Обогащение полезных ископаемых
Применение механических классификаторов и гидроциклонов для обезвоживания полидисперсных шламов агломерационного и доменного производств. Использование диафрагмовой отсадочной машины для гравитационного обогащения в водной среде полезных ископаемых.
Рубрика | Геология, гидрология и геодезия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.02.2016 |
Размер файла | 893,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
Федеральное государственное бюджетное
образовательное учреждение высшего профессионального образования
«Кузбасский государственный технический университет
имени Т.Ф. Горбачева»
Кафедра обогащения полезных ископаемых
Контрольная работа
Выполнил:
Группа
№ з/к
Проверил:
Кемерово 2016
Содержание
Механический спиральный классификатор
Диафрагмовая отсадочная машина
Список литературы
Механический спиральный классификатор
Механические классификаторы и гидроциклоны применяют для обезвоживания полидисперсных шламов агломерационного и доменного производств. Подразделяются механические классификаторы на реечные, спиральные и чашевые; наиболее совершенны из них спиральные.
Они представляют собой наклонное полуцилиндрическое корыто, в котором на продольном валу, параллельно днищу корыта, вращаются одна или две спирали. Пульпа из мельницы подается по трубе или желобу в нижне1 боковой стенке корыта вблизи зеркала пульпы ( на расстоянии 1/3 длины корыта от сливного порога). Пески оседают на дно корыта и вращающейся спиралью транспортируются к верхнему разгрузочному порогу корыта, оттуда по наклонному желобу при помощи воды поступают в улитковую часть питателя мельницы и затем в загрузочную цапфу мельницы. Тонкие частицы, скорость осаждения которых значительно мееньше скорости осаждения крупных частиц, разгружаются в виде слива через сливной порог.
Спираль классификатора представляет собой двухходовой винт, лопасти которого сделаны из стальных полос, укрепленных на спицах. Наиболее изнашиваемый наружный край спирали, футеруется пластинами из белого чугуна. В верхней части классификатора вал вращается в подшипниках, шарнирно укрепленных двумя цапфами в упорных подшипниках. Это позволяет поднимать нижнюю часть вала и спирали.
Вал классификатора со спиралью приводятся в движение электродвигателем через зубчатую передачу, установленные на специальной площадке в верхней части корыта. При остановке классификатора пульпа из корыта не выпускается, нижняя часть вала со спиралью поднимается специальным механизмов, расположенным над сливным порогом. Пуск производится с постепенным опусканием вращающейся спирали.
Основными параметрами регулировки крупности слива классификатора являются плотность пульпы, которая изменяется подачей воды, площадью зеркала пульпы и скоростью вращения спирали. Площадь зеркала пульпы в корыте зависит от размера и угла наклона его, который может изменяться от 12 до 18є. Скорость вращения спирали устанавливается в зависимости от требуемой крупности материала в сливе. Скорость вращения спирали увеличивается для получения более крупного слива. Для классификаторов с диаметром спирали, например, 3000 мм, частота вращения спирали составляет 1; 3 или 5 об/мин. Большая скорость вращения спирали приводит к сильному взмучиванию пульпы и нарушению процесса классификации.
Рис.1
Применяемые спиральные классификаторы имеют одну или две спирали и характеризуются длиной корыта и диаметром спирали.
Кроме того эти классификаторы бывают с непогруженной спиралью ( КСН) и с непогруженной спиралью (КСП). В классификаторах с непогруженной спиралью уровень сливного порога находится ниже уровня нижнего конца вала. Классификаторы такого типа применяются для получения в сливе более крупного материала ( более 0,15 мм). В классификаторах с погруженной спиралью вся спираль в нижней части классификатора расположена ниже уровня пульпы, поэтому верхняя зона осаждения находится в более спокойном потоке, что дает возможность получать в сливе тонкий материал крупностью менее 0,15 мм.
Производительность спиральных классификаторов зависит от гранулометрического состава исходного материала, его плотности, плотности и крупности слива.
Диафрагмовая отсадочная машина
обогащение ископаемое обезвоживание шлам
Предназначены для гравитационного обогащения в водной среде россыпных и коренных измельченных руд цветных металлов, алмазов и других полезных ископаемых. Машины могут быть установлены как стационарно на обогатительной фабрике или промприборе, так и на драге. Подвижные решета существенно повышают эффективность обогащения за счет сокращения выноса мелких частиц полезного минерала.
Известны диафрагмовые отсадочные машины, в которых пульсации воды создаются подвижными конусами, расположенными под решетом . Руда, подаваемая на решето, под действием пульсаций воды расслаивается на слои с различной плотностью. Недостатком конструкции этой отсадочной машины является неравномерное распределение интенсивности пульсаций по поверхности решета. Это обусловлено тем, что максимальная площадь подвижного конуса - площадь его основания - составляет 39% от площади решета. Поэтому в центре решета, непосредственно над подвижным конусом интенсивность пульсаций на 20% больше, чем у стенок решета, и на 30% больше, чем в углах его. Это приводит к забивке решета, ослаблению и прекращению пульсаций по углам и у стенок отсадочной камеры. Неравномерность пульсаций приводит также к перемещению зерен над решетом за счет выноса мелких зерен тяжелых фракций из нижних слоев в верхние в центральной части решета. Это приводит к нарушению расслоения, ухудшению качества концентрата, уменьшению его выхода и извлечения в него полезных компонентов.
Наиболее близкой по технической сущности к предлагаемой является диафрагмовая отсадочная машина, в которой для уменьшения неравномерности пульсаций по поверхности решета отсадочной камеры подрешетная рама выполнена в виде диффузорных ячеистых решеток . Недостатком этого устройства является невозможность эффективного выравнивания интенсивности пульсаций над решеток. Это обусловлено тем, что неравномерность пульсаций над решетом не устраняется: скорость вертикального потока воды над конусом больше, чем в остальной части решета. Ячеистая диффузорная решетка, равномерно расположенная над решетом, создает одинаковое сопротивление вертикальному потоку воды по всей поверхности решета, и неравномерность распределения скорости этого потока, подходящего снизу к решету, при этом не устраняется. Ячеистая диффузорная решетка создает большое сопротивление потоку, так как ее проходное сечение значительно меньше площади решета. Это приводит к потере энергии необходимости усиления привода. Незначительное выравнивание скорости потока за счет гидравлического сопротивления ячеистой решетки оставляет неравномерность пульсаций в центре, по краям и углам камеры практически прежней.
Подобная диффузорная ячеистая решетка может оказать существенное влияние на равномерность распределения пульсаций по поверхности решета лишь при равномерном распределении скорости подходящего к ней снизу восходящего потока воды.
Целью изобретения является улучшение результатов отсадки в диафрагмовой отсадочной машине с подвижными конусами за счет выравнивания интенсивности пульсаций по всей поверхности решета.
Достигается это тем, что диффузор установлен в переходной камере диафрагмовой отсадочной машины и выполнен из установленных параллельно стенкам подрешетной камеры наклонных пластин, соединенных U-образными элементами, наклоненными к горизонту под углом на 10-40о менее угла наклона пластин.
Сопоставительный анализ с прототипом показал, что предлагаемое устройство отличается тем, что диффузор установлен в переходной камере, непосредственно над подвижным конусом, в зоне, где вертикальный поток воды равномерно распределен над поверхностью основания подвижного конуса. Это позволяет отсечь часть потока воды и распределить его по поверхности центральной части решета. При этом часть потока воды, обтекая диффузор снаружи, направляется через зазор между станками переходной камеры и диффузора к стенкам и углам отсадочного решета. Такое распределение потоков с помощью предлагаемого устройства позволяет равномерно распределить вертикальных пульсаций воды до ее подхода к решету и, следовательно, выравнять амплитуду пульсаций над поверхностью решета. Диффузор, обтекаемый наружным и внутренним потоками воды, практически не оказывает сопротивления, так как не перекрывает вертикальный поток воды. Это приводит к резкому сокращению энергетических затрат и мощности привода.
Соединение пластин, образующих диффузор, U-образными элементами, например полутрубами, позволяет формировать поток воды и сосредоточенно направлять его к углам отсадочной камеры.
Угол наклона U-образных элементов на 10-40о (к горизонту) меньше угла наклона пластин, позволяет осуществить оптимальное распределение потоков, направляемых к углам отсадочной камеры.
Диафрагмовая отсадочная машина содержит отсадочную камеру , в которой размещены решето и подрешетная рама , переходную камеру с диффузором , подвижный конус с разгрузочным устройством . Диффузор , расположенный над подвижным конусом в переходной камере , крепится кронштейнами 9 к стенкам этой камеры. Стенки, образующие диффузор , соединены элементами , имеющими U-образное сечение и изогнутую форму. Подвижный конус соединен эластичными манжетами с камерой .
Устройство работает следующим образом. Подвижный конус приводится в возвратно-поступательное движение в вертикальном направлении. При восходящем ходе подвижный конус вытесняет воду и создает восходящий поток воды в камере . Этот поток диффузором делится на две части: внутреннюю и наружную. Внутренняя часть потока, пройдя через диффузор, распределяется на большую площадь, а наружный поток, обтекающий диффузор на меньшую площадь решета в отсадочной камере . Это способствует выравниванию пульсаций по всей поверхности решета и предотвращает перемешивание материала внутри отсадочной камеры. Амплитуда пульсаций по всей поверхности решета, в том числе и в углах камеры, практически одинакова, отличаясь не более, чем на 3%. При этом полностью ликвидируется забивка решета у стенок и в углах и в углах камеры 1, перемешивание надпостельного слоя, вынос в центре камеры мелких зерен тяжелых фракций руды, например золотосодержащих сульфидов, и унос их в хвосты.
При уменьшении угла наклона U-образных элементов по сравнению с наклоном стенок диффузора на 0-10о (к горизонту) не происходит улучшения равномерности пульсаций, от 10 до 40о наблюдается равномерное распределение пульсаций, более 40о - снова неравномерное распределение пульсаций за счет увеличения пульсаций по углам камеры.
При оптимальном распределении пульсаций по поверхности решета улучшаются результаты отсадки.
Результаты отсадки измельченной полиметаллической руды в диафрагмовой отсадочной машине до и после установки предлагаемого устройства представлены в таблице.
Из данных таблицы следует, что увеличивается извлечение всех сульфидов, в особенности золотосодержащих. При этом в концентрат попадают более богатые сульфидные зерна, о чем свидетельствует повышенное содержание металлов в концентрате.
Эффективность обогащения по золоту (по Луйкенц) увеличивается с 27,6 до 35,2% . Расход подрешетной воды уменьшается с 0,232 до 0,140 м3/т. Удельная производительность отсадочной машины увеличивается на 8,76%.
рис.2
Задание 1
По данным ситового анализа построить характеристику крупности по плюсу и минусу
крупность |
, кг |
, % |
по плюсу |
по минусу |
|
100 |
60,3 |
22,9 |
22,9 |
100 |
|
100-50 |
20,2 |
7,7 |
30,6 |
77,1 |
|
50-25 |
10,3 |
3,9 |
34,5 |
69,4 |
|
25-13 |
58,0 |
22,0 |
56,5 |
65,5 |
|
13-6 |
20,2 |
7,7 |
64,2 |
43,5 |
|
6-3 |
58,5 |
22,4 |
86,6 |
35,8 |
|
3-1 |
25,0 |
9,5 |
96,1 |
13,4 |
|
1-0 |
10,3 |
3,9 |
100 |
3,9 |
|
итого |
262,8 |
100 |
+5=41
-35=31
5-35=41-31=10
Задание 2
По данным фракционного анализа построить кривые обогатимости, определить категории обогатимости угля, составить теоретический баланс при плотности 1,5 и 1,8 г/см2.
плотность |
кг |
,% |
Аd, % |
вспл. ?, % |
вспл. Аd, % |
утон. ?, % |
утон. Аd, % |
|
1,3 |
10,4 |
10,4 |
3,4 |
10,4 |
3,4 |
100 |
23,63 |
|
1,3-1,4 |
51,1 |
51,1 |
5,77 |
61,5 |
5,3 |
89,6 |
25,98 |
|
1,4-1,5 |
7,2 |
7,2 |
15,7 |
68,7 |
6,38 |
38,5 |
52,81 |
|
1,5-1,6 |
4,2 |
4,2 |
23,9 |
72,9 |
7,31 |
31,3 |
61,35 |
|
1,6-1,8 |
6,3 |
6,3 |
40,3 |
79,2 |
9,9 |
27,1 |
67,16 |
|
1,8 |
20,8 |
20,8 |
75,3 |
100 |
23,63 |
20,8 |
75,3 |
|
итого |
100 |
100 |
23,63 |
Аdобщ==23,63
Аd (+)==5,3
Аd(-)==67,16
Теоретический баланс
Продукт |
% |
Аd, % |
|
Концентрат |
68,7 |
6,45 |
|
Пром. продукт |
10,5 |
33,74 |
|
Отходы |
20,8 |
75,3 |
|
Итого: |
100 |
23,63 |
Аdк==6,45
Аdп.п==33,74
=23,63
Список литературы
[Электронный ресурс]: www.freepatent.ru
[Электронный ресурс]: http://zavodtrud.ru/
Размещено на Allbest.ru
...Подобные документы
История разработки месторождений полезных ископаемых и состояние на современном этапе. Общая экономическая цель при открытой разработке. Понятия и методы обогащения полезных ископаемых. Эффективное и комплексное использование минерального сырья.
курсовая работа [76,0 K], добавлен 24.11.2012Основные, подготовительные и вспомогательные операции обработки полезных ископаемых. Классификация процессов магнитного обогащения. Разделение минеральных частиц по магнитным свойствам. Электрическая сепарация: понятие, применение, разновидности.
реферат [83,2 K], добавлен 01.01.2013Научно-технический прогресс в обогащении полезных ископаемых. Роль географических открытий. И.Н. Плаксин - выдающийся учёный в области обогащения полезных ископаемых. Способы механического обогащения, роль различий в физических свойствах минералов.
реферат [35,5 K], добавлен 12.04.2010Использование элеваторного классификатора в практике углеобогащения с целью предварительного обезвоживания и отделения шламов из мелкого концентрата. Осаждение частиц под действием силы тяжести в основе принципа работы элеваторного классификатора.
контрольная работа [654,1 K], добавлен 09.11.2013Промышленная классификация месторождений полезных ископаемых. Приёмы оконтуривания тел полезных ископаемых. Управление качеством руды. Методы подсчёта запасов месторождений полезных ископаемых. Оценка точности подсчета запасов, формы учета их движения.
реферат [25,0 K], добавлен 19.12.2011Изучение закономерностей образования и геологических условий формирования и размещения полезных ископаемых. Характеристика генетических типов месторождений полезных ископаемых: магматические, карбонатитовые, пегматитовые, альбитит-грейзеновые, скарновые.
курс лекций [850,2 K], добавлен 01.06.2010Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.
реферат [29,4 K], добавлен 10.09.2014Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.
презентация [1,0 M], добавлен 19.12.2013Состав, условия залегания рудных тел. Формы полезных ископаемых. Жидкие: нефть, минеральные воды. Твердые: угли ископаемые, горючие сланцы, мрамор. Газовые: гелий, метан, горючие газы. Месторождения полезных ископаемых: магматогенные, седиментогенные.
презентация [7,2 M], добавлен 11.02.2015Обзор метода обогащения полезных ископаемых, основанного на разной плотности разделяемых компонентов и тяжёлой среды. Характеристика тяжелых сред. Принцип действия сепаратора. Регенерация суспензии. Технологические схемы обогащения углей в тяжелых средах.
реферат [100,1 K], добавлен 21.04.2014Классификация полезных ископаемых. Запасы минерального сырья в мире и России. Использование недр человеком. Обзор добычи нефти и газа за 2005 год. Направления по рациональному использованию и охране недр. Государственный мониторинг геологической среды.
курсовая работа [40,1 K], добавлен 15.04.2009Геофизические методы поиска и разведки полезных ископаемых. Метод радиокип и его наземное использование. Съемки в рудных районах с целью поиска залежей полезных ископаемых и решения задач геологического картирования. Принципы измерения и аппаратура.
реферат [583,9 K], добавлен 28.03.2013Общие сведения о рудных и нерудных полезных ископаемых, расположение месторождений Краснодарского края, использование в отраслях промышленности в масштабах страны. Добыча нефти, газа и торфа. Перспективы дальнейшего поиска полезных ископаемых в регионе.
презентация [9,3 M], добавлен 21.09.2011Гидрогеологические исследования при поисках, разведке и разработке месторождений твердых полезных ископаемых: задачи и геотехнологические методы. Сущность и применение подземного выщелачивания металлов, выплавки серы, скважинной гидродобычи рыхлых руд.
реферат [28,8 K], добавлен 07.02.2012Анализ рудоподготовительного процесса в горнодобывающей промышленности. Методы обогащения полезных ископаемых. Основные понятия и назначение операций грохочения. Особенности процессов дробления, измельчения. Выбор технологии и оборудования дробления руды.
курсовая работа [738,4 K], добавлен 14.05.2014Процесс контактового метасоматоза, приводящий к образованию скарновых месторождений рудных и нерудных полезных ископаемых. Метасоматический процесс и условия залегания скарнов. Морфология, вещественный состав, строение месторождения полезных ископаемых.
реферат [25,4 K], добавлен 25.03.2015Изучение формы учета месторождений и проявлений полезных ископаемых, выявленных в недрах Российской Федерации. Предназначение и основные задачи государственного кадастра. Составление карт горнотехнического, геологического и экономического содержания.
презентация [278,9 K], добавлен 03.02.2015Анализ нормативно-правовых документов по государственному регулированию добычи и переработки полезных ископаемых. Методическое обеспечение объекта исследования ЗАО "Механобр инжиниринг". Разработка мероприятий по реализации разработанных предложений.
дипломная работа [87,0 K], добавлен 13.11.2014Почва - рыхлый поверхностный слой земной коры. Результаты антропогенного воздействия на нее. Биотехнология охраны земель и мероприятия по защите их от эрозии. Ресурсы полезных ископаемых в недрах. Государственный кадастр месторождений полезных ископаемых.
реферат [2,4 M], добавлен 22.02.2009Опробование полезных ископаемых осуществляется на месте залегания, без отбора проб для определения объема, а также физических параметров. Определение средних содержаний и средней мощности рудных тел в целях подсчета запасов полезного ископаемого.
презентация [2,6 M], добавлен 19.12.2013