Тахеометры Topcon

Тахеометр как геодезический инструмент для измерения расстояний, горизонтальных и вертикальных углов. Светодальномер в режиме измерений с отражателем и без. Конструктивные особенности в новых приборах и их возможности. Устройство и конструкция узлов.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 10.10.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Назначение прибора
  • 2. Схема электронного тахеометра TOPCON GPT-3000
  • 3. Устройство и конструкция основных узлов
    • 3.1 Геометрия корпуса
    • 3.2 Зрительная труба
    • 3.3 Принципиальная схема дальномера
      • 3. 3.1 Светодальномер в режиме измерений с отражателем
      • 3. 3.2 Светодальномер в режиме измерений без отражателя
    • 3.4 Угломерная часть
  • 4. Конструктивные особенности в новых приборах, новые возможности приборов
  • 5. Поверки
  • 6. Методика подготовки прибора к работе, технология и условия работ
  • Заключение
  • Список используемой литературы

Введение

На замыкающей стадии развития оптико-электронных геодезических приборов стоит универсальный инструмент - электронный тахеометр. Тахеометр производит любые угломерные измерения одновременно с измерением расстояний и по полученным данным проводит инженерные вычисления, сохраняя всю полученную информацию. С помощью электронного тахеометра в полевых условиях можно получить информацию об измеряемых горизонтальных и вертикальных углах и расстояниях, автоматически выполнить необходимые вычисления по плановому и высотному положению ситуации.

При наличии компьютера процесс может быть автоматизирован, включая получение готовой карты местности за считанные минуты. Возможность занесения в запоминающее устройство допустимых погрешностей измерений (например, циклической погрешности дальномера, коллимационной ошибки, отклонения места нуля, отклонение оси вращения от отвесной линии за счет введения двух координатных электронных уровней и др.) позволяет повысить точность и производительность измерений. Встроенное программное обеспечение позволяет выполнить следующие геодезические задачи: обратную засечку, уравнивание теодолитного хода, вычисление площадей, разбивку кривых и т.д.

На Российском рынке тахеометры представляют сегодня такие известные фирмы, как Leica-Geosystems (Швейцария), Sokkia, Topcon, Nikon и Pentax (Япония), Trimble Navigation (США), Opton (Германия), АГА (Швеция), а также ФГУП "УОМЗ"(Россия) и др. Современный тахеометр должен полностью удовлетворять всем требованиям пользователя. Это важно и потому, что пользователь не должен переплачивать за невостребованные функции и возможности инструмента, стоимость которых может быть достаточно высока. С другой стороны, желательно иметь возможности обновления и модернизации системы -- добавление новых функций, программ и даже изменение технических характеристик.

В работе будет более подробно рассмотрен электронный тахеометр фирмы Topcon. тахеометр конструкция отражатель

1. Назначение прибора

Электронным тахеометром называется устройство, объединяющее в себе теодолит и светодальномер. Одним из основных узлов современных электронных тахеометров является микро ЭВМ, с помощью которой можно автоматизировать процесс измерений и решать различные геодезические задачи по заложенным в них программам. Увеличение числа программ расширяет диапазон работы тахеометра и область его применения, а так же повышает точность работ.

Наличие регистрирующих устройств в тахеометрах позволяет создать автоматизированный геодезический комплекс: тахеометр - регистратор информации - преобразователь - ЭВМ - графопостроитель, обеспечивающий получение на выходе конечной продукции - топографического плана в автоматическом режиме. При этом сводятся к минимуму ошибки наблюдателя, оператора, вычислителя и картографа, возникающие на каждом этапе работ при составлении плана традиционным способом.

2. Схема электронного тахеометра TOPCON GPT-3000

Рис.1. Вид тахеометра спереди.

Рис.2. Вид тахеометра сзади.

Рис.3. Вид трегера тахеометра.

3. Устройство и конструкция основных узлов

3.1 Геометрия корпуса

1. Плоскости колонок должны быть параллельны и перпендикулярны плоскости основания (рис. 4).

Рис. 4. Геометрия корпуса

2. Посадочные места под ось зрительной трубы должны быть параллельны между собой и расположены на одной высоте над основанием корпуса. Ось посадочных мест - строго перпендикулярна плоскости колонок, должна пересекаться с осью вращения тахеометра и быть перпендикулярна ей. Поскольку корпуса приборов отливаются, а у форм есть пределы допуска, на правой колонке корпуса посадочное место под ось трубы делают подвижным для юстировки неравенства колонок. Самым распространенным методом является применение эксцентрической шайбы с котировочными винтами для разворота шайбы (рис 5).

Рис. 5. Эксцентрическая шайба

3.2 Зрительная труба

Рисунок 6:

1) Объектив;

2) Зеркало;

3) Излучатель;

4) Отражатель;

5) Зеркальная призма;

6) Сенсор ccd с ноль пунктом;

7) Сетка нитей;

8) Окуляр;

9) Глаз наблюдателя.

Установка зрительной трубы зависит от конструкции ее оси. Чаще используется конструкция из полуосей. Это выглядит так: на зрительную трубу устанавливают две полуоси , которые вставляются во втулки корпуса. Затем перпендикулярность осей трубы и вращения юстируют лагерной эксцентрической втулкой (рис. 7).

Следующая задача состоит в недопущении хода зрительной трубы вдоль оси ее вращения. Для этого к торцу оси в левой колонке корпуса на болтах крепят посадочное место лимба вертикального круга, что ограничивает ход зрительной трубы вправо. В правой колонке корпуса на полуось надевают хомут механизма для фиксатора и наводящего винта зрительной трубы. Это ограничивает ход зрительной трубы влево.

Теперь труба жестко закреплена по торцам оси и может только вращаться. Но в методе есть один недостаток.

Очень важно, чтобы визирная ось зрительной трубы пересекалась с осью вращения тахеометра. Несоблюдение этого условия влечет за собой ближнюю компенсацию. Поэтому некоторые заводы-изготовители применяют другой способ, при котором ось вращения проходит через зрительную трубу.

Рис. 7. Корпус тахеометра

Монтаж производят так: конец оси вставляют в колонку со стороны лимба вертикального круга, затем между колонок ставят трубу и проталкивают сквозь нее ось до лагерной втулки (рис. 8). Зрительная труба крепится к оси при помощи двух винтов . В зрительной трубе отверстия шире диаметра винтов. Это дает возможность перемещать зрительную трубу по оси влево и вправо. Этот ход устраняет ближнюю коллимацию, затем винты зажимают. Для фиксации оси в корпусе применяют прорезь под защелку, которая крепится к корпусу.

Рис. 8. Монтаж зрительной трубы

В левой колонке к торцевой части оси трубы крепится лимб вертикального круга.

3.3 Принципиальная схема дальномера

3.3.1 Светодальномер в режиме измерений с отражателем

Светодальномеры обычно устанавливаются на верхнюю часть зрительной трубы, но не всегда, основная, же схема дальномера у всех приборов примерно одинаковая.

Свет, выходя из лагера , когда открыта шторка , проходит по каналу ОКЗ "а" в приемник . Когда шторка перекрывает канал ОКЗ, она открывает канал дистанции "б" и свет, отражаясь от призмы и зеркала , проходит через объектив на отражатель . Отразившись от отражателя , свет проходит через объектив и, отражаясь от зеркала и призм , попадает на приемник. (Рис. 9)

Рис.9. Оптическая схема дальномера тахеометра в режиме измерений с призмой

После этого в приборном блоке, зная точную длину канала ОКЗ и время прохождения луча в канале и до призмы, по пропорциям вычисляются расстояния.

3.3.2 Светодальномер в режиме измерений без отражателя

Свет из излучателя, отражаясь от зеркала , проходит через объектив до отражающей поверхности . Возвращаясь через объектив , свет отражается от зеркала , проходит до обратной стороны зеркала , отражаясь от него, попадает во входной зрачок световода , проходит через светофильтр мотора уровня сигнала и попадает на детектор . Канал ОКЗ проходит от излучателя через световод , доходит до шторки . Когда шторка закрыта для канала дистанции, свет отражается от шторки и попадает на детектор по каналу ОКЗ. (Рис. 10)

Рис.10. Оптическая схема дальномера тахеометра в режиме без отражателя.

Для того, чтобы оптические схемы дальномеров работали, необходимо, чтобы свет, выходящий из объектива, и свет, идущий обратно на детектор, шли по одному каналу. Безотражательные светодальномеры пока ещё не совершенны, и результат измерения зависит от типа отражающего покрытия и его цвета, например лучше всего пучок света отражается от белого покрытия при этом от чёрного покрытия практический не отражается.

3.4 Угломерная часть

В оптическом теодолите свет попадает через зеркало подсветки, а приемником информации является глаз наблюдателя, берущего отсчёт в окуляре оптического микрометра.

В электронных тахеометрах работу подсветки выполняет светодиод, в качестве микрометра используется дифракционная решетка, а приемником информации является фотоприемное устройство, которое преобразует световую энергию в электрический сигнал.

Угломерные системы в современных тахеометрах бывают аналоговые и цифровые. Принцип настройки у них один, но исполнение разное. Угломерные системы бывают односторонние и двусторонние. Аналоговые угломерные устройства представляют собой лимб со штрихами, где толщина штрихов равна промежутку между ними. Для того чтобы датчик угла мог оценить направление счета, необходимо иметь две полосы со штрихами. Между собой штрихи сбиты на четверть толщины штриха. Под лимбом устанавливается дифракционная решетка.

Светодиод просвечивает лимб с решеткой, и изображение полученной муаровой картины попадает на фотоприемное устройство. Датчик угла способен посчитать число периодов и таким образом определить угол поворота тахеометра.

Рис.11. Растровые лимбы

Счет по растровому лимбу возможен только при наличии дифракционной решетки. В разных тахеометрах применяют разные конструктивные решения. Вот некоторые из них. Лимб вертикального круга прикреплен к оси трубы . Дифракционная решетка подкреплена к стойке . За решеткой установлен фотоприемник, который крепится вместе с излучателем к корпусу болтами . Для установки дифракционной решетки используют микроскоп. (рис 11)

Лимб, установленный на оси зрительной трубы, вращается во втулке корпуса. На корпус монтируется второй лимб на станине, прикрепленной к корпусу. На лимб нанесены две дифракционные решетки. К корпусу монтируют фотоприемные устройства со светодиодами.

Посадочные места лимбов скреплены между собой болтами через пружинные шайбы. Затяжка болтов сближает лимбы, ослабляя болты. Пружинные шайбы ослабляют лимбы. Это позволяет фокусировать оптическую систему.

4. Конструктивные особенности в новых приборах, новые возможности приборов

При производстве большинства геодезических работ, как правило, требуется выполнять как угловые, так и линейные измерения, для чего обычно использовались оптические тахеометры. Еще в конце ХХ века венгерский геодезист Тихи ввел в обиход слово "тахеометр", которое в переводе с греческого языка означает "быстроизмеряющий".

Позднее для этих целей стали использовать светодальномеры и теодолиты. Когда были созданы компактные светодальномеры, то конструкция их предусматривала возможность установки на теодолит. И в настоящее время конструкции светодальномеров, выпускаемых Уральским оптико-механическим заводом, предусматривают возможность их установки на теодолит. Позднее начали выпускаться приборы в общем корпусе для оптического теодолита и светодальномера.

Мощным толчком в геодезическом приборостроении стал выпуск электронного тахеометра AGA-136 (Швеция), в котором оптическая система отсчета углов была заменена на электронную, т. е. в едином корпусе размещался прибор, который совмещал функции светодальномера и цифрового теодолита. В дальнейшем в электронный тахеометр был введен полевой компьютер, открыв тем самым начало выпуска компьютеризованных электронных тахеометров. Использование электронных тахеометров позволило полностью отказаться от ведения полевого журнала.

В современные приборы начали встраивать мощные полевые компьютеры для обработки результатов измерений и решения непосредственно в поле типовых геодезических задач, расширились возможности приборов за счет значительного улучшения технических характеристик.

Каждый электронный тахеометр имеет зрительную трубу, блок измерения расстояний (светодальномер), блок измерения углов (цифровой теодолит) и спецвычислитель, в который встроены программы для решения непосредственно в поле типовых геодезических задач.

Встроенное программное обеспечение большинства электронных тахеометров позволяет решать целый ряд геодезических задач. Например, электронные тахеометры фирмы Sokkia (Япония), которые отличаются высокой надежностью и точностью, имеют программное обеспечение, позволяющее решать следующие задачи:

· определять горизонтальное проложение и превышение;

· решать прямую и обратную геодезические задачи;

· вычислять превышения и расстояния между неприступными точками, определять высоту объектов, на которые невозможно установить отражатель, например, линии электропередачи, высотные здания, стены и т.д.;

· выполнять расчет площади и периметра снимаемого участка;

· помещать в отдельный список для последующего быстрого поиска выносимые в натуру точки; осуществлять вынос в натуру точек по углу и расстоянию, по координатам, по створу между двумя точками на задаваемую вертикальную или наклонную плоскость.

Помимо встроенного программного обеспечения, есть специализированные программы, которые поставляются отдельно (например, программы, используемые при изысканиях и строительстве дорог "Road", программы для геометрических построений "ССЮО" и т.д.).

С 2005 г. фирма TOPCON (Япония) начала выпускать новые приборы - фототахеометры GPT-7000i, которые позволяют получать на экране тахеометра изображение, создаваемое зрительной трубой. Например, при выносе в натуру, глядя в видоискатель, оператор четко выводит своего помощника с призмой на выносимые точки. Кроме того, встроенная дополнительная цифровая камера позволяет получать мелкомасштабные снимки местности. Объектив этой камеры размещен над объективом зрительной трубы. Тахеометры GPT-7000i созданы на базе уже известной в России серии безотражательных тахеометров GPT- 7000 с добавлением технологии цифровых изображений. GPT-7000i имеет встроенную операционную систему Windows СЕ и увеличенный объем памяти для хранения изображений.

Прибор позволяет сделать фотоснимок измеряемого объекта и сохранить его в памяти вместе с результатами измерений. Благодаря этому вместо создания традиционных схематичных планов для отображения результатов снимаемого объекта вместе с измеренными точками и линиями. Оператор может проконтролировать точки (линии), которые были или не были измерены, что позволяет избежать ошибок при выполнении полевых работ. Снимок местности, полученный с помощью фототахеометра, упрощает процедуру выноса точек в натуру, так как все выносимые точки отображаются на экране. Для серии GPT-7000i существуют 2 вида программного обеспечения. Основная программа -- TopSURV ON Board, которая предназначена для решения общих задач съемки и используется для управления тахеометром. Она представляет полный набор процедур для выполнения съемки, выноса в натуру и решения тривиальных геодезических задач. Эта программа устанавливается на заводе изготовителе.

Дополнительная программа 3D Image Measurement обеспечивает работу с цифровыми изображениями и предназначена для трехмерного (объемного) моделирования.

Когда активна функция фотоизображения, измеряемые точки отображаются на экране как точки и линии. Можно провести линию, соединив измеренные точки. Измеренные точки также можно проверить посредством программы 3D Image Measurement, которая в основном используется для обработки цифровой фотосъемки, полученной с концов базиса, как это делается при фототеодолитной съемке. Фотосъемка местности выполняется с помощью широкоугольной цифровой фотокамеры с двух разнесенных точек (концов базиса), координаты которых известны. ПО 3D Image Measurement System позволяет автоматически обработать полученные снимки и получить с помощью этих стереоснимков цифровую модель местности, контурные лини и оценить объемы, ограниченные сложными поверхностями.

Таким образом, благодаря таким уникальным особенностям GPT- 7000i при выполнении полевых работ:

- обеспечивается однозначность распознавания измеряемых точек в режимах измерений по призмам и без них;

- исключается необходимость наведения и фокусировки на каждую точку с помощью зрительной трубы;

- осуществляется простое наведение на близзенитные точки без использования дополнительных аксессуаров (ломаных окуляров);

- определяются области, где измерения, возможно, были пропущены;

- отображаются разбивочные точки, наложенные на реальное изображение объекта до начала выноса проекта в натуру;

- результаты выноса в натуру контролируются по отображению точек на экране.

При камеральных работах упрощается обработка и повышается качество полученных результатов, так как обзорный и детальный фотоснимки могут быть записаны в памяти инструмента вместе с данными измерений.

Эти фотоснимки дают наглядное представление состояния и особенностей объекта для подготовки более подробной съемочной документации, а также помогают при камеральной обработке полевых измерений и избавляют от необходимости вести абрис во время съемки.

Благодаря этим качествам и возможности измерения расстояний без отражателя до 250 м тахеометры серии GPT-7000 могут быть использованы для решения специальных задач, например, таких как фасадные съемки. При этом обеспечивается представление на экране изображения фасада здания и простая идентификация точек, исключается необходимость ведения абрисов и дополнительного фотографирования зданий. Фотоснимки, полученные при измерениях, могут быть также использованы для более наглядного и подробного оформления материалов работ.

Тахеометры серии GPT-7000i выполняют измерения без отражателя до углов зданий проще и точнее. Цифровые технологии используются для автоматического определения точек углов зданий и конструкций с большей точностью, чем при обычных измерениях.

Все приборы достаточно просты в управлении и, как правило, имеют двухстороннюю алфавитно-цифровую клавиатуру. Клавиши меню обеспечивают управление проектами съемки, функциями координатной геометрии, настройками инструмента, просмотром и редактированием данных и т. д. Электронные тахеометры снабжены компактными визирными трубами, служащими для приема и передачи оптических сигналов при светодальномерных измерениях. Они имеют совмещенную оптику, центральная часть которой является передающей, а периферийная -- приемной.

При использовании такой конструкции уровень сигнала, отраженного от марки или диффузного отражателя, не меняется (если угол наклона не более 30°), что позволяет обеспечить высокую точность линейных измерений. Зондирующий пучок лазерного излучения имеет малый диаметр, и поэтому позволяет выполнять измерения сквозь листву деревьев и сетчатые ограждения, а также при отражении от измеряемой поверхности под острым углом.

Для связи с компьютером можно использовать несколько форматов передачи данных, что обеспечивает работу прибора с различным программным обеспечением. С использованием простого программного обеспечения, входящего в комплект тахеометра, данные могут загружаться из компьютера в электронный тахеометр.

Как и цифровые теодолиты, электронные тахеометры снабжены двухосевыми датчиками угла наклона, работающими в диапазоне 3'--5'. Двухосевой датчик наклона автоматически отслеживает наклон инструмента по осям X и У, а поправки в отсчеты по вертикальному и горизонтальному кругам вводятся автоматически. В результате упрощается и ускоряется процесс приведения прибора в рабочее положение (приведение вертикальной оси вращения алидады в вертикальное положение). Функция исправления коллимационных ошибок автоматически вводит коррекцию в измеряемые направления. По этой причине угловые измерения можно выполнять при одном положении круга без снижения точности результатов измерений. Они снабжены оптическим или лазерным центриром.

Современные электронные тахеометры имеют водостойкую защиту, обеспечивающую бесперебойную работу прибора при условии повышенной влажности. Стандартная рабочая температура для электронных тахеометров составляет от -20 °С до +50 °С. Для низкотемпературных модификаций приборов рабочий диапазон температур составляет от -30 °С до +50 °С.

Таким образом, современные электронные тахеометры являются всепогодными, так как работают в условиях экстремальных температур и повышения влажности.

5. Поверки

Электронный тахеометр, как любой геодезический прибор, должен быть поверен и отъюстирован перед производством работ. Учитывая совмещенность дальномерных и угловых измерений, в тахеометре должны выполняться геометрические условия взаимного положения оптико-механических и оптико-электронных осей.

Поэтому полный набор поверок и юстировок проводится на специальных стендах или в сервисных центрах. Однако ряд основных поверок можно выполнить в полевых условиях. Более того, регулярное проведение некоторых поверок является обязательным, так как измерения электронным тахеометром проводятся при одном положении ВК прибора, а поправки за коллимацию, место нуля ВК и место нуля компенсатора наклона вертикальной оси автоматически вводятся в результаты измерений. Неучтенные изменения этих поправок приводят к снижению точности результатов измерений.

Перед поверками необходимо внимательно изучить методику их проведения и юстировки по руководству к эксплуатации конкретной модели тахеометра.

6. Методика подготовки прибора к работе, технология и условия работ

Работы на объекте начинают с получения технического задания, анализа топографо-геодезической изученности территории, системы координат, требуемой точности работ. Проводится рекогносцировка и обследование пунктов ОГС, составляется проект работ. Определяется ПО, на основе которого будет проводиться обработка результатов.

Составляется каталог координат существующих пунктов ОГС. Подготовка тахеометра к работе включает:

1. поверки и юстировки прибора, оптического центрира для отражателя, уровня на вехе для призмы;

2. комплектование оборудования в зависимости от длин линий, применяемых отражателей и вида работ;

3. зарядку аккумуляторов;

4. в режиме памяти выбор файлов исходных данных и файлов для записи результатов измерений;

5. ввод каталога координат с компьютера в файл исходных данных памяти тахеометра;

6. очистку рабочих файлов от старой информации.

Если обработка будет выполняться после полевых измерений, то каталог исходных пунктов можно ввести при обработке и в тахеометр не вводить.

Работу на станции начинают с установки и приведения прибора в рабочее положение. Для этого штатив над точкой ставят по отвесу, вдавливают его ножки, регулируя их высоту, чтобы головка штатива была горизонтальной. Тахеометр ставят на штатив, закрепляют становым винтом. Проводят окончательное центрирование и горизонтирование прибора с помощью встроенного оптического центрира, подъемных винтов, уровня.

Измеряют высоту тахеометра от марки центра пункта до метки высоты прибора. Она должна измеряться до миллиметра, поэтому используют выдвижную веху с миллиметровыми делениями. Её вставляют в отверстие в подставке (предварительно вынув тахеометр из подставки) до упора в марку, измеряют высоту верха подставки и к ней прибавляют стандартную высоту прибора.

При прокладке ходов полигонометрии используют трех - штативную систему, если это позволяют подставки (трегеры) под отражатель, входящие в комплект прибора. В этом случае штативы устанавливают над точкой начального ориентирования (пункт ОГС) и над следующей за станцией точкой хода (рис.12.). Подставки центрируют и горизонтируют по оптическому центриру. Отражатели направляют на тахеометр, измеряют высоту до центра отражателя

Рис. 12. Ход полигонометрии

Для съемки, прокладки теодолитного хода, построений засечками призму отражателя можно устанавливать на веху, которая в отвесное положение приводится по круглому уровню. Для привязки к пунктам ОГС ось вехи отражателя устанавливают над центром марки пункта. Если проводится только угловая (азимутальная) привязка к пункту ОГС, для этого достаточно поставить на веху визирную марку без отражателя. Её можно использовать в безотражательном режиме для измерения коротких расстояний.

Основные методы работы с электронными тахеометрами являются общими для большинства моделей и конкретизируются в соответствии с их возможностями, внутренним программным обеспечением, функциями клавиш. Поэтому производство измерений рассмотрим на базе TOPCON GPT-3000.

Прибор включают, он автоматически проводит самодиагностику и просит ввести пароль. Появляется режим статуса, из которого входят в режим конфигурации, если требуется ввести константы прибора и условия наблюдений. Затем устанавливают экран измерений. Сначала вводят в прибор данные о станции. Для этого активизируют клавишу ЗЛП режима измерений, появится экран ЗАПИСЬ с указанием номера рабочего файла и названием данных. Выбирают курсором строку ДАННЫЕ О СТАНЦИИ, нажимают ENTER, в появившемся окне нажимают клавишу РЕДКТ. Для ввода в обозначенные строки набирают следующие данные:

- Имя точки ;

- Высота инструмента;

- Код станции;

- Оператор;

- Дата;

- Время;

- Погода (ясно, облачно, пасмурно, дождь и т. д.);

- Ветер (нет, легкий, сильный, умеренный н др.);

- температура;

-Давление;

- Атмосферная поправка.

Набранные значения проверяют, нажимают клавишу ДА, данные будут введены. Нажимают ESC для возвращения в экран ЗАПИСЬ и регистрации результатов измерений. Атмосферную поправку вводят только при высокоточных измерениях, в остальных случаях она принимается по умолчанию нулевой, а температура и давление -- стандартными.

Измерения начинают с визирования на пункт начального ориентирования. Наводящими винтами трубы и алидады совмещают изображение центра сетки нитей с центром визирной марки или отражателя, процентрированных над пунктом.

Для измерения и записи результатов в указанный рабочий файл проводят следующие операции.

В экране ЗАПИСЬ курсором выбирают УГЛЫ, нажимают клавишу ESC до возвращения в журнал измерений. В нем нажимают клавишу Уст 0, когда она будет мигать, нажимают повторно. Будет выставлен нулевой отсчет по ГК на начальное направление. Нажимают клавишу ЗАП.

В экране ЗАПИСЬ выбирают РАССТОЯНИЯ. Через ESC возвращаются в экран измерений, нажимают клавишу РАССТ. На экране отобразятся: наклонное расстояние S, вертикальный угол Z, отсчет но ГК .

Нажимают клавишу ЗАН, затем РЕДКТ. В появившемся трафарете набирают: Т -- имя (номер точки); ВЫС Ц. -- высоту цели; код точки, если используется кодирование. Набранные данные проверяют. Они будут введены после нажатия ДА.

Визируют на переднюю точку хода. В экране ЗАПИСЬ выбирают РАССТОЯНИЯ, проводят измерения (клавиша РАССТ экрана измерений). Нажимают клавишу ЗАП, затем РЕДКТ. Набирают имя точки визирования, высоту цели, код точки.

Для повышения точности угловые измерения в ходе полигонометрии можно провести несколькими приёмами, Например способом повторений. Войти в этот режим можно, нажав МЕНЮ экрана измерений и в появившемся экране активизировав

ПОВТОРЕНИЯ. После установки нуля на начальное направление нажимают клавишу ДА, визируя на другую цель, нажимают ДА, вновь на начальное направление - ДА. другую цель -- ДА и т. д. На экран после нажатия клавиши ОТМ выдается суммарное значение угла из n повторений.

Переходят на следующую станцию. При трехштативной системе основание прибора вынимают из подставки и ставят вместо него визирную марку с отражателем, а прибор -- в подставку бывшей передней точки хода. Штатив с задней точки переносят вперед на следующую за новой станцией переднюю точку.

Съемку электронным тахеометром можно проводить с точки свободной станции, если с нее есть прямая видимость на два и более пункта ОГС. В этом случае координаты станции определяются из обратной линейно-угловой засечки. Режим обратной засечки предусмотрен во всех моделях электронных тахеометров. Определения выполняются и обратной угловой засечкой, при этом наблюдаться должны три и более исходных пункта. Из засечки определяется также отметка станции.

Для проведения съемки электронные тахеометры имеют ряд дополнительных режимов. Рассмотрим основные из них.

· Безотражательный режим применяется, если установка отражателя на снимаемую точку затруднена или невозможна, но точка видна. Для его запуска в экране измерений на 2-й странице нажать клавишу ДЛН, войти в строку ОТРАЖАТЕЛЬ, нажать клавишу РЕДКТ, значение параметра установить НЕТ (без отражателя). В безотражательном режиме так как при этом высота визирования на снимаемой точке не измеряется, и вычислить отметку этой точки нельзя. Съемку в безотражательном режиме можно выполнить одним оператором без реечннка.

· Измерения со смещением применяется, если снимаемый пикет со станции не виден. Тогда выбирают смещенное положение, которое снимают, и измеряют величину смещения. Смещение может выполняться вправо или влево от снимаемой точки по перпендикуляру к линии визировании на смещенное положение, а также вперед и назад по линии визирования. Выбрав смещенную точку, устанавливают на ней отражатель, измеряют величину смещения. Результаты измерений можно вывести на экран в координатах. Однако следует учесть, что отметка будет определена для смещенной точки.

· Определение высоты недоступного объекта применяется при высотной съемке точек, расположенных за пределами безотражательного режима измерений, а установка на них отражателя недоступна.

Заключение

Тахеометры Topcon - это оптимальное решение по многим параметрам, таким как: качество сборки, точность измерений, функциональные возможности, удобство использования, долговечность и надежность - все на высшем уровне.

Также, тахеометры Topcon являются очень демократичным выбором, ведь цена на электронные тахеометры Topcon не редко оказывается лучшей в классе.

Преимущества тахеометров Topcon:

- Если необходимо измерить темные поверхности, такие как угольная шахта, битум дороги, мокрые тротуары и темных области крыши , серии OS и ES являются идеальным вариантом. Тахеометры точно измеряют темные объекты на больших расстояниях до 500 метров в безотражательном режиме.

- Topcon тахеометры обладают дальномером с узким лучем, который позволяет точно измерить острые углы и тонкие объектов, таких как провода. Вы также можете производить измерении сковзь такие объекты, как сетчатые заборы и сэкономить время на перестановку прибора.

- Использование Topcon LongLink технологии, вы можете оставаться на расстоянии для проведения измерений до 300 метров без использования радио модемов. При использовании устройств Bluetooth с поддержкой сбора данных, таких как Tesla, можно удобно и точно производить измерения, уменьшить количество ошибок.

- Скорость измерения 0,9 секунды до 500 метров в безотражательном режиме и 4000 метров в стандартном режиме. Это гарантирует, что вы можете получить точные, быстрые измерения и сэкономить время на работе.

- TSshield - это новая функция позволяющая получить обновление программного обеспечения непосредственно на прибор. Кроме того, используя безопасный веб-портал, пользователи могут отслеживать местоположение своего прибора, когда он включен. Эта функция незаменима при потере или краже оборудования.

Тахеометр TOPCON ценятся специалистами по производству работ топографо-геодезического плана, изысканий инженерно-геодезических, мониторинга и лазерного сканирования.

Список используемой литературы

1) "Спутниковые системы и электронные тахеометры" А.П. Ворошилов. "АКСВЕЛ" г. Челябинск. 2007 год.

2) "Современная геодезическая техника и её применение" В.Е. Дементьев "GAUDEAMUS" г Москва 2008 год.

3) Руководство по эксплуатации электронного тахеометра серии GPT 3000. Геодезическое инструментоведение

4) "Геодезические приборы" Карсунская М.М. Москва.2002 год.

5) http://www.aspector.ru/Taheometry-Topcon.htm

Размещено на Allbest.ru

...

Подобные документы

  • Виды и принципы действия тахеометра - геодезического инструмента для измерения расстояний, горизонтальных и вертикальных углов. Применение электронных тахеометров для производства тахеометрической съемки. Обработка результатов измерений, производители.

    презентация [291,2 K], добавлен 05.03.2015

  • Характеристика назначения, устройства и особенностей применения теодолита - наиболее распространенного угломерного инструмента, получившего широкое применение при лесных съемках. Измерения горизонтальных проекций углов, вертикальных углов и расстояний.

    презентация [446,1 K], добавлен 19.02.2011

  • Теодолит - прибор для измерения горизонтальных и вертикальных углов. Особенности проведения теодолитной съемки, конструкция теодолитов и подготовка их к работе. Съемка ситуации местности. Теодолитный ход. Создание рабочего геодезического обоснования.

    презентация [716,1 K], добавлен 19.04.2017

  • Геодезические приборы для измерения горизонтальных и вертикальных углов. Изучение основных частей, деталей и осей теодолита. Выполнение необходимых геометрических условий. Устройство цилиндрического уровня. Принципы отсчетного устройства теодолита Т30.

    лабораторная работа [749,4 K], добавлен 10.07.2011

  • Сущность угловых геодезических измерений. Обзор и применение оптико-механических и электронных технических теодолитов для выполнения геодезической съемки. Принципы измерения горизонтальных и вертикальных углов, особенности обеспечения высокой их точности.

    курсовая работа [241,6 K], добавлен 18.01.2013

  • Устройство, поверка и юстировка нивелира и теодолита. Измерение превышений, горизонтальных и вертикальных углов, азимутов линий. Инженерно-геодезические задачи. Нивелирование местности по квадратам; разбивка основных осей здания. Расчет границ котлована.

    практическая работа [563,7 K], добавлен 06.01.2014

  • История развития теодолита, его классификация, основные параметры и размеры. Принципиальная схема устройства теодолита. Горизонтальный круг, отсчетные устройства, зрительные трубы, уровни. Измерение и погрешности горизонтальных и вертикальных углов.

    курсовая работа [1,7 M], добавлен 30.04.2014

  • Характеристика работы с теодолитом 2Т30, 2Т5К и нивелиром Н3, определение погрешности измерений, порядок поверки, влиятельные факторы. Проектирование и рекнацировка, измерение вертикальных и горизонтальных углов, оценка точности полученных результатов.

    отчет по практике [31,2 K], добавлен 17.09.2009

  • Организация геодезических работ в строительстве. Определение крена здания с помощью измерения горизонтальных углов. Геодезическое обеспечение монтажа промышленных печей. Построение разбивочной сети на монтажном горизонте. Работы при устройстве котлованов.

    контрольная работа [1,9 M], добавлен 06.03.2010

  • Электронные тахеометры: виды, принцип действия, главные преимущества, области применения и стандартные прикладные задачи. Поверки электронного тахеометра. Подготовка тахеометра к тахеометрической съемке и обработка результатов полученных измерений.

    реферат [35,6 K], добавлен 19.04.2011

  • Ознакомление с геодезическими приборами. Конструктивные особенности теодолита 4Т30, нивелира 3Н-5Л и электронного тахеометра 3Та5. Геометрическое, тригонометрическое, гидростатическое, барометрическое нивелирование. Автоматизация тахеометрической съемки.

    отчет по практике [3,2 M], добавлен 16.02.2011

  • Рассмотрение составных частей Государственного земельного кадастра. Изучение устройства, назначения и особенностей применения теодолитов типа Т30, 2Т30, 2Т5К. Методы измерения и построения горизонтальных углов с помощью экерпа, мензулы и теодолита.

    контрольная работа [4,7 M], добавлен 31.01.2010

  • Устройство геодезических сетей при съемке больших территорий. Равноточные и неравноточные измерения. Классификация погрешностей геодезических измерений. Уравнивание системы ходов съёмочной сети. Вычерчивание и оформление плана тахеометрической съемки.

    курсовая работа [419,8 K], добавлен 23.02.2014

  • Вычисление горизонтальных углов и длин между точками хода. Решение обратной геодезической задачи по линиям 1-2 и 4-5. Нанесение точек съёмочного обоснования по координатам. Составление экспликации, увязка площадей. Сравнение угловых, линейных результатов.

    курсовая работа [587,9 K], добавлен 09.12.2012

  • Конструкция современных электронных тахеометров, принцип работы, основные достоинства, сфера применения. Использование электронных тахеометров, регистрирующих результаты измерений на магнитные носители. Особенности и технические характеристики прибора.

    реферат [859,2 K], добавлен 13.10.2015

  • Общая характеристика основных этапов теодолитной съемки контуров местности. Особенности закрепления точек и измерения горизонтальных углов на точке теодолитного хода. Порядок вычисления румбов по дирекционным углам, специфика их отражения на чертеже.

    отчет по практике [59,8 K], добавлен 05.07.2010

  • Измерение горизонтальных углов между точками. Решение обратных геодезических задач. Определение недоступного расстояния. Расчет сетки для построения планов. Составление плана теодолитной съемки. Нанесение точек съемочного обоснования по координатам.

    курсовая работа [98,1 K], добавлен 01.06.2015

  • Особенности строения и основное назначение лазерных геодезических приборов. Лазерные нивелиры, электронные теодолиты и тахеометры. Использование спутниковых технологий в инженерной геодезии. Принцип работы геодезического приемника ГЛОНАСС/GPS ГЕО-161.

    реферат [389,4 K], добавлен 25.07.2011

  • Причины создания части геодезических приборов – компенсаторов, их современное применение в приборах, устройство и принцип работы. Необходимость применения компенсаторов угла наклона и основные элементы жидкостного уровня. Поверки и исследования нивелиров.

    курсовая работа [920,4 K], добавлен 26.03.2011

  • Маркшейдерские работы при проведении выработок встречными забоями. Сбойка горизонтальных, наклонных и вертикальных выработок, проводимых в пределах одной шахты, между двумя и в лабораторных условиях. Предрасчёт погрешности смыкания встречных забоев.

    курсовая работа [834,5 K], добавлен 12.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.