Топливно-энергетический потенциал нефти и газа
История обнаружения нефти и ее использования. Природный газ как одно из важнейших горючих ископаемых. Состав и химические свойства нефти и газа. Классификация природных газов по В.А. Соколову. Роль нефти и газа на современном мировом рынке энергоресурсов.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.02.2016 |
Размер файла | 751,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Глава Й. Нефть и её свойства
1. Вступление
2. Немного истории о нефти.
3. Классификация нефти
4. Состав и химические свойства
5. Физические свойства
Глава ЙЙ. Газы природные горючие и углеводородные и их свойства
1. Вступление
2. Немного истории
3. Классификация газов
4. Состав и химические свойства
5. Физические свойства
Глава ЙЙЙ. Значение нефти и газа в современном мире
1. Роль нефти и газа на мировом рынке энергоресурсов
2. Заключение
Список используемой литературы
Глава Й
Нефть и её свойства
§1. Вступление
Основным сырьём для производства органических соединений служит в большинстве случаев нефть. Химической обработкой этого сырья занимается самостоятельная отрасль химической промышленности - нефтехимия. Постоянно вырастающая роль синтетических органических соединений в жизни современного общества вызывает потребность в создании промышленного производства органических материалов, способного производить эти соединения быстро, дешево и в достаточном количестве. Для такого производства необходимы доступные , дешевые и широко распространенные в природе источники сырья , из которого можно было бы получить необходимые соединения сравнительно простыми методами. С течением времени выяснилось, что этим требованиям удовлетворяют 3 ископаемых источника сырья, а именно: каменный уголь, природный газ и нефть.
До середины XIX в. нефть добывалась в небольших количествах из глубоких колодцев вблизи естественных выходов ее на поверхность. Изобретение парового, а затем дизельного и бензинового двигателя привело к бурному развитию нефтедобывающей промышленности. Так продолжалось некоторое время, но с течением времени постоянно возрастало значение природного газа и нефти, как источников химического сырья. Поэтому все шире разрабатывались и усовершенствовались соответствующие химические процессы. В настоящее время из нефти получают свыше 90% всех синтезируемых органических соединений. Нефть - самый важный источник сырья для производства органических соединений.
§2. История нефти
В глубокой древности было известно существовании нефти. Знали и слово «нефть». Еще древние греческие летописцы Геродот и Плиний это горючее вещество, использовавшееся, и как цемент называли «нафта». За 6-4 тысяч лет до нашей эры на берегу реки Евфрат (Ирак) велась добыча нефти. К далекому прошлому относятся первые сведения о нефти в Средней Азии. О добыче «черного масла» в Ферганской впадине было известно еще во время похода Александра Великого через Среднюю Азию в Индию. Во время путешествия Колумба в Америку было описано озеро на острове Тринидад, в котором жители собирали асфальт, а из него готовили цемент. В Северной Америке примитивная добыча нефти велась с XVII века. В России в начала XVIII века Петр 1 приказал добывать нефть на Апшеронском полуострове (Азербайджан). Однако намерение Петра 1 не было осуществлено. Только после Бакинского ханства к России, началась кустарная разработка нефтяных источников. Нефть была довольно дорогим товаром. К примеру, в торговой книге, составленной в Москве в 1575-1610 гг., указано, что ведро нефти стоило 3-4 раза дороже, чем ведро вина.
Хотя о нефти знали давно, использование ее в течение многих веков было ограниченным. Так, в III тысячелетии до н. э. в Египте, асфальт, как связующие и водонепроницаемое вещество вместе с песком и известью, использовался для изготовления мастики, применяемой при сооружении строений из кирпича и камня, дамб, причалов и дорог. Древние египтяне применяли ее также для бальзамирования трупов, древние греки находили применение горящей нефти в военных целях, как воспламеняющегося вещества вместе с селитрой, серой и смолой для изготовления «огненных стрел» и «огненных горшков». В военных действиях нефть - «греческий огонь» - использовался более 2 тысяч лет назад.
Многие народы использовали нефть в медицине, а также для защиты садов и виноградников от вредителей. Еще в XIII веке Марко Поло, описывая иракскую нефть, указывал, что она применялась для освещения и в качестве лекарства от кожных болезней. В XVI-XVII вв. в центральные районы России нефть привозили из Баку. Ее применяли в медицине, живописи и в качестве растворителя для красок, а также в военном деле.
В средние века нефть использовалась для освещения в ряде городов на Ближнем Востоке, Южной Италии и др. В начале XIX в. в России, а в середине XIX в. в Америке из нефти путем возгонки был получен керосин. Он использовался в лампах. Почти до начала XX века нефть употреблялась преимущественно для освещения помещений, смазки колес телег и в немногочисленных механизмах. Постепенно усиливалось ее значение, как топлива. Нефть - «кровь» земли, Нефть - «черное золото». Так ныне называют нефть.
§3. Классификация нефти
Классификации нефти строятся на различной основе. Как правило, это генетические и технологические классификации. Первые из них учитывают состав исходного материала и условия его преобразования, а вторые характеризуют нефть как сырьё для производства тех или иных нефтепродуктов. Генетическая классификация делит нефти на гумитосапропелитовые, сапропелитовые и сапропелито-гумитовые типы по соотношению остатков высших и низших растений в их составе. Типы подразделяются далее на классы и группы по степени преобразования компонентов в анаэробной среде. Принятая в России технологическая классификация делит их на три класса по содержанию серы (I<II<III), три типа по выходу фракций, перегоняющихся до 350лнС (Т1>Т2>Т3), четыре группы по потенциальному содержанию базовых масел (М1>М2>М3>М4), две подгруппы по индексу вязкости (И1>И2) и три вида по содержанию твердого парафина (П1<П2<П3). В целом нефть характеризуется шифром, составляемым последовательно из обозначения класса, типа, группы, подгруппы и вида, которым соответствует данная нефть.
Классификация, имеющая признаки и научной, и технологической, была построена на основе группового состава нефти. В соответствии с ней нефти делятся на шесть классов: парафиновые, парафинонафтеновые, нафтеновые, парафино-нафтено-ароматические, нафтеноароматические, ароматические. Каждый класс включает нефти с преобладанием одного - двух компонентов группового состава или с их примерно равным содержанием
Промышленнно-генетическая классификация нефти, аналогичная разработанной к настоящему времени для углей, пока отсутствует. Вероятно, это связано с тем, что разнообразие жидких горючих ископаемых намного меньше, чем ТГИ, а их свойства легче стандартизуются по сравнительно просто определяемым кривым ИТК и групповому составу. Принятые в разных странах национальные системы классификаций можно достаточно успешно применять в международной торговле нефтью и нефтепродуктами и с их помощью планировать направления переработки нефти конкретного месторождения.
нефть газ энергоресурс
§4. Состав и химические свойства
В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефти состоят главным образом из углерода - 79,5-87,5% и водорода - 11,0-14,5% от массы нефти. Кроме них в нефтях присутствуют еще три элемента - сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефтях встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефтях только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.
В состав нефти входит около 425 углеводородных соединений. Главную часть нефтей составляют три группы УВ: метановые, нафтеновые и ароматические. По углеводородному составу все нефти подразделяются на: 1) метаново-нафтеновые, 2) нафтеново-метановые, 3) ароматическо-нафтеновые, 4) нафтеново-ароматические, 5) ароматическо-метановые, 6) метаново-ароматические и 7) метаново-ароматическо-нафтеновые. Первым в этой классификации ставится название углеводорода, содержание которого в составе нефти меньше.
Метановые УВ (алкановые или алканы) химически наиболее устойчивы, они относятся к предельным УВ и имеют формулу Cn H2 n +2 . Если количество атомов углерода в молекуле колеблется от 1 до 4 (СН4-С4 Н10 ), то УВ представляет собой газ, от 5 до 16 (C5 H16 -C16 H34 ) то это жидкие УВ, а если оно выше 16 (С17 Н36 и т.д.) - твердые (например, парафин).
Нафтеновые (циклановые или алициклические) УВ (Cn H2 n ) имеют кольчатое строение, поэтому их иногда называют карбоциклическими соединениями. Все связи углерода с водородом здесь также насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами.
Ароматические УВ, или арены (Сn Нn ), наиболее бедны водородом. Молекула имеет вид кольца с ненасыщенными связями углерода. Они так и называются - ненасыщенными, или непредельными УВ. Отсюда их неустойчивость в химическом отношении.
Наряду с углеводородами в нефтях присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. “гетерос” - другой). В нефтях также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений - меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения - меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH.
Метилмеркаптан
Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок и промысловых объектов.
В нефтях так же выделяют неуглеводородные соединения: асфальто-смолистую части, порфирины, серу и зольную часть.
Асфальто-смолистая часть нефтей - это темноокрашенное вещество. Оно частично растворяется в бензине. Растворившаяся часть называется асфальтеном, нерастворившаяся - смолой. В составе смол содержится кислород до 93 % от общего его количества в нефтях.
Порфирины - особые азотистые соединения органического происхождения. Считают, что они образованы из хлорофилла растений и гемоглобина животных. При температуре 200-250о С порфирины разрушаются.
Сера широко распространена в нефтях и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше. Так, например, в газе Астраханского месторождения содержание Н2 S достигает 24 %.
Зольная часть - остаток, получающийся при сжигании нефти. Это различные минеральные соединения, чаще всего железо, никель, ванадий, иногда соли натрия.
Кислород в нефтях встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) - Cn H2 n -1(COOH), фенолов (не более 1%) - C6 H5 OH, а также жирных кислот и их производных - C6 H5 O6 (P).
Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах.
Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов - 16%.
Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белых” нефтях смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.
§5. Физические свойства
1. Удельный вес
Консистенция нефтей различна от жидкой маслянистой до густой смолоообразной. Большинство нефтей легче воды и обладает специфическим запахом, который в случае присутствия сернистых соединений в нефти становится очень неприятным.
Измерение параметров нефти позволяет определить ее товарные качества. Некоторые параметры используются при проектировании хранилищ, нефтепроводов.
Одним из наиболее важнейших физических параметров нефти является ее удельный вес.
Удельный вес нефтей находится в пределах 0,75-1,00 при 20 градусах. Лишь как исключения встречаются нефти с удельным весом меньше 0,75, так, например, белая нефть (месторождение Сураханы) имела удельный вес 0,71. Густые асфальтовые нефти с удельным весом более 1,00 известны в Иране (уд. вес 1,016) и США в Калифорнии (уд. вес 1,01).
Удельный вес нефти зависит от содержания в ней смолистых , от природы веществ, составляющих массу нефти, т.е. от молекулярного веса ее компонентов и присутствия в ней растворенного газа.
2. Плотность
Единица плотности в СИ -- кг/м3. На практике пользуются относительной плотностью, которая представляет собой отношение плотности нефти при температуре 20 С к плотности воды при 4 С. Относительная плотность нефти чаще всего колеблется в пределах 0,82 -- 0, 92. Как исключение, встречается нефть плотностью меньше 0,77 (дистилляты естественного фракционирования нефти), а также тяжелые, густые асфальтоподобные нефти, плотность которых превышает 1 (остатки естественного фракционирования).
Различия в плотности нефти связаны с количественными соотношениями углеводородов отдельных классов. Нефть с преобладанием метановых углеводородов легче нефти, обогащенной ароматическими углеводородами. Плотность смолистых веществ нефти выше 1, поэтому чем больше их в составе нефти, тем выше ее плотность.
Плотность нефти зависит от соотношения количеств легкокипящих и тяжелых фракций. Как правило, в легкой нефти преобладают легкокипящие компоненты (бензин, керосин), а в тяжелых -- тяжелые (масла, смолы), поэтому плотность нефти дает приближенное представление о ее составе.
В пластовых условиях плотность нефти меньше, чем на земной поверхности, т. к. в пластовых условиях нефть содержит растворенные газы.
Плотность используется при расчете массы продукта, занимающего данный объем, и, наоборот, объема продукта, имеющего определенную массу. Вследствие этого, данный показатель имеет особое значение при проведении операций купли-продажи для определения количества продукта на всем пути следования нефти и нефтепродуктов от места добычи до места переработки и от места переработки до потребителей.
3. Температура кипения
Температура кипения углеводорода зависит от его строения. Чем больше атомов углерода входит в состав молекулы, тем выше температура кипения. У нафтеновых и ароматических углеводородов (у которых атомы углерода соединены в циклы) температура кипения выше, чем у метановых, при одинаковом количестве атомов углерода. Природная нефть содержит компоненты, выкипающие в широком интервале температур - от 30 до 600 С. Путем разгонки получают большое количество товарной продукции.
4. Температура застывания и плавления
Температура застывания и плавления различных видов нефти неодинакова. Обычно нефти в природе в жидком состоянии, однако некоторые из них загустевают при незначительном охлаждении. Температура застывания нефти зависит от ее состава. Чем больше в ней твердых парафинов, тем выше температура ее застывания. Смолистые вещества оказывают противоположное влияние -- с повышением их содержания температура застывания понижается.
5. Вязкость
Вязкость является важнейшей свойством, характеризующим эксплуатационные свойства котельных, дизельных топлив и других нефтепродуктов. Вязкостью жидкости называется ее способность оказывать сопротивление перемещению ее частиц относительно друг друга под влиянием действующих на них сил.
Вязкостью определяются масштабы перемещения нефти и газа в природных условиях, ее необходимо учитывать в расчетах, связанных с добычей этих полезных ископаемых.
Особенно важна эта характеристика для определения качества масленых фракций, получаемых при переработке нефти и качества стандартных смазочных масел. По значению вязкости судят о возможности распыления и перекачивания нефтепродуктов при транспортировке нефти по трубопроводам, топлив в двигателях и т.д.
Среди различных групп углеводородов наименьшую вязкость имеют парафиновые, а наибольшую -- нафтеновые углеводороды.
Чем больше вязкость нефтяных фракций, тем больше температура их вскипания. Различают динамическую (абсолютную), кинематическую и относительную (удельную) вязкость нефти.
Динамическая вязкость выражается величиной сопротивления в Па к взаимному перемещению двух слоев жидкости с поверхностью 1 м2, при относительной скорости перемещения 1 м/с под действием приложенной силы в 1Н. По динамической вязкости расчетным путем определяют значения рациональных дебитов скважин.
Кинематическая вязкость представляет собой отношение динамической вязкости к ее плотности при той же температуре. Единица кинематической вязкости в СИ -- м2/с. Данные о кинематической вязкости используются в технологических расчетах.
При исследовании нефтей обычно определяют относительную вязкость. Относительная (удельная) вязкость выражается отношением абсолютной вязкости нефти к вязкости воды.
Таблица 1 - Относительная вязкость нефтей при различной температуре
Район |
ВУ20 |
ВУ50 |
|
Ленинская площадьСураханыКалаБиби-ЭйбатДоссорИшимбаевоСамарская ЛукаНебит-Даг |
2,732,782,893,4-2,3311,3- |
----1,641,544,252,14 |
6. Поверхностное натяжение
Поверхностное натяжение определяется работой, которую нужно произвести, чтобы увеличить свободную поверхность жидкости на 1 см2, не меняя ее температуры. Выражается в СИ -- Дж/м2. Поверхностное натяжение является результатом действия молекулярных сил, которые у разных веществ разные. Силы сцепления молекул жидкости с молекулами твердого тела могут быть больше, чем силы сцепления между молекулами.
Молекулярные силы сцепления между водой и породой больше, чем между нефтью и породой. Это может привести к вытеснению нефти водой из мелких пустот породы в более крупные, т. е. к миграции нефти в горных породах. Добавляя в жидкость поверхностно-активные вещества, можно изменять поверхностное натяжение. В табл.2 приведены величины поверхностного натяжения нефтей по отношению к воздуху и воде.
Таблица 2 - Величины поверхностного натяжения некоторых нефтей по отношению к воздуху и воде
Нефть |
Удельный вес |
Поверхностное натяжение дн/см2 |
||
К воздуху |
К воде |
|||
Сураханская Балаханская Биби-Эйбатская Бинагадинская О. Артема |
0.797 0.875 0.880 0.932 0.918 |
25.8 28.9 29.2 31.0 30.7 |
27.8 27.1 22.0 19.0 17.3 |
|
Вода |
1.00 |
72.7 |
0.00 |
7. Оптические свойства нефти
Оптические свойства нефти также неодинаковы. Одной из качественных характеристик оптических свойств является цвет. В зависимости от состава нефти цвет меняется от черного и темно-коричневого до красноватого, желтого и светло-желтого. Углеводороды нефти бесцветны, цвет же обусловлен в основном содержанием в ней смолисто-асфальтеновых соединений (чем их больше, тем темнее нефть). Нефть при освещении не только отражают часть падающего на них света, но иногда и сами начинают светиться. Такое явление носит название люминесценции. Так, Бакинская нефть, рассматриваемая при дневном свете, характеризуется синеватым свечением, а грозненская -- зеленоватым.
Нефть содержит оптически активные вещества. При прохождении через них поляризованного луча плоскость поляризации смещается (почти всегда вправо по ходу луча). Угол смещения колеблется в пределах от 0,1 градуса до нескольких градусов. Носителями оптической активности нефти служат полициклические нафтены. Нефть из более древних отложений менее оптически активна, нежели нефть из молодых отложений.
8. Электрические свойства
Электрические свойства нефти играют особую роль. Нефть не проводит электрический ток, поэтому для обнаружения в разрезах скважин нефтеносных пластов используют электрические методы. Нефтепродукты используются в промышленности для изготовления различных изоляторов.
9. Теплота сгорания
Теплота сгорания нефти очень высока. Для сравнения приведем данные о теплоте сгорания угля, нефти и газа в таблице 3.
Таблица 3 - Теплота сгорания угля, нефти и газа
Ископаемое |
Теплота сгорания Дж/кг |
|
каменный угольприродный газ (сухой)нефть |
33 60037 700 - 56 60043 250 - 45 500 |
10. Содержание воды
При добыче и переработке нефть дважды смешивается с водой: при выходе с большой скоростью из скважины вместе с сопутствующей ей пластовой водой и в процессе обессоливания, т.е. промывки пресной водой для удаления хлористых солей.
В нефти и нефтепродуктах вода может содержаться в виде простой взвеси, тогда она легко отстаивается при хранении, либо в виде стойкой эмульсии, тогда прибегают к особым приемам обезвоживания нефти.
Образование устойчивых нефтяных эмульсий приводит к большим финансовым потерям.
При небольшом содержании пластовой воды в нефти удорожается транспортировка ее по трубопроводам из-за увеличения вязкости.
После отделения воды от нефти в отстойниках и резервуарах, часть нефти сбрасывается вместе с водой в виде эмульсии и загрязняет сточные воды.
Часть эмульсии улавливается ловушками, собирается и накапливается в земляных амбарах и нефтяных прудах, где из эмульсии испаряются легкие фракции и она загрязняется механическими примесями.
Такая нефть получила название "амбарной нефти". Она является высоко обводненной, смолистой, с большим содержанием механических примесей и тяжело обезвоживаемой.
Вода, присутствующая в нефти, особенно с растворенными в ней хлористыми солями, осложняет ее переработку, вызывая коррозию аппаратуры.
Попадая в карбюраторное и дизельное топливо, вода снижает их теплотворную способность, вызывает закупорку распыляющих форсунок.
При уменьшении температуры кристаллики льда засоряют фильтры, что может служить причиной аварий при эксплуатации авиационных двигателей.
Содержание воды в масле усиливает его склонность к окислению, ускоряет процесс коррозии металлических деталей, соприкасающихся с маслом.
Следовательно, вода оказывает негативное влияние, как на процесс переработки нефти, так и на эксплуатационные свойства нефтепродуктов и количество ее должно строго нормироваться.
11. Содержание механических примесей
Присутствие механических примесей объясняется условиями залегания нефти и способами ее добычи.
Механические примеси нефти состоят из взвешенных в ней высокодисперсных частиц твердых пород, которые, адсорбируясь на поверхности воды, способствуют стабилизации нефтяной эмульсии. При перегонке нефти примеси могут частично оседать на стенках труб, аппаратуры и трубчатых печей, что приводит к ускорению процесса износа аппаратуры.
При подогреве нефти в отстойниках, резервуарах и трубах часть высокодисперсных механических примесей выпадает на дно и отлагается на стенках, образуя слой грязи и твердого осадка.
При этом уменьшается производительность аппаратов, а при отложении осадка на стенках труб уменьшается их теплопроводность.
12. Содержание серы
Сера и ее соединения являются постоянными составляющими частями сырой нефти. По химической природе это соединения сульфидов, гомологов тиофана и тиофена. Кроме указанных соединений, в нефти встречаются сероводород, меркаптаны и дисульфиды.
Меркаптаны или тиоспирты -- легколетучие жидкости с чрезвычайно отвратительным запахом; сульфиды или тиоэфиры -- нейтральные вещества, которые не растворяются в воде, но растворяются в нефтепродуктах; дисульфиды или полисульфиды -- тяжелые жидкости с неприятным запахом, легко растворяющиеся в нефтепродуктах и очень мало -- в воде; тиофен -- жидкость, не растворяющаяся в воде.
Соединения серы в нефти, как правило, являются вредной примесью. Они токсичны, имеют неприятный запах, способствуют отложению смол, в соединениях с водой вызывают интенсивную коррозию металла. Особенно в этом отношении опасны сероводород и меркаптаны. Они обладают высокой коррозийной способностью, разрушают цветные металлы и железо. Поэтому их присутствие в товарной нефти недопустимо.
13. Наличие хлористых и других минеральных солей
Перегонка нефти, содержащей соли, становится невозможной из-за интенсивной коррозии аппаратуры, а также из-за отложения солей в трубах печей и теплообменниках.
Из содержащихся в нефти хлоридов наиболее легко гидролизируется хлористый магний, за ним следует хлористый кальций и труднее всех гидролизируется хлористый натрий.
При перегонке сернистой нефти сероводород реагирует с железом и образует не растворяемый в воде сульфид железа, который в виде тонкой пленки покрывает стенки аппаратов и, таким образом, защищает аппаратуру от дальнейшего воздействия коррозии.
Но выделившийся хлористый водород разлагает эту защитную пленку, при этом выделяются новые порции сероводорода, и образуется нерастворимое в воде хлористое железо. В результате обнажается поверхность металла и протекает интенсивная сопряженная коррозия сероводородом и хлористым водородом.
Наличие значительного количества минеральных солей в мазутах, которые представляют собой остаток при перегонке нефти и используются в качестве котельного топлива, приводит к отложению солей в топках, на наружных стенках нагревательных труб. Это приводит к снижению теплоотдачи и, следовательно, к снижению коэффициента полезного действия печи.
Переработка такой нефти может осуществляться только после обязательного обессоливания и обезвоживания.
14. Содержание парафина
При транспортировке парафинсодержащей нефти, на стенках трубопроводов, а также на деталях оборудования часто откладывается парафин. Это объясняется тем, что температура стенок трубопровода может быть ниже, чем у перекачиваемой жидкости, а также тем, что частицы парафина, выделившиеся из нефти, вследствие высокой концентрации или колебания температуры на различных участках трубопровода, прилипают к его стенкам. Это приводит к уменьшению эффективного сечения труб и оборудования, что в свою очередь требует повышения давления для поддержания необходимого расхода (объема протекающей жидкости) и может привести к снижению производительности всей системы.
Таким образом, знание содержания в нефти и нефтепродуктах количества парафина и температуры его массовой кристаллизации позволяет определить технологический режим эксплуатации магистральных трубопроводов.
Глава ЙЙ
Газы природные горючие и углеводородные и их свойства
§1. Вступление
Природный газ - одно из важнейших горючих ископаемых, занимающие ключевые позиции в топливно-энергетических балансах многих государств, важное сырьё для химической промышленности.
Почти на 90% он состоит из углеводородов, главным образом метана СН4.Содержит и более тяжёлые
Углеводороды - этан, пропан, бутан, а так же меркаптаны и сероводород (обычно эти примеси вредны), азот -
и углекислый газ (они в принципе бесполезны, но и не вредны), пары воды, полезные примеси гелия и других инертных газов. Энергетическая и химическая ценность природного газа определяется содержанием в нём углеводородов.
Очень часто в месторождениях он сопутствует нефти. Разница в составе природного и попутного нефтяного газа имеется. В последнем, как правило, больше сравнительно тяжёлых углеводородов, которые обязательно отделяются, прежде чем использовать газ. Метан, содержащийся в природном газе, представляет немалую ценность для химической промышленности. Природный газ, а не вода, является главным источником промышленного получения водорода
В осадочной оболочке земной коры сосредоточены огромные залежи природного газа. Согласно теории биогенного (органического) происхождения нефти, они образуются в результате разложения останков живых организмов. Считается, что природный газ образуется в осадочной оболочке при больших температурах и давлениях, чем нефть. С этим согласуется тот факт, что месторождения газа часто расположены глубже, чем месторождения нефти.
Огромными запасами природного газа обладают Россия (Уренгойское месторождение), Иран, большинство стран Персидского залива, США, Канада. Из европейских стран стоит отметить Нидерланды, и иногда упоминают Норвегию, но её запасы невелики. Среди бывших республик Советского Союза большими запасами газа владеет Туркмения, а также Казахстан (Карачаганакское месторождение).
Во второй половине XX века в университете им. И. М. Губкина были открыты природные газогидраты (или гидраты метана). Позже выяснилось, что запасы природного газа в данном состоянии огромны. Они располагаются как под землёй, так и на незначительном углублении под морским дном.
Метан и некоторые другие углеводороды широко распространены в космосе. Метан -- третий по распространённости газ вселенной, после водорода и гелия. В виде метанового льда он участвует в строении многих удалённых от солнца планет и астероидов, однако такие скопления, как правило, не относят к залежам природного газа, и они до сих пор не нашли практического применения. Значительное количество углеводородов присутствует в мантии Земли, однако они тоже не представляют интереса.
Существуют множество способов получения природного газа из других органических веществ, например отходов сельскохозяйственной деятельности, деревообрабатывающей и пищевой промышленности и т. д.
Природный газ находится в земле на глубине от 1000 метров до нескольких километров. Сверхглубокой скважиной недалеко от города Новый Уренгой получен приток газа с глубины более 6000 метров. В недрах газ находится в микроскопических пустотах (порах). Поры соединены между собой микроскопическими каналами -- трещинами, по этим каналам газ поступает из пор с высоким давлением в поры с более низким давлением до тех пор, пока не окажется в скважине. Движение газа в пласте подчиняется определённым законам.
Газ добывают из недр земли с помощью скважин. Скважины стараются разместить равномерно по всей территории месторождения. Это делается для равномерного падения пластового давления в залежи. Иначе возможны перетоки газа между областями месторождения, а также преждевременное обводнение залежи.
Газ выходит из недр вследствие того, что в пласте находится под давлением, многократно превышающем атмосферное. Таким образом, движущей силой является разность давлений в пласте и системе сбора.
§2. Немного истории
Из истории развития человечества известно, что природный горючий газ был известен с древнейших времен, но использование его не имело широкого распространения. В местах выхода его на поверхность земли он иногда загорался, и такой факел существовал долгое время. Эти факелы называли вечным огнем, и первые сведения о них находим у Масуди (X в.), Катдиб-Челяби и др. Давным-давно жители Ирака и Индии были убеждены, что когда из расщелин среди скал поднимаются в высь языки пламени, то происходит это по велению бога огня. Поэтому этот огонь считается здесь священным. Еще три века назад слова “газ” не существовало. Его впервые ввел в XVII веке голландский ученый Ван-Гельмонт. Оно определяло вещество, в отличии от твердых и жидких тел способное распространятся по всему доступному ему пространству (в обычных условиях) без скачкообразного изменения своих свойств. С тех пор слово “газ” во все основные языки мира. Среди известного комплекса естественных полезных ископаемых, относящихся к топливно-энергетичесской группе, одно из основных по использованию в народном хозяйстве странны занимают природные горючие газы.
В своих записках о путешествиях Марко Поло упоминает о том, что природные газы использовались для освещения и отопления в некоторых районах Китая. Путешественник Кемпфер в своих отчетах о посещении Апшерона в 1682-1686 гг. писал, что жители полуострова широко применяют горючие газы для приготовления пищи и обжига известняков. В ряде других литературных источниках неоднократно упоминаются “вечные огни” в Сураханах (на Апшеронском полуострове), существовавшие еще в начале XX в. и привлекавшие большое внимание исследователей.
Для полного представления об интенсивности развития газовой промышленности в нашей стране обратимся к истории ее становления.
В топливном балансе дореволюционной России, как известно, ведущее место занимал каменный уголь; природный газ, несмотря на наличие его интенсивных проявлений на поверхности в ряде районов страны, совсем не использовался. Применять природный газ для топлива начали лишь после Великой Октябрьской революции.
В дореволюционной России газовой промышленности не придавалось серьезного значения, хотя некоторые промышленные фирмы при эксплуатации нефтяных скважин на Апшеронском полуострове, добываемый вместе с нефтью, так называемый попутный газ, использовали на промысловых установках.
После национализации нефтяной промышленности сразу же был поставлен вопрос об использовании газа, извлекаемого вместе с нефтью.
В годы Великой Отечественной войны в Саратовской, а затем и в Куйбышевской областях, были открыты месторождения природного газа, добыча и использование которого положили начало не только добывающей отрасли промышленности, но и газовой индустрии. К этому периоду (1942-1946) относится сооружение газопроводов от открытых месторождений газа до Москвы.
Послевоенный период в развитии газодобывающей отрасли характеризуется открытием ряда газоносных районов и областей. На Северном Кавказе, в пределах Ставропольского края, были открыты крупные газовые месторождения - Сенгилеевское, Северо-Ставропольское и др, которые определили тот край, как газоносный с наличием промышленных запасов газа.
В течение длительного периода газовая промышленность развивалась совместно с нефтяной, и залежи газа открывались в процессе разведки нефтяных месторождений. В предвоенные годы природный газ добывали в незначительных объемах в Дагестане, в западных районах Украины. В послевоенный период в течение ряда лет уровень добычи газа несколько увеличился, но в народном хозяйстве использовался в незначительных объемах.
Потенциальные газовые ресурсы впервые были оценены по состоянию на начало 1958 года в размере 20,4 трлн. м3 . Вторя официальна оценка газоносных возможностей недр нашей страны была произведена по состоянию геолого-геофизической изученности перспективной территории в 1962 г. Потенциальная газоносность недр нашей страны на это время была оценена в 60 трлн. м3 . Последняя оценка перспективной газоносности отдельных территорий дана по состоянию на начало 1975 г.
§3. Классификация газов
Вопрос классификации природных газов очень сложен, так как они имеют разнообразный состав, различное происхождение, разные условия нахождения и физическое состояние в природе. Кроме того, газы обладают большой эмиграционной способностью, создают различные смеси и редко бывают однородными по химическому составу. Одновременно с процессами образования газов идут процессы их разрушения. Например, при действии кислорода на сероводород образуется свободная сера и вода.
По способу получения и физико-химическим свойствам газы подразделяют на природные и искусственные. К природным (добываемым из недр земли) относятся: газы чисто газовых месторождений (сухой газ), газы газоконденсатных месторождений (смесь сухого газа и конденсата) и попутные газы, добываемые вместе с нефтью из нефтяных месторождений (сухой газ с пропа-нобутановой фракцией и газовым бензином).
Природные газы представляют химическую смесь отдельных газов (компонентов), химически инертных между собой (т.е. не действующих друг на друга) и состоят преимущественно из предельных углеводородов (алканов). Основная часть природного газа метан (~98 %), остальная часть смеси состоит из предельных углеводородов, этана С2H4, пропана С3H8, бутана С2H10 и пентана С5H12. Кроме того, в состав природных газов в небольших количествах входит азот N2, углекислый газ СО2, иногда сероводород H2S, водород Н2 и другие. В зависимости от содержания тяжелых углеводородов (от пропана и выше) природные газы делятся на сухие газы (тощие), промежуточной категории и жирные. Сухие содержат тяжелые углеводороды в количестве менее 50 г/мі; газы промежуточной категории 50-150 г/мі и жирные -- более 150 г/мі.
Искусственные горючие газы подразделяются на две группы. К первой относятся газы, получаемые в результате нагревания твердого или жидкого топлива без доступа воздуха, при температуре перегонки 500-1000 °С, например, на коксохимических заводах (в виде смеси водорода, метана и углерода) и на НПЗ (в виде смеси алканов, олефинов и диолефинов). Ко второй группе относятся газы без остаточной газификации, получаемые при частичном сжигании топлива в токе воздуха, кислорода или их смесей с водяным паром, а также путем подземной газификации углей.
Эти газы состоят преимущественно из окиси углерода, водорода и азота. Сжиженные углеводородные газы представляют собой смесь углеводородов -- пропана, пропилена, бутана, бутилена и небольших количеств метана, этана, этилена и пентана. Эта смесь при нормальных атмосферных условиях (0,1 МПа~760 мм рт. ст. и 0 °С) находится в газообразном состоянии, а при повышенном давлении и пониженной температуре превращается в жидкость. Свойства газов зависят от свойств отдельных компонентов, входящих в данный газ.
К основным параметрам газа относятся: молекулярная масса, плотность, сжимаемость, вязкость, а также упругость насыщенных паров. Газ является наиболее совершенным видом топлива. Он обладает высокой теплотой сгорания. Устройство топок для сжигания газа сравнительно простое. Воздух не загрязняется дымом и копотью.
Первую классификацию природных газов составил В.И. Вернадский (1912), где он указал, что при изучении газов необходимо знать три следующие фактора: форму или условия нахождения газов в природе, источники их происхождения или генезис и химический состав. Согласно этим факторам В.И. Вернадский выделил три группы газов.
I. По форме нахождения:
А. Свободные газы: 1) атмосферные, 2) газовые скопления, содержащиеся в порах горных пород и окклюзии, 3) газовые струи или вихри (вулканические, тектонические, поверхностные), 4) газовые испарения.
Б. Жидкие растворы газов: 1) газы океанов и морей, 2) газы озер, прудов и рек, 3) газы различных водных источников (вулканических, тектонических, поверхностных).
В. Твердые растворы газов (газы адсорбированные горными породами и минералами).
II. По источникам происхождения: 1) газы земной поверхности, 2) газы, связанные с высокотемпературными очагами литосферы,
3) газы глубинные, проникающие в земную кору из мантии.
III. По составу (разделение для тектонических газов): 1) азотные, 2) углекислые, 3) метановые, 4) водородные, 5) сероводородные, 6) водяные пары.
Позже, в развитие этой классификации был создан целый ряд классификационных схем природных газов по условиям нахождения и физическому состоянию в природе, по химическому составу, генезису и по их практической ценности и содержанию полезных компонентов. В отечественной литературе опубликовано более 20 классификаций природных газов только по химическому составу.
Рисунок 1 - Графики зависимости коэффициента сверхсжимаемости Z углеводородного газа от приведенных псевдокритических давления рпр. и температуры Тпр. (по Г.Брауну).
Ряд классификационных схем разработали М.И. Суббота и А.Ф. Романюк, которые приведены ниже.
Классификация по условиям нахождения газа в природе
I. Газы земной поверхности:
1) тропосферы;
2) стратосферы и мезосферы;
3) атмосферных осадков;
4) пещер и карстовых полостей.
II. Газы поверхностной гидросферы:
1) океанов и морей;
2) рек, озер и прудов;
3) поверхностных льдов;
4) болот.
III. Газы, рассеянные в горных породах:
1) в порах и трещинах осадочных пород;
2) сорбированные породами;
3) поровых растворов;
4) магматогенных пород;
5) газово-жидкие включения в минералах;
6) илов;
7) газогидратов илов;
8) почв.
IV. Газы подземной гидросферы:
1) грунтовых вод;
2) вод зоны свободного водообмена;
3) вод зоны затрудненного водообмена;
4) мерзлых вод и газогидратов.
V. Свободные газы залежей:
1) газовых залежей;
2) газовых шапок нефтяных залежей;
3) газоконденсатных залежей;
VI. Газы, растворенные и сорбированные в биогенных ископаемых:
1) растворенные в нефти;
2) сорбированные углями;
3) в горючих сланцах.
VII. Газы грязевых вулканов:
1) грязевых извержений;
2) грязевых грифонов.
VIII. Газы магматических очагов и поствулканических процессов:
1) вулканических извержений;
2) фумарольные;
3) пневматогенных внедрений;
4) гидротермальных растворов.
IX. Газы живых организмов:
1) животных;
2) высших растений;
3) микроорганизмов.
Классификация по генезису газов
I. Газы биохимического генезиса:
1) микробиологического преобразования ОВ илов и почв - СО2, СН4, N2, CO, N2O, NO2, H2, NH3, H2S и др.;
2) микробиологического преобразования торфа - СО2, N2, СН4, CO, H2S, NH3 и др.;
3) микробиологического преобразования углей - СО2, СН4, N2, CO, H2 и др.;
4) микробиологического преобразования нефти - СН4, СО2 и др.;
5) Фотосинтеза зеленых растений - О2;
6) жизнедеятельности высших растений - СО2, CO, С2Н4, летучих ОВ и др.;
7) жизнедеятельности животных - СО2, CO, H2S, СН4, летучих ОВ и др.;
8) микробиологического разложения растений и животных - СО2, CO, СН4, H2S, N2, NH3 и др.
II. Газы химического генезиса:
1) химического генезиса в нормальных условиях земной поверхности - СО2 и др.;
2) термических реакций - СН4, CO, СО2 и др. (150-300 оС);
3) термокаталитических реакций - СН4, CnH2n, H2, CO и др.
III. Газы дегазации мантии:
1) дегазации мантии - СН4, H2, NH3, N2, СО2, SO2, H2S, СО, H2O и др.;
2) остаточные первичной атмосферы Земли - Ar, N2 и др.
IV. Газы радиоактивного распада и радиохимического генезиса, генерирующиеся на участках распространения радиоактивных элементов - Не, Ar, Rn, H2, O2 и др.
V. Газы, образующиеся под воздействием космических лучей, генерирующиеся в верхних слоях атмосферы: атомарные - Н, Не и др.; изотопы - Н2, О2, N2, О3, NО и другие.
Классификация газов по их практической ценности
I. Горючие газы (энергетическое и химическое сырье):
1) чисто метановых залежей;
2) метановых, обогащенных тяжелыми углеводородами;
3) газоконденсатных залежей;
4) нефтяных месторождений;
5) метановых и угольных месторождений;
6) метановых водорастворимых.
II. Газы, обогащенные инертными компонентами:
1) гелий в углеводородных газовых залежах и водах;
2) гелий в азотных залежах;
3) азотных залежей.
III. Газы, обогащенные сероводородом:
1) сероводород в метановых залежах;
2) сероводород в углеводородных газовых залежах.
IV. Углекислые газы минеральных вод.
Классификация и индексация В.И. Старосельского, классификация В.А. Соколова
Существует классификация и индексация природных газов по содержанию полезных компонентов В.И. Старосельского, которая основана на требованиях промышленности по минимальной концентрации компонентов, являющихся ценным химическим сырьем. Среди неуглеводородных компонентов газа в ней учитывается азот (А), углекислый газ (У), сероводород (Св), а среди углеводородных компонентов - метан (Н), этан (Э), тяжелые углеводороды (Т) и конденсат (К). В зависимости от пределов процентного содержания какого-либо компонента в газе, около его буквенного индекса ставится цифра от 1 до 4. Состав газа обозначается суммой индексов. Например, состав газов Астраханского газоконденсатного месторождения будет выражен следующим индексом: М2Э1Т2У4А1Св4К4. Он означает, что газ содержит метана от 30 до 70 %, этана менее 3 %, тяжелых углеводородов 5-10 %, углекислого газа более 15 %, азота менее 3 %, сероводорода более 1 % и конденсата более 200 г/м3.
Природные газы подразделяются в этой классификации по содержанию этана, который является ценным химическим сырьем, а также - по содержанию тяжелых УВ на метановые, этановые, этан-пропановые и пропан-бутановые. Метановые газы характерны для газовых скоплений. Они содержат метана от 90 до100 %, этана до 3 % и тяжелых УВ до 5 %. Этановые газы содержат этана от 3 до 6 % , тяжелых УВ от 5 до 10 %, а этан-пропановые газы - этана от 6 до 9 %, тяжелых УВ - от 10 до 30 %. Эти газы характерны, в основном, для газоконденсатных и нефтегазоконденсатных залежей. В пропан-бутановых газах концентрация тяжелых УВ составляет более 30 % и этана более 9 %. Они характерны для нефтяных залежей.
Широко известна классификация природных газов по условиям нахождения, химическому составу и генезису, составленная В.А. Соколовым (таблица 5).
Таблица 5 - Классификация природных газов по В.А. Соколову (1966)
Тип газа по условиям нахождения в природе |
Химический состав |
Происхождение газа |
||
Основные компоненты |
Важнейшие примеси |
|||
1 |
2 |
3 |
4 |
|
I. Газы атмосферные |
N2, O2 |
Ar, CO2, Ne, He, Kr, Xe, H2, O3 |
Смесь газов химического, биохимического и радиогенного происхождения (Не, Ar) |
|
II. Газы земной поверхности: |
||||
1) почвенные и подпочвенные |
CO2, N2, O2 |
Ar, CH4, N2O, H2, благородные газы (из атмосферы) |
CO2, CH4, N2O, H2 преимущественно биохимического происхождения, присутствует также воздух |
|
2) болотные и торфяные |
СН4, CO2, N2 |
Ar, H2, CO, NH3, N2O, H2S, благородные газы (из атмосферы) |
СН4, CO2, H2, NH3, N2O, H2S преимущественно биохимического происхождения |
|
3) морских субаквальных осадков |
CO2, CH4, N2 |
H2, NH3, H2S, Ar |
Все газы, кроме благородных, преимущественно биохимического происхождения |
|
III. Газы осадочной толщи: |
Все газы, кроме благородных, главным образом химического происхождения. Имеется примесь газов биохимического происхождения (частично H2S и др.). На значительных глубинах при повышенной температуре нормальная |
|||
1) нефтяных месторождений |
CH4, ТУВ, N2, CO2 |
H2S, He, Ar, H2 |
||
2) газовых месторождений |
CH4, C2H6, N2, CO2 |
ТУВ, H2S, He, Ar, H2 |
||
3) угольных месторождений |
СН4 |
CO2, N2, H2, ТУВ, H2S, NH3, He, Ar |
||
4) соленосных отложений |
N2, H2, CO2, CH4 |
H2S, ТУВ, N2, H2 |
деятельность микроорганизмов прекращается и биохимические газы там отсутствуют |
|
5) пластовых вод |
N2, H2, CO2 |
O2, ТУВ, H2S, H2, Ar |
||
IV. Газы океанов и морей |
CO2, N2 |
NH3, H2S, О2, Ar |
NH3, H2S, О2 и частично СО2 биохимического происхождения, часть СО2 и N2 образуется химическим путём, а Ar имеет радиогенное происхождение. В верхние слои океанов и морей СО2, N2 и О2 попадают из атмосферы |
|
V. Газы метаморфических пород |
N2, H2, CO2 |
СН4, H2S, He, Ar |
Газы, кроме благородных химического происхождения |
|
VI. Газы магматических пород |
H2, CO2 |
N2, H2S, He, Ar. На больших глубинах SO2, HCl, HF |
Газы, кроме благородных химического происхождения |
|
VII. Газы вулканические |
Все газы, кроме благородных химического происхождения. Они представляют собой в той или иной степени изменённые газы, поступающие из верхней мантии с примесью газов из вышерасположенных оболочек |
|||
1) высокотемпературные (из лавовых озёр и др.) |
H2, CO2, SO2, HCl, HF |
N2, CO, NH3, He, Ar |
||
2) фумарольные (100-300 0С) |
H2, CO2, SO2, H2S |
N2, CO, NH3, He, Ar |
||
3) термальных источников |
CO2 |
N2, CO, NH3, He, Ar |
||
VIII. Газы космоса |
Н2, Н, Не |
СО, радикалы СН, СН2, ОН и другие. Ионизированные атомы элементов Ne, N, Ar |
Все газы являются результатом ядерных, радиационно-химических и химических реакций |
§4. Состав и химические свойства
Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородных компонентов (СН4 - С22Н46), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).
Природные газы газовых месторождений состоят в основном из метана с примесью более тяжёлых его гомологов: этана (С2Н6), пропана (С3Н8) и бутана (С4Н10). Иногда, в небольших количествах в газовых залежах, присутствуют пары пентана (С5Н12) и гексана (С6Н14). Все углеводороды (УВ), содержащиеся в залежах, начиная с этана, принято считать тяжёлыми. Они образуются только в процессе образования нефти при преобразовании рассеянного органического вещества (ОВ) на стадии диагенеза и, особенно, на стадии катагенеза, поэтому считаются специфическими «нефтяными» газами.
Нефтяные газы могут проникать из залежей в вышележащие отложения в виде ретроградного раствора. Это явление используется в гидрогеохимии в качестве поискового признака на нефть. Доля тяжёлых углеводородных газов в газовых залежах колеблется от единиц до частей процента. Здесь их содержание зависит от состава исходного ОВ, степени его катагенетической превращенности, а также от длины пути миграции газов. Метан, в отличие от своих гомологов обладает наибольшей подвижностью и одновременно наименьшей растворимостью в воде и способностью к адсорбции, поэтому он опережает другие УВ газы при миграции. Метан обладает также значительной химической и термической устойчивостью, может иметь биохимическое, глубинное и радиохимическое происхождение. Поэтому он не является надёжным геохимическим индикатором или поисковым признаком наличия скоплений УВ.
Кроме углеводородных компонентов в природных газах содержатся, как правило, в виде примесей и другие газы: диоксид углерода, азот, сероводород, водород, гелий и аргон. Содержание азота и кислых газов (СО2 и Н2S), которые дают при растворении в воде слабые кислоты - угольную (Н2СО3) и сероводородную (Н2S), может составлять десятки процентов и более, а иногда и превышать содержание углеводородных газов.
В свободных газах газонефтяных месторождений, то есть в газовых шапках, могут присутствовать пары жидких УВ, более тяжелые, чем гексан, однако их примесь бывает незначительной. Газы газонефтяных месторождений называются попутными.
Газы, растворённые в нефти, называются нефтяными. Обычно они содержат от 30 до 80 % гомологов метана, а также азот, диоксид углерода, сероводород, гелий, аргон и другие компоненты. Поэтому содержание метана может составлять в нефтяных газах всего 20-30 % от состава газовой смеси. Состав углеводородной части газов тесно связан с составом нефти. Легкие метановые нефти содержат газы, состоящие на 20-30 % из тяжелых углеводородов. Тяжелые нефти наоборот, со-17 держат преимущественно метан. Соотношение метана и его гомологов меняется в нефтяных газах и с увеличением возраста пород. Газы древних отложений в среднем более обогащены тяжелыми УВ и азотом, чем молодые.
Различные нефти имеют газовый фактор (ГФ) до 550-600 м3/т. Установленные максимальные величины ГФ в нефтяных залежах в экстремальных термобарических условиях глубоких горизонтов достигают 700-750 м3/т. У большинства залежей он составляет от 30 до 100 м3/т. Обычно ГФ выше у залежей, содержащих сильно превращенную метановую нефть, по сравнению с залежами, содержащими мало превращённую нафтеновую нефть. Залежи нефти, не содержащие растворённых газов, встречаются редко на небольших глубинах. Газовый фактор используется в качестве показателя типа залежи. К нефтяным залежам относятся залежи с ГФ ниже 600 м3/т, к нефтегазоконденсатным - 600-900 м3/т и к газоконденсатным - свыше 900 м3/т.
Качество газа, как энергоносителя зависит от содержания метана. При содержании в газовой смеси этана и других углеводородных и неуглеводородных газов от нескольких процентов и более они становятся ценным химическим сырьём.
Углеводородные газы, состоящие в основном из метана, называются сухими. При незначительном содержании тяжёлых углеводородов они называются тощими, и газы со значительным содержанием тяжелых УВ называются жирными. Для характеристики УВ состава газов применяется понятие «коэффициент сухости», это - отношение процентного содержания метана к сумме его гомологов: СН4 /С2Н6 + высшие. Для этих целей используется и такой критерий как газовый фактор или его обратная величина - содержание стабильного конденсата в граммах или кубических сантиметрах в 1 м3 газа. Сухие газы содержат конденсата менее 10 г/м3, тощие - от 10 до 30 г/м3 и жирные газы - от 30 до 90 г/м3. Изменение коэффициента сухости газов является показателем направления их миграции.
...Подобные документы
Исторические сведения о нефти. Геология нефти и газа, физические свойства. Элементный состав нефти и газа. Применение и экономическое значение нефти. Неорганическая теория происхождения углеводородов. Органическая теория происхождения нефти и газа.
курсовая работа [3,2 M], добавлен 23.01.2013Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.
контрольная работа [2,0 M], добавлен 05.06.2013Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.
реферат [363,1 K], добавлен 02.12.2015Подсчет и пересчет запасов различными методами. Размещение месторождений нефти и газа в мире. Нетрадиционные ресурсы и возможности их реализации. Главные экономические критерии в новой классификации запасов и прогнозных ресурсов нефти и горючих газов.
реферат [705,7 K], добавлен 19.03.2014Анализ неорганической и органической теорий происхождения нефти и газа. Залегание нефти и газа в месторождении, состав коллекторов, их формирование и свойства. Проблемы коммерческой нефте- и газодобычи на шельфе Арктики, устройство ледостойких платформ.
презентация [3,5 M], добавлен 30.05.2017Основные сведения о месторождениях нефти и газа, способы их формирования и особенности разведки полезных ископаемых. Сферы применения и режимы эксплуатации различных видов скважин, используемых для добычи. Промысловый сбор и подготовка нефти, газа и воды.
отчет по практике [3,2 M], добавлен 21.07.2012Физико-химические свойства нефти и газа. Принципы и показатели классификации видов нефти и применение тригонограмм. Макроскопическое описание осадочных горных пород. Особенности пород-коллекторов и покрышек. Аспекты построения геологического профиля.
методичка [379,3 K], добавлен 25.10.2012Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.
дипломная работа [3,8 M], добавлен 06.04.2014Изучение основных методов подсчета запасов. Исследование степени геологической изученности и промышленного освоения. Российская классификация запасов нефти, газа и конденсата. Сравнение классификационных систем ресурсов нефти и газа различных стран.
отчет по практике [1,2 M], добавлен 11.04.2019Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.
курсовая работа [53,5 K], добавлен 19.06.2011Способы разрушения нефтяных эмульсий. Обезвоживание и обессоливание нефти. Электрические методы разрушения водонефтяных эмульсий. Способы очистки нефти от механических и агрессивных примесей. Гидраты природных газов. Стабилизация, дегазация нефти.
реферат [986,1 K], добавлен 12.12.2011Факторы миграции нефти и газа в земной коре. Проблема аккумуляции углеводородов. Граничные геологические условия этого процесса. Главное свойство геологического пространства. Стадии выделения воды, уплотнения глин. Формирование месторождений нефти и газа.
презентация [2,5 M], добавлен 10.10.2015Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.
контрольная работа [367,2 K], добавлен 22.01.2012Концепции неорганического происхождения нефти: гипотеза Менделеева, Кудрявцева, Соколова. Основные аргументы в пользу биогенного происхождения нефти. Образование природного газа. Условия нефтеобразования: время, умеренные температуры, давление.
реферат [178,7 K], добавлен 16.06.2015Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.
презентация [20,4 M], добавлен 10.06.2016Понятие установившегося и неустановившегося движения газированной жидкости в подземной гидравлике. Условия существования режима растворенного газа. Характеристика притока газированной нефти к скважинам. Рассмотрение методов ввода скважин в эксплуатацию.
курсовая работа [934,2 K], добавлен 15.12.2013Происхождение нефти, образование месторождений. Оборудование, необходимое для бурения скважин. Транспортировка нефти и газа на нефтеперерабатывающие заводы и электростанции. Особенности переработки нефти. Добыча растворенного газа в Томской области.
реферат [52,3 K], добавлен 27.11.2013Изучение методов системы разработки месторождений нефти и газа. Определение рациональной системы извлечения нефти из недр. Выбор оборудования для хранения нефти после добычи из залежей, а также для транспортировки. Описание основных видов резервуаров.
курсовая работа [970,7 K], добавлен 11.11.2015Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.
учебное пособие [3,1 M], добавлен 09.01.2010Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.
курсовая работа [1000,9 K], добавлен 19.06.2011