. Второй процесс взаимодействия г-квантов с веществом - фотоэффект положен в основу метода гамма-гамма селективного каротажа (ГГК-С). При ГГК-П используются «жесткие» источники гамма-квантов. Cо60, Cs137, а при ГГК-С мягкие источники гамма-квантов Тm170, Se124.

ГГК-П применяют для определения плотности горных пород и оценки качества крепления скважин (гамма-гамма-плотномеры и гамма-гамма цементомеры).

Скважинный прибор или модуль в комплексном приборе включает зонд ГГК-П, состоящий из источника и индикатора гамма-квантов (рис. 3.11).

Источник помещается в прибор только во время каротажа, а в остальное время перевозится или хранится в специальном контейнере. Для уменьшения влияния скважины прибор снабжается прижимным устройством. Обязателен свицовый экран, который с одной стороны защищает индикатор от прямого «первичного» гамма-излучения, а с другой снижает действия гамма-излучения промывочной жидкости.

Следует отметить, что имеется аппаратура ГГК в которой на основе источников жесткого гамма-излучения осуществляется разделение гамма квантов низкой и высокой энергий за счет спекрометрии. При этом логарифм отношения скоростей счета мягкой и жесткой компонент однозначно связан с содержанием тяжелых элементов.

Рис. 3.11. Схема зонда ГГК

Нейтронные методы каротажа (НК) В число методов входят: 1) нейтронные гамма-каротаж (НГК), 2) нейтрон-нейтроный каротаж по тепловым нейтронам (ННК-Т), 3) нейтрон-нейтронный каротаж по надтепловым нейтроном (ННК-НТ), 4) спектрометрический нейтронный гамма-каротаж (СНГК).

Скважинные приборы НК имеют подобную конструкцию. Зондовое устройство аналогично таковым в методах ГГК и ГГК-С (рис. 3.12).

Рис. 3.12. Схема зондов нейтронных методов каротажа

Источник нейтронов является ампульным и во время каротажа подсоединяется к прибору вместе с хвостовиком. Последний хранится и перевозится в специальном защитном устройстве (как и в методах ГГК должны соблюдаться меры безопасной работы с радиоактивными веществами).

Модификации НК зависят главным образом от типа детектора и окружающих его фильтров. В ННК-Т детектором служит гелиевый счетчик. Метод чувствителен к содержанию хлора (Cl); результаты сильно зависят от Рh и пластовой воды. В ННК-НТ детектор также гелиевый счетчик, но он окружен кадмиевыми фильтрами, поглощающими тепловые нейтроны, поэтому метод более тесно связан с водородосодержанием, нежели метод ННК-Т.. В НГК и СНГК детекторами являются сцинтилляционные счетчики, как и в методах ГК и ГГК. Методы чувствительны к содержанию хлора, бора, лития, кадмия, кобальта и др.

При исследовании нефтяных и газовых скважин наиболее широко используется метод НГК, поскольку он обладает большей глубинностью. Однако при высокой минерализации пластовых вод и промывочной жидкости целесообразно применение ННК-Т и ННК-НТ. Эти методы имеют преимущества перед НГК и в том, что их показания свободны от влияния естественного гамма-излучения и гамма-излучения источников нейтронов. Длина зондов в методе ННК-Т и ННК-НТ выбирается равной 0,4-0,5 м. Глубиность исследования составляет 20-30 см, в то время как в методе НГК и СНГК она достигает 40-60 см.

Каротаж СНГК основан на изучении спектра гама-излучения радиационного захвата. Определяются преимущественно элементы, имеющие сравнительно жесткий спектр и высокое макроскопическое сечение захвата. Это Fe, Ni, Cr, Ti, Cl, Mn, Cu, S, Hg и др. В нефтегазовых скважинах СНГК имеет ограниченное применение, так как глубинность метода не превышает 20 см.

Многозондовый каротаж НК основан на определении декремента пространственного затухания плотности тепловых нейтронов в скважине с помощью двух или более детекторов, расположенных на различном расстоянии от источника.

Импульсный нейтронный каротаж (ИНК). Физическая основа: а) облучение объекта потоком быстрых нейтронов, б) регистрация тепловых нейтронов, гамма-излучения радиационного захвата (ГИРЗ), а также гамма-излучения неупругого рассеяния (ГИНР). ИНК имеет несколько модификаций, основными из которых являются импульсный нейтрон-нейтрннный каротаж (ИННК) и импульсный нейтрннный гамма каротаж (ИНГК).

ИНК, основанный на регистрации тепловых нейтронов и гамма-излучения радиационного захвата, реализуется путем наличия в скважинном приборе низкочастотного импульсного генератора нейтронов (а=10-500 Гц) и называется ИННК и ИНГК. При ИННК и ИНГК изучают процесс спада плотности тепловых нейтронов или ГИРЗ во времени от периодически возбуждаемых коротковолновых импульсов генератора нейтронов. После некоторой задержки (t3) регистрируют число импульсов во временных (Дt) окнах (рис.3.13).

Рис. 3.13. Схема возбуждения и измерения импульсов в методе ИННК

t - время следования импульсов нейтронов, Дtg - длительность нейтронных импульсов, Дt - окно временного анализатора, t3 - время задержки

По значениям числа импульсов в нескольких окнах находят параметры временного распределения. При достаточном числе временных окон (8-16) вид распределения удается восстановить с высокой детальностью. Современная цифровая аппаратура позволяет зафиксировать весь процесс спада, начиная с некоторой задержки. Зонды ИНК отличаются от зондов НК наличием импульсного, а не стационарного источника нейтронов. Наземная аппаратура содержит многоканальный временной анализатор. Преимущества методов ИНК в том, что снижается влияние скважины, так как время жизни в ней нейтронов (фс), меньше времени их жизни в пласте (фпл).

4. Каротаж на основе сейсмоакустических полей

Методы акустического каротажа (АК) основаны на возбуждении упругих волн в полосе частот f = 1-10 кГц. Существует несколько модификаций зондов АК. Наибольшее распространение получили трехэлементные зонды. Они состоят из одного излучателя и 2-х приемников или в силу принципа взаимности, наоборот - одного приемника и 2-х излучателей (рис. 3.14).

Рис. 3.14. Схема трехэлементного зонда АК L3-1, L3-2- длины зондов, ?L - база зонда, П1, П2 -приемники, И - излучатель

Трехэлектродным зондом регистрируют параметры: 1) tp1 - время первого вступления первого приемника, 2) tp2 - время первого вступления второго приемника, 3) ?t - интервальное время - разница времен прихода головной волны на второй и первый приемники, 4) А1 - амплитуда сигнала на первом приемнике в заданной точке, 5) А2 - амплитуда сигнала на втором приемнике в заданной точке, 6) б - коэффициент поглощения.

?t = ?L/V и б = ln (A1/A2)/ ?L (3.1)

Наиболее информативной в АК является кривая ?t. Базу выбирают в соответствии требуемой разрешающей способностью. Чем меньше ?L, тем более тонкие пласты могут быть выделены.

Многоэлементный зонд АК содержит минимум 2 измерителя и более 10 приемников (16, 24, 48 и т.д.). Такие зонды называют матричными. Блок волновых картин имеет вид сейсмограмм (рис. 3.15).

Рис. 3.15. Типовая картина многоэлементного зонда АК

Посредством корреляции удается идентифицировать различные типы волн и затем оценить их кинематические и динамические параметры не только во времени, но и вдоль оси скважины.

Информативная форма записи результатов АК - фазокорреляционные диаграммы (ФКД). ФКД - это изображения линий равных фаз. Диаграммы получаются путем идентифицирования положительных полупериодов волновой картины. Для этого ФКД, полученные 2-мя приемниками, направляют в разные стороны, получая образ скважины (рис.3.16). Метод ФКД эффективен при литологическом расчленении разрезов, отбивки границ пластов, оценки качества цементирования. Обработка волновых картин ФКД позволяет определить любые кинематические и динамические параметры упругих волн, в частности ?t.

Рис. 3.16. Форма представления данных ФКД

Области применения АК:

1) получение данных для интерпретации материалов сейсморазведки

2) литологическое расчленение разрезов

3) оценка прочностных свойств пород

4) выделение коллекторов, определение их пористости

5) изучение осадки скважины

Скважинное акустическое телевидение (САТ) - специальный вид АК, предназначенный для детально исследования стенок обсаженных и необсаженных скважин. Сканирование осуществляется с помощью вращающегося преобразователя. Амплитуда сигналов определяется отношением волновых сопротивлений стенки скважины и бурового раствора. Разрешающая способность САТ зависит от длины волны л. Поэтому для увеличения детальности используют достаточно высокую частоту f = 1-2 мГц. В то же время это вызывает большое затухание волн в буровом растворе.

САТ эффективен для выявления в разрезах скважин тектонически нарушенных и трещиноватых зон, а также проницаемых коллекторов, где коэффициент отражения имеет пониженные значения (рис. 3.17).

Рис. 3.17. Пример «фотографирования» стенок скважины по результатам САТ

Акустические профилеметрия и кавернометрия, как и САТ, основаны на законах отраженных волн. Используется принцип импульсной эхолокации, то есть изменение времени t распространения упругих волн от излучателя до стенки скважины и обратно:

dc = Uс tс (3.2), где

Uс - скорость в буровом растворе, tс - время, dc - диаметр скважины.

Чтобы измерять время по кротчайшему расстоянию, точки измерения и приема совмещают. В качестве источника - приемника применяют пьезопреобразователи с частотой f=200-500 кГц. На таких частотах л< (l1x l2). l1, l2 - размеры преобразователя.

Акустическая профилиметрия отличается от акустической ковернометрии тем, что в ней обеспечивается вращения луча. Запись амплитудных сигналов осуществляется несколькими сдвинутыми друг относительно друга преобразователями. Результаты каротажных исследований представляют в виде кривых акустической жесткости и круговых диаграмм, отображающих форму ствола скважины по его диаметру.

Лекция 8, модуль 3 Б. Тема: Геолого-геофизическая интерпретация результатов комплексных скважинных геофизических исследований (литологическое расчленение разрезов скважин, оценка состояния и свойств исследуемых геологических геоэкологических и др.объектов.

Интерпретация методов ГИС состоит в: 1) обработке диаграмм; 2) геофизической интерпретации; 3) геологической интерпретации.

Обработка диаграмм включает приведение результатов к определенным глубинам и системе отсчетов, учет и устранение аппаратурных и других помех, нахождение границ пластов и их толщин (мощности), снятие показаний. Далее, с целью проведения последующей количественной интерпретации, снимают (определяют) «существенные значения». Например для кривых ск, это либо средние (ск сред), либо максимальные (ск мах), либо оптимальные (ск опт) значения (рис 3.18).

Рис 3.18. Определение существенных значений ск на примере кривых КС, зарегистрированных градиент-зондом 1 - исследуемый пласт, 2 - вмещающие породы

Геофизическая интерпретация проводится с целью определения истинных параметров, например сп, на основе решения обратной задачи, то есть методом подбора наблюденной кривой с одной из теоретических и привлечением априорных данных. Следует отметить, что теоретические кривые, например того же метода КС, являются результатом решения прямой задачи и выражают зависимость ск от различных определяющих его параметров (сп - УЭС пласта, сс - УЭС промывочной жидкости (бурового раствора), Lз - длина зонда (для градиент-зондов расстояние АО или МО, а для потенциал-зондов - расстояние АМ), dc - диаметр скважины, с зп - УЭС зоны проникновения, D - диаметр зоны проникновения). Условия, обеспечивающие единственность решения, зависят от модели среды.

Геологическая интерпретация заключается в определении геологических характеристик разреза. В частности при истолковании электрических методов ГИС используются обе модификации КС: электропрофилирование одиночными зондами и боковое каротажное зондирование (БКЗ). Электропрофилирование применяют для нахождения границ пластов, а также в благоприятных условиях для литологического расчленения разрезов, выявления целевых объектов (нефте-, газо-, водоколлекторов, пластов угля, руд и т. д.). БКЗ используют для определения количественных характеристик (коэффициентов пористости, нефтегазонасыщенности, зольности и т. д.).

Основные требования к проведению качественной интерпретации заключаются в: 1) определении границ пластов, глубин их залегания, толщин (мощности), 2) литологическом расчленении разрезов скважин, 3) выработке рабочей гипотезы о геологической природе аномальных объектов, 4) принятии решений о необходимости проведения количественной интерпретации и дополнительных геолого-геофизических исследований.

Определения границ пластов в большинстве случаев сводится к нахождению точек, соответствующих градиентам максимального возрастания (убывания) кривых (рис.3.19).

Рис. 3.19. Пример определения границ пластов на каротажных диаграммах

Литологическое расчленение разрезов скважин выполняется по диаграммам поисковых комлексов ГИС, которые разрабатываются и применяются для определенных типов месторождений. Универсальными методами являются КС, БК, ГК, ПС, кавернометрия. В качестве примеров можно привести описание приемов и диагностических признаков при литологическом расчленении разрезов угольной и нефтегазовой скважин.

В угольной скважине регистрация кривых проводилась методами: КС-ПЗ, ГК, ГГК, АК и КМ. По характерным признакам кривых, зарегистрированных зондами КС-ПЗ, ГК, ГГК, АК и КМ были выделены пласты углей, известняков, аргиллитов, алевролитов и песчаников (рис.3.20).

Рис. 3.20. Сопоставление каротажных диаграмм по разрезу угольной скважины на месторождении антрацитов (Восточный Донбасс) 1 - уголь; 2 - углистый сланец; 3 - аргиллит; 4 - алевролит; 5 - песчаник; 6 - известняк

Тонкие пласты угля характеризуются минимальными значениями КС-ПЗ (сК < 12 Ом*м). На кривых, зарегистрированных зондами ГГК, АК и КМ эти угольные пласты имеют максимальные значения. На диаграмме ГК первый пласт угля на глубине 85 метров отмечается интенсивной отрицательной аномалией гамма-излучения. Jг составляет 12 мкр/час. Этот же пласт наиболее ярко выражен и аномалиями на кривых ГГК и АК.

Пласты известняка имеют максимальные значения сК на кривых КС-ПЗ и минимальные на кривых ГК, АК, ГГК и КМ.

Пласты аргиллитов, алевролитов и песчаников уверенно разделяются по значения ск и Jг.

В нефтяной скважине интерпретация кривых проводилась по кривым методов КС-ПЗ, ПС, БК, ИК, МКЗ, ГК, НКТ, АК, КМ (рис 3.21).

Сопоставление кривых показывает, что исследованный разрез наиболее уверенно дифференцируется по кривым КС, ПС и КМ. На диаграммах ГК, НКТ и АК однозначно выделяются только плотные высокоомные пласты, вскрытые в интервалах 2515-2518м и 2552-2555м.

В соответствии с изложенным, границы пластов первоначально выделялись по кривым ПС, КС-ПЗ и КС-БК и далее уточнялись по остальным методам.

Литологическое расчленение разреза производилось в следующей последовательности:

1) интервалы разреза с повышенными показаниями ПС и пониженными значениями КС определялись как глинистые - т.е. аргиллиты.

2) пласты с пониженными значениями ПС и повышенными КС считались песчаниками. Последние подвергались повторному, более детальному рассмотрению, в частности, на предмет их проницаемости.

3) проницаемость пластов оценивалась в первую очередь по кривым БК и ИК. В случае, если кривые совпадали, то данный пласт считается проницаемым, т.е. соответствовал песчаникам, а когда наблюдалось расхождение кривых, то пласт являлся не проницаемым и соответствовал глинам (аргиллитам). Дополнительным диагностическим признаком проницаемости являлась оценка наличия глинистой корки, что приводит к сглаживанию кривых ГК.

4) в интервалах проницаемых пластов отдельно выделялись плотные высокоомные разности, которые во всей видимости представляли собой плотные сцементированные песчаники.

Рис. 3.21. Сопоставление каротажных диаграмм, зарегистрированных в нефтяной скважине (Западная Сибирь) 1 - песчаник; 2 - плотный песчаник; 3 - аргиллит

По предварительной оценке выделенные проницаемые пласты относятся как к водоносному, так и смешанному типам (водонефтяные). Уточнение их принадлежности к водоносному или водонефтяному типам предполагается выяснять посредством качественной и количественной интерпретации диаграмм БКЗ и ВИКИЗ.

На основании приведенных примеров можно сделать частные выводы:

1) для предварительного литологического расчленения разреза угольной скважины необходимо и достаточно использование методов КС и ГК. Полное представление о литологическом разрезе достигается при анализе всех каротажных диаграмм поискового комплекса КС-ПЗ, ГК, ГГК, АК и КМ,

2) для предварительного представления о литологическом разрезе нефтяной скважины необходимо и достаточно выполнить совокупный анализ каротажных кривых КС-ПЗ, КС-БК, ПС и КМ. В результате использования этих методов четко и уверенно выделяются границы пластов и их литологическая принадлежность.

При выработке рабочей гипотезы о геологической природе аномальных объектов, принятии решений о необходимости проведения количественной интерпретации и дополнительных геолого-геофизических исследований следует опираться на известные качественные признаки, выявленные в процессе многолетних работ по интерпретации материалов ГИС. К ним относятся:

· ИК эффективен для изучения глин и глинистых пластов, песчаников и карбонатов, насыщенных сильно минерализованной пластовой водой его можно применять в сухих и обсаженных непроводящими трубами скважинах. Задачи, решаемые ИК те же, что КС и БК.

· БКЗ «работает» в пластах большей мощностью (и при) средних значениях спс и спвм.

· БК эффективен в тонких пластах при больших значениях спс и не эффективен при повышающем проникновении (водоносные пласты).

· Определение границ пластов и литологическое расчленение разрезов по диаграммам ВИКИЗ осуществляется по тем же критериям и признакам, что и для других электрических методов. При этом кривые ВИКИЗ более дифференцированы. Границы отбиваются в точках максимального возрастания градиента. Для оценки значений с пластов-коллекторов и зон проникновения разработана специальная компьютерная программа МФС ВИКИЗ. Вместе с темп, практические диаграммы могут дать достаточно полную информацию и без количественной обработки.

· Для изучение кривых ПС наиболее благоприятен песчано-глинистых разрез. Величину амплитуды аномалий ПС отсчитывают по линии глин (нулевая линия). Границы ПС отмечаются в точках, соответствующих половине амплитуды отклонения кривой ПС. Выделение тонких пластов (h/dc<4) по этим кривым затруднено. При сф >св, то есть при УЭС фильтрата больше УЭС пластовой воды песчано-алевролитовые пласты отличаются минимумами Uпс. Против нефтегазоносных чистых песчано-алевролитовых пластов аномалия ПС такая же, как и против водоносных. В то же время глинистые пласты, содержащие нефть-газ имеют меньшую амплитуду, нежели глинистые водоносные пласты. Чистые карбонатные пласты (известняки, доломиты) характеризуются при сф>св, как и песчано-алевролитовые, отрицательными аномалиями Uпс. Кривые ПС в высокоомных разрезах мало информативны.

· Диаграммы (кривые) ГК симметричны относительно середины пласта. Границы последнего определяются в точках максимального градиента возрастания (убывания) кривых. Значение Jг изм соответствует Jг? для теоретических кривых при h/dc >6, а при наблюденных кривых при h>0,8м. Глинистые слои имеют максимальное значение Jг, а песчаные, известковые и угольные пласты - минимальные значения Jг. ГК применяется не только для определения структуры и толщин пластов, но и для получения количественных показателей, например глинистости, содержания нерастворенного осадка в карбонатах и др.

· СГК эффективен при оценке равновесных урано-ториевых руд, расчленении и корреляции немых толщ и месторождений, где U, Th и К играют роль геохимических индикаторов (бокситы, фосфориты, золото). На нефтегазовых месторождений СГК используются для оценки глинистости полимиктовых отложений, Jг идентификации песчаных коллекторов (монациты, глаукониты), разделении чистых и глинистых карбонатов.

· ГГК-П эффективен при выделении угольных пластов вследствие их малой плотности. В нефтегазовых скважинах метод ГГК-П используется для уточнения литологии, выделения коллекторов, оценки их пористости, при техническом контроле скважин.

· Задачами, решаемыми с помощью НК, являются выделение нефтенасыщенных, водонасыщенных и газонасыщенных коллекторов и нахождение водонефтяного (ВНК) и газожиткостного (ГЖК) контактов, выделение и оценка руд, содержащих элементы с высоким сечением поглощения, выделение углей, преимущественно бурых.

· ИННК в большей степени и ИНГК в меньшей применяют на нефтегазовых месторождениях для выделения нефтеносных и газоносных пластов. Преимущества ИНК перед НК в этом случае обусловлены более высокой чувствительностью ИНК к содержанию хлора. Кроме того, в меньшей мере влияют скважинные условия. Особенно хорошо ИНК применяют при контроле за разработкой нефтегазовых месторождений. В районах с минерализации пластовых вод более 100г/л (высокая минерализация) показания ИННК и ИНГК против водоносных и газоносных пластов различаются до 10 раз. Тогда как различие для этих пластов по методу НК составляет 1-2 раза.

Количественная интерпретация результатов ГИС производится как и в методах полевой геофизики путем подбора (сравнения) наблюденных (зарегистрированных в скважинах) кривых с теоретическими. Интерпретация может выполняться как вручную с помощью специальных палеток, так и в автоматизированном режиме с применением компьютерных программ. Компьютерная интерпретация основана на интерактивном (диалоговом) режиме. Как правило, в процессе интерпретации привлекается дополнительная геолого-геофизическая информация.

Последовательность операций по качественной и количественной интерпретации данных БКЗ и ВИКИЗ можно показать на примере нефтегазовой скважины, для которой ранее выполнено литологическое расчленение разреза (см. рис. 120). Сопоставление кривых БКЗ и ВИКИЗ в этом разрезе приведено на рисунке 3.221.

Рис. 3.22. Сопоставление каротажных диаграмм БКЗ и ВИКИЗ

в разрезе нефтегазовой скважины (Западная Сибирь)

Количественная интерпретация данных проводилась для продуктивных пластов песчаников, которым присвоены индексы 1 и 2, в интервале разреза 2510-2575 м в следующей последовательности:

1) Снимались оптимальные значения ск, сс, dc и L вычислялись параметры скс и L/dc (табл.3.1).

Таблица1. Данные для построения фактических кривых зондирования

№п/п

L

D

сk

сc

L/d

сk c

1

0,45

0,22

12

37

2,05

0,32

1,05

0,22

14

37

4,77

0,38

2,25

0,22

5,2

37

10,23

0,14

4,25

0,22

2,7

37

19,32

0,07

8,5

0,22

4

37

38,64

0,11

2

0,45

0,21

13

35

2,14

0,37

1,05

0,21

19

35

5,00

0,54

2,25

0,21

8,5

35

10,71

0,24

4,25

0,21

4,8

35

20,24

0,14

8,5

0,21

4

35

40,48

0,11

2) Строились в билогарифмическом масштабе фактические кривые БКЗ (рис. 3.23).

Рис. 3.23. Фактические кривые БКЗ

3) Сопоставлялись фактические кривые с теоретическими 2-х слойной палетки БКЗ и выполнялась оценка пластов на предмет проницаемости (рис.3.24).

Результаты сопоставления:

Пласт 1. Наблюдается расхождение фактической кривой с двухслойной палеточной. Правая ветвь сечёт теоретические кривые и уходит вниз, что указывает на повышающее проникновение. Следовательно, пласт проницаемый. По сопоставлению левой ветви с теоретическими оценивалась зона проникновения, которая имеет параметры спс = 5, что являляется основой для дальнейшей интерпретации кривой по трёхслойной палетке.

Пласт 2. Наблюдается также расхождение фактической кривой с двухслойной палеточной. Правая ветвь сечёт теоретические кривые и уходит вниз, что указывает на повышающее проникновение. Левая ветвь совпадает с теоретической двухслойной. Для последней интерпретируемой кривой зона проникновения имеет параметры спс = 10.

4). Сопоставлялись фактические кривые с теоретическими трёхслойных палеток. Подобраны трёхслойные палетки со следующими параметрами:

· пласт 1 - D/dc = 2; с?с = 5

· пласт 2 - D/dc = 2; с?с = 10

Рис. 3.24. Сопоставление (подбор) фактических кривых пластов 1 и 2 с палеточными двухслойной палетки 1А

Результаты сопоставления представлены на рис. 3.25.

Результаты сопоставления:

· пласт 1 - спс = 0,5; с?с = 5; D/dc = 2; отсюда следует: сп = 18,5 Ом*м,

с? = 185 Ом*м, D = 0,43 м и h = 7 м

· пласт 2 - спс = 1; с?с = 10; D/dc = 2; отсюда следует: сп = 35,0 Ом*м,

с? = 350 Ом*м, D = 0,42 м и h = 9 м

Рис. 3.25. Сопоставление (подбор) фактических кривых пластов 1 и 2 с палеточными трехслойными палетоки 4А и 5А

Искомые значения сп и h сведены в таблице 3.2.

Таблица 2. Результаты количественной интерпретации данных БКЗ

№ пласта

сп

h

1

18,5

7

2

35,0

9

Рассмотрение данных таблицы 2 показывает, что для пласта 1 сп = 18,5 Ом*ми это значение соответствует УЭС водонефтенасыщенных пластов. Для пласта 2 сп = 35,0 Ом*м и это значение соответствует УЭС нефтенасыщенных пластов.

Размещено на Allbest.ru

...

Подобные документы

  • Типовые геофизические комплексы для исследования скважин и выделения угольных пластов. Методы радиоактивного и нейтронного каротажа, электрометрии. Каротаж на основе сейсмоакустических полей. Задачи ГИС при поиске и разведке угольных месторождений.

    курсовая работа [1,3 M], добавлен 15.12.2016

  • Цели и задачи геофизических исследований газовых скважин. Классификация основных методов исследования по виду и по назначению: акустический, электрический и радиоактивный каротаж скважин; кавернометрия. Схематическое изображение акустического зонда.

    реферат [2,0 M], добавлен 21.02.2013

  • Организация проведения геофизических работ в скважине. Рациональная организация и планирование работ геофизической партии. Выбор рациональных методов и этапов проверки качества выполненных работ. Каротаж оборудования для геофизических исследований.

    отчет по практике [40,3 K], добавлен 24.09.2019

  • Обязательность электрического каротажа для любой категории скважин. Методы потенциалов самопроизвольной поляризации горных пород, их основание на изучении естественных электрохимических процессов. Боковой, индукционный, ядерно-магнитный каротаж.

    реферат [1,7 M], добавлен 27.12.2016

  • Применение газового каротажа для геохимических исследований скважин. Газовый каротаж в процессе бурения и после бурения. Сбор и обработка комплексной геологической, геохимической, геофизической информации. Проведение суммарного и компонентного анализов.

    реферат [442,0 K], добавлен 11.12.2014

  • Виды нейтронных методов. Процессы рассеяния и поглощения. Нейтронные свойства горных пород. Импульсный нейтронный каротаж. Пространственно-временное распределение тепловых нейтронов. Интерпретационные параметры. Нейтронный активационный гамма-каротаж.

    презентация [1,0 M], добавлен 28.10.2013

  • Цели, функции и задачи геолого-технологических исследований скважин в процессе бурения. Изучение количества и состава газа, попавшего в буровой раствор методом газового каротажа. Проведение исследований с применением известково-битумных растворов.

    контрольная работа [516,4 K], добавлен 23.06.2011

  • Способы возбуждения полей гамма-квантов с получением конкретных свойств среды: плотности и эффективного номера. Взаимодействие гамма-квантов с веществом. Плотностная модификация Гамма-Гамма каротажа. Селективная модификация Гамма-Гамма каротажа.

    курсовая работа [2,5 M], добавлен 05.02.2008

  • Понятие и условия применения гамма-гамма каротажа как метода исследования разрезов буровых скважин, основанного на измерении рассеянного g-излучения, возникающего при облучении горных пород g-квантами средний энергии. Оценка его преимуществ, недостатков.

    презентация [251,0 K], добавлен 09.05.2016

  • Анализ Талнахского и Октябрьского месторождения медно-никелевых сульфидных руд в зоне Норильско-Хараелахского разлома: геологическое строение, изверженные горные породы района. Методы геофизического каротажа скважин, физико-геологические модели пластов.

    курсовая работа [3,1 M], добавлен 13.02.2014

  • Физические основы акустического каротажа по скорости и затуханию. Форма кривой при акустическом каротаже и определение границ пластов, аппаратура для проведения исследования поведения волн ультразвукового и звукового диапазона в горных породах.

    контрольная работа [2,5 M], добавлен 15.09.2012

  • Физические свойства горных пород и петрофизические характеристики Мыльджинского месторождения. Геологическая интерпретация геофизических данных. Физико-геологические основы и спектрометрическая аппаратура литолого-плотностного гамма-гамма-каротажа.

    дипломная работа [4,0 M], добавлен 22.03.2014

  • Операции в скважинах. Методы электрического и радиоактивного каротажа. Измерение тепловых свойств стенок скважины. Измерительная аппаратура и спуско-подъемное оборудование. Устройства для регулировки, контроля и стабилизации питания скважинных приборов.

    презентация [667,4 K], добавлен 10.02.2013

  • Методы акустического каротажа, основанные на изучении характеристик упругих волн ультразвукового и звукового диапазона, прошедших через горные породы. Измерительные зонды АК. Эксплуатационные характеристики скважинных приборов. АК по скорости и затуханию.

    реферат [687,8 K], добавлен 28.03.2017

  • Анализ компьютерных технологий геолого-технологических исследований бурящихся нефтяных и газовых скважин. Роль геофизической информации в построении информационных и управляющих систем. Перспективы российской службы геофизических исследований скважин.

    практическая работа [32,1 K], добавлен 27.03.2010

  • Основы метода ядерно-магнитного каротажа. Изучение величин искусственного электромагнитного поля. Аппаратура ядерно-магнитного метода. Области применения и решаемые геологические задачи. Схема процессов, возникающих при исследованиях горных пород.

    курсовая работа [395,8 K], добавлен 21.12.2014

  • Магнитная разведка как геофизический метод решения геологических задач, основанный на изучении магнитного поля Земли. Основные положения и термины магниторазведки, ее применение при картировании рудных полей и месторождений. Метод микромагнитной съемки.

    презентация [1,7 M], добавлен 30.10.2013

  • Характеристика промыслово-геофизической аппаратуры и оборудования. Технология проведения промыслово-геофизических исследований скважин. Подготовительные работы для проведения геофизических работ. Способы измерения и регистрации геофизических параметров.

    лабораторная работа [725,9 K], добавлен 24.03.2011

  • Геофизические методы изучения геологического разреза скважин, основанные на измерении характеристик полей ионизирующих излучений, происходящих в ядрах атомов эдлементов. Аппаратура измерения гамма-излучения: газоразрядные и сцинтилляционные счетчики.

    презентация [4,7 M], добавлен 24.11.2013

  • Геофизические исследования в скважинах. Затраты времени при изучении газоносности пластов. Исследование газоносности угольных пластов с помощью керногазонаборников и герметических стаканов. Затраты времени при проведении геофизических исследований.

    курсовая работа [2,6 M], добавлен 14.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.