Механизм образования внутриконтинентальных рифтов
Особенности рельефа, структуры и осадочной формации. Магматизм и его продукты. Характеристика главной гидравлики механизма расклинивания. Гидравлический разрыв как процесс образования и распространения трещин в горных породах под давлением жидкости.
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 20.02.2016 |
Размер файла | 115,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Механизм образования внутриконтинентальных рифтов; два типа таких рифтов, особенности их проявления
Активным рифтовым зонам континентов свойственны расчлененный рельеф, сейсмичность, вулканизм, которые отчетливо контролируются крупными разломами, преимущественно сбросами. Главный современный пояс континентального рифтогенеза, протянувшийся почти меридионально более чем на 3 тыс. км через всю Восточную Африку, так и был назван поясом Великих африканских разломов. Образующие его зоны разветвляются и сходятся, подчиняясь сложному структурному рисунку. В рифтах этого пояса образовались озера Танганьика, Ньяса (Малави) и другие; среди приуроченных к нему вулканов -- такой гигант, как Килиманджаро, и известный своей активностью Ньирагонго. Байкальская рифтовая система также принадлежит к числу наиболее представительных и хорошо изученных.
Рельеф, структура и осадочные формации. Центральное положение в рифтовой зоне обычно занимает долина шириной до 40 - 50 км, ограниченная сбросами, нередко образующими ступенчатые системы. Такая долина иногда протягивается вдоль сводового поднятия земной коры (например, Кенийский рифт), но может формироваться и без него. Тектонические блоки на обрамлении рифта бывают приподняты до отметок 3000--3500 м, а горный массив Рувензори на севере Танганьикской зоны возвышается до 5000 м. Нередко рифты осложнены продольными или диагональными горстами. В области Бассейнов и Хребтов Северной Америки растяжение земной коры распределилось по обширной (почти 1000 км) площади, где образовались многочисленные сравнительно мелкие грабены, разделенные горстами, что создает сложный тектонический рельеф. Иногда, как, например, на востоке Бразильского щита, наблюдаются системы асимметричных односторонних грабенов. В целом асимметрия структуры и рельефа характерна для многих континентальных рифтовых зон.
В своей верхней, обнаженной части сбросы наклонены к горизонту под углом до 60 градусов. Однако, судя по сейсмическим профилям, многие из них выполаживаются на глубине, их называют листрическими (греч. ковшеобразные). При смещении по сбросам нередко заметна и сдвиговая компонента (на Байкале левосторонняя). Для сейсмоактивных разломов растяжение по сбросам и сдвиги определяются и при решении фокальных механизмов. Как показал В.Г. Казьмин (1987), диагонально ориентированные разрывы со сдвиговым смещением и их эшелонированные системы в ряде случаев переносят движение от одного раскрывающегося рифта к другому и в этом отношении аналогичны трансформным разломам океанского рифтогенеза. В сложно построенных рифтовых зонах, таких как Восточно-Африканская, сбросы и сдвиги образуют закономерные и весьма выразительные парагенезы.
Вдоль некоторых сравнительно полого ориентированных разрывов параллельно их сместителю развивается динамотермальный метаморфизм, о чем можно судить в тех случаях, когда при дальнейшем растяжении метаморфиты обнажились или приблизились к поверхности.
Для осадочных формаций континентальных рифтов, преимущественно молассовых, характерно сочетание с тем или иным количеством вулканитов, вплоть до случаев, когда осадочные формации полностью замещаются вулканическими. Согласно Е. Е. Милановскому, мощность кайнозойского заполнения рифтов может достичь 5--7 тыс. м (например, в Южно-Байкальском), но обычно не превышает 3--4 тыс. м. Преобладают обломочные отложения озерного (в том числе озерные турбидиты), аллювиального, пролювиального, а в Байкальских впадинах также флювиогляциального и ледникового происхождений. Как правило, снизу вверх грубость обломочного материала возрастает. В климатических условиях рифта Афар оказалось возможным накопление эвапоритов. В зоне вулканизма вынос вещества гидротермальными растворами создает условия и для отложения специфических хемогенных осадков -- карбонатных (в том числе содовых), кремнистых (диатомовых, опаловых), сульфатных, хлоридных.
Магматизм и его продукты. Континентальный рифтогенез сопровождается магматизмом и лишь локально его поверхностные проявления могут отсутствовать. Так, в частности, нет надежно установленного вулканизма в рифте озера Байкал, но в той же системе в Тункинском и Чарском рифтах есть трещинные излияния базальтов. Нередко вулканы размещаются асимметрично -- по одну сторону от рифтовой долины, на ее более высоком борту.
Магматические породы исключительно разнообразны, среди них широко представлены щелочные разности. Характерны контрастные (бимодальные) формации, в образовании которых участвуют как мантийные базальтовые выплавки (и их производные), так и анатектические, преимущественно кислые расплавы, формирующиеся в континентальной коре. В контрастных формациях Восточно-Африканского пояса наряду с щелочными оливиновыми базальтами, трахитами и фонолитами В. И. Герасимовский и А. И. Поляков указывают риолиты, комендиты, пантеллериты. В калиевых сериях встречаются лейцититы и лейцитовые базаниты, Есть щелочные ультрабазиты и сопутствующие им карбонатиты.
Согласно М. Уилсон (1989), данные о содержаниях редких элементов и изотопных отношениях неодима и стронция в разных вулканических формациях Восточно-Африканского пояса свидетельствуют о неодинаковой степени контаминации мантийных магм коревым веществом. Оказалось, что в некоторых сериях все разнообразие пород было обусловлено фракционной кристаллизацией.
Геофизические характеристики. По геофизическим данным мощность коры под континентальными рифтами уменьшается и происходит соответствующий подъем поверхности Мохоровичича, которая находится там в зеркальном соответствии с наземным рельефом. Мощность коры под Байкальским рифтом снижается до 30--35 км, под Рейнским -- до 22--25 км, под Кенийским -- до 20 км, причем на север, вдоль долины Афар, она доходит до 13 км, а далее под осевой частью долины появляется океанская кора.
В мантийном выступе под рифтом породы разуплотнены (скорости продольных волн варьируют в интервале 7,2--7,8 км/с), их упругие характеристики снижены до значений, свойственных мантийной астеносфере. Поэтому их рассматривают либо как астеносферный диапир (для рифтов Рио-Гранде и Кенийского), либо как линзовидную «подушку», вытянутую вдоль рифтовой зоны и в какой-то степени обособленную от главного астеносферного слоя. Такая линза мощностью 17 км обнаружена сейсмическим зондированием под Байкалом. Замечено, что в асимметричных рифтах гребень мантийного выступа чаще всего не совпадает с осью долины, а смещен в сторону более высокого крыла. Там же размещаются и центры вулканизма. рельеф осадочный магматизм расклинивание
Неглубокое залегание астеносферы ограничивает глубинность сейсмических очагов. Они размещаются в утоненной коре, и в зависимости от ее мощности предельная глубина очагов варьирует от 15 до 35--40 км. Решение фокального механизма очагов устанавливает сбросовые и подчиненные им сдвиговые смещения.
Близость разогретой астеносферы, вулканизм и повышенная проницаемость нарушенной разломами коры выражаются в геотермическом поле, тепловой поток в рифтах резко повышен. Магнитотеллурическим зондированием определена высокая электропроводность пород в астеносферном выступе.
В гравитационном поле рифтовой зоне соответствует отрицательная аномалия Буге, протянувшаяся широкой полосой и, как считают, обусловленная разуплотнением мантийных пород. На фоне прослеживаются более резкие отрицательные аномалии над рифтовыми впадинами с их рыхлым осадочным заполнением и положительные аномалии, маркирующие полосы внедрения основных и ультраосновных магматических пород.
Механизмы рифтогенеза. Физические модели образования рифтов учитывают наблюдаемую концентрацию растяжений в сравнительно узкой полосе, где происходит соответствующее уменьшение мощности континентальной коры. Вдоль ослабленной зоны образуется все более тонкая «шейка» (англ., necking), вплоть до разрыва и раздвига континентальной коры с их заполнением корой океанского типа. В разных рифтах такой критический момент наступает, по-видимому, при разной предельной толщине сиалической коры (в Красноморском и Аденском рифтах она была утонена приблизительно вдвое) и означает переход от континентального рифтогенеза к океанскому.
Рис. Модели континентального рифтогенеза. По Р. Алмендингеру и др., (1987):
а -- классическая модель симметричных горстов и грабенов; б -- модель Смита и других с субгоризонтальным срывом между ярусом хрупких и ярусом пластичных деформаций; в -- модель У. Гамильтона и других с линзовидным характером деформаций; г -- модель Б. Вернике, предусматривающая асимметричную деформацию на основе пологого сброса
Поскольку у земной поверхности растяжение в континентальных рифтах происходит посредством сбросовых смещений, первоначальная, классическая модель рифтогенеза учитывала только эти хрупкие деформации (рис. 5.4.,а). По подсчетам Ж. Анжелье и Б. Колетты, суммарный эффект смещения по сбросам дает растяжение на 10--50% в Суэцком заливе до 50--100% в Калифорнийской системе и до 200% на юге области Бассейнов и Хребтов. На одном из отрезков долины Афар подсчеты У. Мортона и Р. Блэкка дали трехкратное растяжение. Столь высокие значения получили удовлетворительное объяснение в более поздних моделях, которые строились с учетом изменения механических свойств пород с глубиной, по мере нарастания давлений и температур. Модель Р. Смита (рис. 5.4,б) предусматривает в низах коры, под ярусом хрупких деформаций, существование яруса пластических деформаций. При этом по мере растяжения сбросы изгибаются и выполаживаются в своей нижней части, становятся листрическими. Опускание блоков по таким сбросам сопровождается их вращением (опрокидыванием), а степень растяжения нарастает от краев рифтовой зоны к ее центру. Тот же эффект может быть получен и при допущении, что в средней части коры существует еще один, переходный, ярус деформаций, где смещение рассредоточено по множеству мелких диагональных сколов или субгоризонтальных поверхностей скольжения.
Все эти варианты рифтогенеза предусматривают локальное утонение коры под действием растягивающих напряжений с образованием симметрично построенной рифтовой зоны. Д. Маккензи (1978) дал количественную оценку последствий такого утонения: изостатическое опускание коры и встречное поднятие астеносферного выступа, которому этот исследователь отводит пассивную роль.
Еще одну модель, учитывающую новые данные о глубинном строении континентальных рифтов и свойственную многим из них асимметрию, предложил Б. Вернике (1981). Ведущая роль отводится крупному пологому (10--20°) сбросу, при образовании которого, возможно, используются внутрикоровые астеносферные слои (рис. 5.4,г). По мере растяжения висячее крыло осложняется ступенчатой системой мелких листрических сбросов, в то время как на другом крыле доминирует уступ, соответствующий плоскости главного сброса. С ним же связывают упоминавшийся выше динамотермальный метаморфизм и выход метаморфитов на поверхность при дальнейшем скольжении висячего крыла вниз по сместителю. Модель Б. Вернике удачно объясняет и ряд других особенностей строения и развития асимметричных рифтов. При утонении коры путем смещения по пологому сбросу астеносферный выступ должен находиться не под осевой частью рифта, а под висячим крылом, подпирая и приподнимая его, что и наблюдается на многих профилях. На этом же высоком борту рифта локализуется вулканизм. Подобная асимметрия хорошо выражена в Восточно-Африканском поясе, вдоль которого чередуются рифты с относительно приподнятым западным и восточным крылом.
С учетом новых геофизических данных не вызывает сомнения многообразие глубинного строения зон континентального рифтогенеза. Поэтому ни одна из перечисленных моделей не может претендовать на универсальность, а механизм формирования рифта меняется в зависимости от таких условий, как мощность, строение, температурный режим коры и скорость растяжения.
Механизм гидравлического расклинивания. В основе всех перечисленных моделей лежит компенсация растяжения коры ее механической деформацией (хрупкой или пластичной), уменьшением мощности и образованием «шейки». Магматизму при этом отводится пассивная, роль. Между тем при наличии на глубине очагов базальтовой магмы (с ее высокими жидкостными свойствами) вступает в действие принципиально иной механизм.
Есть все основания считать, что быстрый подъем базальтовой магмы к поверхности обеспечивается в зонах растяжения: расклинивающим эффектом, который оказывает магма на породы литосферы. Представления об этом процессе основываются на изучении линейных даек и их систем (которые рассматриваются как застывшие магматические клинья) и на применении к ним теории гидравлического разрыва горных пород. В основу легли детальные работы по изучению третичных и палеозойских даек Шотландии, завершившиеся обобщениями Дж. Ричи и Э. Андерсона. Уже на этом материале определились характерные особенности линейных даек. Как правило, они внедрены по вертикальным трещинам посредством раздвига крыльев перпендикулярно трещине без существенного уплотнения или смятия вмещающих дайку пород. Сбросового или сдвигового смещения при внедрении обычно нет. Дайки образуют субпараллельную систему, в пределах которой мощность даек выдерживается однообразной.
Э. Андерсон показал активную роль магмы при формировании дайки. Внедряясь по трещине, перпендикулярной минимальному сжимающему напряжению, магматический расплав оказывает расклинивающее действие, наращивая трещину в длину (см. рис. 5.5,III). Дальнейшее исследование зависимости интрузивного процесса от соотношения главных напряжений вблизи магматической камеры дали Дж. Робсон и К. Барр. Однако количественное обоснование механизма внедрения дайки стало возможным позже, в связи с разработкой теории гидроразрыва горных пород при добыче нефти. М. Хабберт и Д. Уиллис провели аналогию между искусственным гидроразрывом и внедрением в земную кору магматических даек. Применительно к последним вопрос специально рассмотрели А.А. Пэк и В.С. Попов.
Гидравлическим разрывом (гидроразрывом) называют процесс образования и распространения трещин в горных породах под давлением жидкости, в том числе магматического расплава. Растяжение земной коры может выразиться зияющими трещинами отрыва лишь на самых малых глубинах -- до 2--3 км. Глубже, с увеличением всестороннего давления и температур, хрупкий отрыв сменяется, как уже отмечалось, скалыванием по все более многочисленным плоскостям, а затем переходит в пластичную деформацию. Поскольку системы базальтовых даек берут начало на больших глубинах, формирование их путем пассивного заполнения зияющих трещин исключено. Единственный возможный механизм представляет активное внедрение посредством гидроразрыва пород с последующим раздвиганием стенок трещины.
Для развития гидроразрыва достаточно, чтобы давление жидкости лишь незначительно превышало минимальное сжимающее напряжение в породе; обычно в расчетах их отношение принимают равным 1,2. Образуется гидравлический клин, фронт жидкости подходит близко к концу трещины, но никогда не достигает его. Расклинивающий эффект обеспечивается концентрацией напряжении у вершины трещины, где распирающее ее давление нарастает от вершины пропорционально кубу раскрытия трещины в соответствии со снижением гидравлического сопротивления (см. рис. 5.5,IV). На развитие гидроразрыва мало влияют реальные различия прочности вмещающих пород. Происходит быстрое распространение трещины хрупкого отрыва и продвигающего ее магматического клина. Как показали расчеты Н.С. Севериной, теплоотдача такой инъекции компенсируется выделением тепла за счет трения на контактах, поэтому не происходит существенного повышения вязкости, которое замедляло бы процесс внедрения. Согласно сейсмологическим наблюдениям В.М. Горельчик и других в период трещинного извержения Толбачика на Камчатке, базальтовый клин подымался там со скоростью 100--150 м/ч.
Внедрение вертикальной дайки становится возможным, когда одно из главных сжимающих напряжений, направленных горизонтально, уменьшается тектоническим растяжением. Параллельные дайки, принадлежащие одному рою, по-видимому, внедрялись последовательно: каждый очередной гидравлический клин создавал ореол сжимающих напряжений, который препятствовал другим инъекциям, а в дальнейшем постепенно снимался тектоническим растяжением.
Таким образом, при наличии на глубине резервуара жидкой магмы возникают условия для разрастания литосферных слоев под действием множества параллельных гидроразрывов, в каждом из которых нагнетание расплава приводит к раздвигу вмещающих пород. Магматическая подстилка инъецируемого дайками слоя литосферы дает необходимую свободу горизонтального скольжения. Возможно поочередное или совместное (на разных уровнях) проявление как гидравлического расклинивания, так и механического растяжения в одной рифтовой зоне.
Для континентальных рифтов механизм гидравлического расклинивания становится значимым на завершающем этапе их развития, когда утонение коры приближается к критическим величинам, а снижение нагрузки на астеносферный выступ способствует большему отделению базальтовых выплавок. Именно в таких условиях на западном борту рифта Афар появляются продольные рои параллельных даек, обнаруженные П. Мором (1983) и связанные с базальтовым вулканизмом. В Красноморском рифте подобная фаза началась около 50 млн. лет назад и усилилась 30 млн. лет назад, когда в древнюю гранитную кору внедрились мощные рои параллельных даек контрастного состава (от толеитовых базальтов до гранофиров), которые прослеживаются вдоль северо-восточного побережья. Только 5 млн. лет назад магматические клинья сконцентрировались в узкой полосе, обусловив отрыв Аравийской плиты. Континентальный рифтогенез сменился океанским, который продолжается по настоящее время.
В тех случаях, когда развитие континентального рифта прекращается на более ранней стадии, он сохраняется как ослабленная зона, борозда на континентальной плите, примером чему служат авлакогены.
Размещено на Allbest.ru
...Подобные документы
Сущность метода гидравлического разрыва пласта, заключаемого в нагнетании в проницаемый пласт жидкости при высоком давлении. Сопротивление горных пород на разрыв. Применяемые для ГРП жидкости. Определения ширины и объема вертикальной трещины пласта.
презентация [1,0 M], добавлен 29.08.2015Особенности магматического процесса. Энергетические движения и мегарельеф. Складчатые деформации на платформах. Разрывные дислокации и мезоформы рельефа. Интрузивный магматизм и выражение рельефа. Эффузивный магматизм и вулканический рельеф.
курсовая работа [1,4 M], добавлен 01.12.2014Процессы образования и распространения офиолитовой формации в эвгеосинклиналях. Характеристика магматических формаций платформ и мобильных поясов. Породы группы нефелиновых сиенитов-фонолитов. Агпаитовый порядок кристаллизации магматических горных пород.
контрольная работа [27,4 K], добавлен 01.11.2009Понятие и процесс образования магмы, ее состав и основные компоненты, их взаимодействие. Разновидности магматизма и причины его возникновения, последствия для жизни людей и хозяйства. Магматизм и геодинамика главных возрастных этапов истории Земли.
реферат [29,4 K], добавлен 22.04.2010Макроформы рельефа материков. Срединно-океанические хребты, океанические глубоководные желоба, разломы. Эндогенные и экзогенные процессы рельефа. Гипотеза Вегенера о дрейфе материков. Движущиеся литосферные плиты. Образование гор и горных хребтов.
реферат [662,0 K], добавлен 20.02.2011Вода как одно из самых распространенных веществ на Земле. Классификация и категории воды в горных породах, ее разновидности и отличительные особенности, значение в природе. Анализ и оценка влияния химического состава воды на свойства горных пород.
контрольная работа [17,2 K], добавлен 14.05.2012Геолого-физическая характеристика Майского нефтяного месторождения Томской области. Анализ основных методов интенсификации работы скважин. Гидравлический разрыв пласта: технология проведения, необходимое оборудование, анализ эффективности метода.
дипломная работа [3,2 M], добавлен 10.06.2015Условия и механизм образования грязевых вулканов, их деятельность, продукты извержения, морфология, главные факторы образования. Закономерности размещения грязевых вулканов как критерии при прогнозировании газонефтеносности недр. Продукты извержения.
курсовая работа [726,6 K], добавлен 12.12.2012Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.
презентация [949,2 K], добавлен 13.11.2011Характеристика основных условий образования глинистых горных пород. Особенности их классификации: элювиальные и водно-осадочные генетические группы глин. Анализ химического, минерального состава, структуры, текстуры и общих свойств глинистых горных пород.
курсовая работа [35,7 K], добавлен 29.09.2010Рассмотрение условий и механизма образования грязевых вулканов, их деятельность, виды, продукты извержения, морфология, главные факторы образования. Выявление приуроченности вулканизма к геодинамическим обстановкам нефтяных месторождений региона.
курсовая работа [1,3 M], добавлен 10.05.2014Элементарные тектонические структуры. Слоистая структура осадочных горных пород. Складчатые и трещинные структуры. Классификация разрывов со смещениями. Классификация тектонических движений. Геотектонические гипотезы. Схема образования горных цепей.
курсовая работа [4,3 M], добавлен 23.04.2014Общая характеристика и геологическое строение Когалымского месторождения. Физико-химические свойства пластовых жидкостей и газов. Описание технологии гидравлического разрыва пласта, применяемое оборудование. Выбор скважины расчет основных параметров.
дипломная работа [458,5 K], добавлен 31.05.2015Характеристика и особенности основных типов ледников: материковых или покровных, горных, промежуточных или смешанных. Неодинаковая скорость движения отдельных частей ледников. Основные типы оледенения, условия их образования и развития, типы рельефа.
курсовая работа [1,5 M], добавлен 23.05.2013Ветровая эрозия (дефляция), её виды. Способы и факторы перемещения почвенных частиц при ветровой эрозии. Эоловые формы рельефа как формы рельефа, возникающие под действием ветра. Естественная и ускоренная эрозия. Аридизация и опустынивание земель.
реферат [25,4 K], добавлен 27.03.2011Общие сведения о горных породах, стадии их образования. Диатомитовые водоросли: размножение, классы; нанотехнологии. Производство диатомитовых изделий способом пенообразования и выгорающих добавок; получение жидкого стекла с применением диатомита.
курсовая работа [7,9 M], добавлен 11.05.2011Процесс формирования осадочной горной породы. Образование нефтяной залежи. Стадии метаморфизма угля. Распространение органогенных горных пород в Краснодарском крае. Углеводородное и энергетическое сырье. Добыча основных органогенных горных пород.
курсовая работа [1,8 M], добавлен 09.07.2013- Измерение магнитных свойств горных пород под повышенным давлением сдвиговой деформации и температуры
Магнитные свойства горных пород в условиях сдвигового воздействия под повышенным квазивсесторонним давлением. Установка для испытания горных пород и минералов при повышенных давлениях и деформациях сдвига. Автоматические вакуумные магнитные микровесы.
курсовая работа [560,9 K], добавлен 03.03.2013 Технология кислотного гидравлического разрыва пласта. Полимеры в нефтяной промышленности при осуществлении процессов интенсификации добычи нефти. Структурная формула гидроксипропилгуара. Основное преимущество природных растительных полисахаридов.
курсовая работа [2,0 M], добавлен 20.03.2014Разница в использовании термина "элювиация" в геологии и почвоведении. Формы рельефа, связанные с процессами карстования. Основные факторы, которые определяют современные осадконакопления. Таблица факторов, вызывающих собственно-гравитационные процессы.
контрольная работа [17,0 K], добавлен 08.02.2011