Вулканогенно-осадочный литогенез в наземной рифтовой зоне Исландии
Изучение главных особенностей современных и миоцен-плейстоценовых природных объектов Исландии. Исследование и анализ характера распространения и времени проявлений региональной и наложенной гидротермальной активности в наземной части рифтовой системы.
Рубрика | Геология, гидрология и геодезия |
Вид | автореферат |
Язык | русский |
Дата добавления | 17.01.2017 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Учреждение Российской Академии наук
Геологический институт РАН (ГИН)
На правах рукописи
Автореферат диссертации на соискание учёной степени доктора геолого-минералогических наук
«Вулканогенно-осадочный литогенез в наземной рифтовой зоне Исландии»
25.00.06 литология
Гептнер Альфред Романович
Москва 2009
Официальные оппоненты:
доктор геолого-минералогических наук, профессор Наседкин Василий Викторович (Учреждение Российской Академии наук, Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ РАН);
доктор геолого-минералогических наук, профессор Шнип Олег Александрович (Российский государственный университет НЕФТИ и ГАЗА им. И.М. Губкина);
доктор геолого-минералогических наук, профессор Холодов Владимир Николаевич Учреждение Российской Академии наук, Геологический институт (ГИН РАН)
Ведущая организация: Геологический факультет Московского государственного университета им. М.В. Ломоносова, кафедра литологии и морской геологии, г. Москва
Защита состоится 14 апреля 2009 г. В 14 часов 30 минут на заседании диссертационного совета Д 002.215.02 при Геологическом институте РАН по адресу: Москва, Пыжевский пер. 7, конференц-зал (4 этаж).
С диссертацией можно ознакомиться в библиотеке геологической литературы Секции наук о Земле по адресу: Москва, Старомонетный пер., 33 (здание ИГЕМ РАН).
Автореферат разослан: 25 февраля 2009 г.
Ученый секретарь диссертационного совета кандидат геолого-минералогических наук Т.А. Садчикова.
Общая характеристика работы
Предлагаемая работа результат многолетних исследований на территории Исландии. Исследования с перерывами проводились с 1970 года сначала в составе экспедиций Академии Наук СССР, а с 1997 по 2005 год самостоятельно по грантам, полученным от Исландского исследовательского совета и университета г. Акурейри.
Основу предлагаемой работы составляет материал, собранный при полевых исследованиях, охвативших весь остров. Отдельные разрезы изучались послойно, а при прослеживании характера распространения ассоциаций гидротермальных минералов на ряде особенно хорошо обнажённых участков проводилось крупномасштабное картирование распространения слоистых силикатов разного состава. Объектами исследования были комплекс современных, плейстоцен-плиоценовых и плиоцен-миоценовых вулканогенных и вулканогенно-осадочных отложений. Важным объектом были базальтовые гиалокластиты, широко распространённые в пределах современной зоны рифтогенеза и на отдельных участках миоцен-плиоценовых платобазальтов. Этот тип отложений является характерным для морских и ледниковых вулканогенно-осадочных отложений.
Формирование, распределение и состав ассоциаций гидротермальных минералов исследовались, в основном, в пределах низкотемпературной зоны изменения, охватывающей мощные толщи миоцен-плиоценовых платобазальтов, плиоцен-плейстоценовых толщ наземных лав и гиалокластитов. Высокотемпературные зоны, доступные для исследования только в пределах эродированных крупных вулканических построек и в керне глубоких скважин, рассматриваются кратко по литературным данным.
В ряде районов Исландии в мощных толщах миоценовых платобазальтов обнаружены и детально изучены минерализованные фрагменты микроорганизмов, свидетельствующие о живых организмах (бактерии, грибы), существовавших в толще вулканогенных пород.
Исследование на сканирующем электронном микроскопе и аналитические данные получены при совместной работе с сотрудниками Геологического и Палеонтологического институтов РАН.
Актуальность исследований
Общие черты вулканогенно-осадочного типа литогенеза, цели его изучения и задачи, стоящие перед исследователями, рассматривались Н.М. Страховым [1963] ещё 45 лет назад. Однако до сих пор наименее разработанными и сложными для исследования остаются некоторые особенности формирования вулканогенных и вулканогенно-осадочных образований. Актуальность постановки исследований вулканогенно-осадочного типа литогенеза в Исландии обосновывается тем, что накопление вулканических и вулканогенно-осадочных пород в этом районе можно проследить вне влияния поступления невулканического осадочного материала за достаточно длительный промежуток времени. Соответственно, Исландия представляет собой идеальный объект для изучения вулканогенно-осадочного типа литогенеза в «чистом» виде, который проявлен в разнообразных ландшафтных (наземных и подводных) и климатических (доледниковых, ледниковых и межледниковых) обстановках с участием гидротерм. Актуальность предпринятых исследований заключается также и в возможности успешно разрабатывать крупный раздел Программы № 15 фундаментальных исследований Президиума РАН «Происхождение биосферы и эволюция гео-биологических систем», в областях с активной гидротермальной деятельностью, учитывая, что в гидротермально измененных миоценовых платобазальтах Исландии впервые нами были выявлены минерализованные фрагменты микроорганизмов.
Цель и задачи исследований.
Целью поставленных исследований было дальнейшее развитие учения литогенеза в части, относящейся к крупному его разделу - проявлению вулканогенно-осадочного типа литогенеза в гумидном климате северных широт на примере ключевого объекта вулканически и гидротермально активной рифтовой зоны Исландии, развивающейся в пределах глобальной рифтовой системы.
Главные задачи: 1. Провести типизацию вулканогенных и вулканогенно-осадочных отложений, формировавшихся в разных климатических и ландшафтных обстановках; 2. Выяснить характер распространения и время проявлений региональной и наложенной гидротермальной активности в наземной части рифтовой системы; 3. Выяснить связь состава, распространения и последовательности формирования вторичных гидротермальных минералов с разрывной тектоникой; 4. Изучить биоморфноподобные микроструктуры, обнаруженные в гидротермальных минералах измененных вулканитов и в осадках на современных гидротермальных полях, а также проанализировать характер соотношения минерализованной микробиоты и полициклических ароматических углеводородов в гидротермалитах.
Научная новизна
На основе детального и комплексного изучения современных и миоцен-плейстоценовых природных объектов Исландии впервые:
1. Изучены и классифицированы породные ассоциации, отвечающие доледниковой (платобазальты) и ледниковой (подушечные лавы, гиалокластиты, отдельные потоки наземных лав, горизонты тиллитов) обстановкам формирования вулканогенных и вулканогенно-осадочных отложений.
2. Показана контролирующая роль разрывных нарушений при формировании и распространении гидротермально измененных пород в зоне рифтогенеза. Выявлена связь гидротермального минералообразования с дискретным тектономагматическим процессом. Изучена структура трещинно-дайковых комплексов, отражающая непрерывно-прерывистый характер процесса растяжения, и формирование в зоне растяжения ассоциации слоистых силикатов, цеолитов, кремнистых минералов и кальцита.
3. Обнаружены и морфологически детально изучены остатки микробиоты (бактерий), минерализация которой произошла в гидротермально измененных миоцен-плиоценовых платобазальтах. Показана генетическая связь между локальным увеличением содержания ряда малых элементов (Ag, Au, As, Se, Sb и др.) в гидротермально изменённых голоценовых осадках и скоплением в них минерализованных бактерий.
4. Установлено закономерное сонахождение остатков микробиоты и полициклических ароматических углеводородов в гидротермальных минералах изменённых базальтах и на современных сольфатарных полях.
Теоретическое и практическое значение полученных результатов.
Получены новые знания, значительно продвинувшие представления о вулканогенно-осадочном типе литогенеза в зоне рифтогенеза как крупном разделе теории литогенеза. Кроме того новые знания расширяют возможности метода актуализма, широко применяемого в геологии. Особенности строения и состава отложений, слагающих выделенные ассоциации, могут быть использованы при расшифровке обстановок формирования древних вулканогенных и вулканогенно-осадочных толщ.
Рассмотрен широкий круг вопросов, связанных с формированием вулканогенно-осадочных и вулканогенных отложений, испытавших изменение в низкотемпературной гидротермальной зоне рифтовой системы Исландии. Выделены типы ассоциаций вулканогенно-осадочных и вулканогенных отложений, свидетельствующие об их формировании в различных климатических условиях (доледниковые в миоцене, ледниковые и межледниковые в плиоцене и плейстоцене) на суше и на шельфе.
Установлена ведущая роль тектоники в формировании локальной гидротермальной минерализации в зоне рифтогенеза, определяющая распространение, прерывистый тип образования вторичных минералов и ряд характерных форм их осаждения. По результатам этих исследований предложена модель осаждения из раствора и формирования полосчатой структуры некоторых гидротермальных минералов (смектитов, селадонита, кремнезёма), которая может быть использована при анализе и восстановлении распространения гидротермалитов в рифтовых зонах других районов.
Намечено новое направление в разработке проблемы низкотемпературной гидротермальной минерализации в связи с обнаружением в толще миоценовых платобазальтов фоссилизированных фрагментов микробиоты (бактерий и грибов) - возможных активных агентов формирования слоистых силикатов и ряда других минералов. Присутствие в толще вулканитов минерализованной микробиоты может быть использовано для восстановления в древних отложениях путей миграции углеводородов и зон их аккумуляции
Защищаемые положения.
На основании проведенного многолетнего исследования и крупного обобщения, как собственных результатов, так и данных других авторов, получены новые материалы, позволяющие существенно продвинуть разработку проблемы вулканогенно-осадочного литогенеза в наземной рифтовой системе на примере Исландии. Основные защищаемые положения этого исследования изложены ниже:
I. Выделенные парагенетические ассоциации миоцен-плейстоценовых вулканогенных и вулканогенно-осадочных отложений отражают три основные обстановки их формирования:
- наземную доледниковую (миоцен-плиоценовые платобазальты);
- наземную ледниковую (плиоцен-плейстоценовые и современные гиалокластиты, подушечные лавы, отдельные лавовые потоки, морены);
- ледниково-шельфовую (плиоцен-плейстоценовые и современные отложения).
II. Региональная гидротермальная зональность, зафиксированная в вулканогенных отложениях рифтовой системы Исландии протяженными субгоризонтально ориентированными стратиформными зонами цеолитизации (снизу вверх - ломонтитовая, стильбитовая, мезолит-сколецитовая, шабазитовая), нарушена в зонах растяжения наложенной гидротермальной минерализацией.
Наложенная гидротермальная минерализация, проявленная в трещинно-дайковых зонах, представлена цеолитами, смектит-селадонитом и кремнистыми минералами (ониксами) и их различными сочетаниями. Полосчатые субгоризонтальные выделения этих минералов, а также концентрическая и параллельно-слоистая зональность ониксов, отражают прерывистый и многократный характер процесса растяжения. Этот процесс приводит к подновлению существовавших трещин и возникновению новых и, соответственно, создает условия для поступления новых порций гидротермальных растворов в зоны минерализации вулканических толщ.
III. Впервые обнаруженные в миоцен-плиоценовых вулканитах рифтовой зоны Исландии минерализованные биоморфные фрагменты свидетельствуют о существовании микроскопических форм жизни (бактериальной активности) в базальтовом слое земной коры, т.е. о проникновении биосферы на значительную глубину от поверхности Земли.
Сонахождение биоморфных микроструктур и полициклических ароматических углеводородов в составе гидротермально образовавшихся слоистых силикатов указывает на важную роль абиогенных углеводородов в обеспечении жизнедеятельности микроорганизмов в глубоких горизонтах вулканитов.
Публикации. Материалы, рассматривающиеся в диссертации, содержатся в 4 коллективных монографиях и в 38 научных работах, опубликованных в российских и зарубежных изданиях.
1. Основные черты геологического строения
Основную роль в геологическом строении Исландии играют неоген-четвертичные и современные вулканические породы. Основные черты современной структуры Исландии показаны на упрощенном варианте структурно-геологической карты, заимствованной из работы К Саемундссона. [Saemundsson, 1979] (рис 1).
Рис. 1. Структурно-тектоническая карта (по К. Саемундссону [1979] с сокращением). 1 современные рыхлые отложения и лавовые покровы; 2 верхнеплейстоценовые и послеледниковые лавовые покровы; 3 плио-плейстоценовые лавы (3,10,7 млн лет); 4 третичные лавы (> 3,1 млн лет); 5 номер и примерный размер полигона, в котором детально изучался характер распределения вторичных минералов в трещинно-дайковых роях; 6 доминирующее направление даек; 7 вулканические системы (пунктиром предполагаемые), центральные вулканы и трещинные рои; 8 фланги рифта; 9 направление трещин; 10 кальдера; 11 геотермальное поле; 12 антиклинальная ось флексуры; 13 синклинальная ось флексуры; 14 направление регионального падения; 15 трансформный разлом; 16 горизонтальное залегание.
Осадочные отложения составляют 5-10% в составе неогеновых толщ и их заметно больше в четвертичных и современных отложениях. На флангах современной рифтовой зоны последовательно выходят все более и более древние вулканические серии, от современных в осевых частях этих зон до миоценовых на флангах. Вулканогенные образования в Исландии традиционно подразделяются на четыре разновозрастных комплекса: "третичных базальтов" (миоцен-нижний плиоцен), 16-3 млн лет), "древних серых базальтов" (верхний плиоцен - плейстоцен, 3-0,7 млн лет), палагонитовую формацию, или формацию Моуберг (плейстоцен, 1,8-0,7 млн лет) и современные вулканиты (голоцен - исторические извержения).
Облик тектонических структур Исландии определяется в основном спецификой развития океанической рифтовой системы, пересекающей остров. Наиболее отчетливо проявляется продольная, субмеридиональная тектоническая зональность. Современная тектоническая структура состоит из сочетания кулисообразно сочленяющихся линейных рифтовых зон с относительно стабильными краевыми зонами, где вулканизм в четвертичное время не проявлялся, и межрифтовой внутренней зоной в южной части острова. В продольных зонах фиксируются не только современные, но и осевые части более древних рифтовых зон, располагающихся в поле распространения миоценовых платобазальтов. Платобазальты образуют ряд сочленяющихся друг с другом пологих моноклиналей, которые ранее рассматривались как элементы пликативных структур. Образование подобных "псевдопликативных" структур К. Саемундссон [Saemundsson, 1974, 1979] объясняет схождением моноклиналей в процессе спрединга при параллельном развитии двух рифтовых зон и последовательном смещении продуктов извержений от их осевых частей на фланги. Оси "синклиналей" с этой точки зрения отмечают положение осевых частей древних рифтовых зон. В современной структуре Исландии наряду с рифтовыми большую роль играют трансформные зоны - Рейкьянесская на юге, и Тьёднесская на севере [Ward, 1971, Saemundsson, 1974,1979].
2. Особенности формирования вулканогенных и вулканогенно-осадочных пород в разных климатических и ландшафтных обстановках
По способу образования все породы в Исландии могут быть разделены на три генетические группы.
В первую группу входят собственно вулканогенные образования, представляющие собой непосредственно продукты извержения. Основные черты этих отложений формируются под воздействием разнообразных эндогенных факторов. Однако ряд структурных и текстурных особенностей вулканитов (например, подушечные лавы и брекчии, гиалокластиты, гидроэксплозивные туфы) образуются в результате воздействия на магматический расплав внешних факторов (извержение в толще льда или в воде). исландия рифтовый плейстоценовый
Во вторую группу пород объединены вулканогенно-осадочные отложения, образование и основные признаки которых возникают при воздействии эндогенных (вулканических) и экзогенных факторов синхронных вулканическим извержениям.
Третья группа состоит из отложений, образовавшихся под воздействием экзогенных факторов. Наиболее активным и мощным экзогенным агентом были ледники. С их появлением связано начало интенсивного разрушения вулканогенных толщ острова и появление среди осадков разного генезиса вулканотерригенного материала и большого количества базальтовой гиалокластики.
Исследование парагенетических соотношений для отложений, формировавшихся в сходных физико-географических условиях, позволило оценить в общих чертах роль тектоники, вулканизма и климата как факторов, влияющих на процесс вулканогенно-осадочного литогенеза и установить основные этапы развития палеогеографии Исландии. Выделены ассоциации генетических типов отложений, характеризующие и отражающие основные обстановки формирования вулканогенных и вулканогенно-осадочных толщ в рифтовой системе Исландии: наземная доледниковая (миоцен-плиоценовые платобазальты), наземная ледниковая (плиоцен-плейстоценовые и современные гиалокластиты, подушечные лавы, отдельные лавовые потоки, морены) и ледниково-морская, шельфовая (плиоцен-плейстоценовая и современная).
Ассоциация платобазальтов включает два типа напластования лавовых толщ. Формирование одного из них связано с трещинными излияниями, а другой образуется в результате вулканических извержений центрального типа. В первом случае возникают полого залегающие стратифицированные толщи, в которых на больших расстояниях сохраняются одинаковые условия залегания и последовательность напластования. Во втором случае образуются сложные лавовые постройки, в которых отдельные лавовые потоки или их группы редко прослеживаются на расстояние более 5-10 км, а падения пород сильно варьируют. Главными компонентами осадочных отложений ассоциации платобазальтов являются хорошо выдержанные на большом расстоянии горизонты базальтовой (реже кислой) тефры и линзы вулканотерригенных отложений, иногда включающие прослои углей. Стратиграфическая мощность ассоциации составляет несколько километров.
Ассоциация "древних серых базальтов" представлена серией переслаивающихся субаэральных лавовых потоков с разнообразными вулканокластическими и осадочными (вулканотерригенными) породами, составляющими половину или даже более объема ассоциации. Переслаивание субаэральных лав и туфов с донными моренами (тиллитами), флювиогляциальными и озерно-ледниковыми отложениями представляют характерное сочетание отложений в наземном лавово-ледниковом парагенезе. Не постоянны, но характерны диатомиты, сидеромелановые туфы и тефроиды. Образование сидеромелановых туфов и тефроидов генетически связано с гидроэксплозивными извержениями базальтов. Мощность ассоциации составляет 500-600 м для плиоцен-плейстоценовых отложений и несколько десятков метров - для голоцена.
В другую ассоциацию объединяются отложения, образовавшиеся в подледных и внутриледниковых озерах, на шельфе в ледовой обстановке и за ее пределами. Отложения этой ассоциации объединяет сонахождение базальтовых подушечных лав, подушечных брекчий, скоплений гиалокластитов, гидроэксплозивных базальтовых туфов и разнообразных тефроидов, туффитов и основных морен. Отложения этой характерной ассоциации в Исландии объединяются в “формацию Моуберг“.
В составе этой ассоциации выделено три парагенетически комплекса отложений. Морской парагенез состоит из подушечных лав, гидроэксплозивных туфов, морских тефроидов, туффитов и туфогенных песчаников с остатками морской фауны. Паралический парагенез включает подушечные лавы, гиалокластиты, переслаивающиеся с основными моренами. Внутриледниковый (интрагляциальный) парагенез образован подушечными лавами, гиалокластитами, гидроэксплозивными туфами и основными моренами. Потоки субаэральных лав разной протяженности составляют постоянный, генетически закономерный элемент во всех трех парагенезах.
Морской парагенез. Многие детали формирования вулканогенных отложений на шельфе удалось установить при рассмотрении способа образования и закономерностей сочетания различных типов отложений на примере острова-вулкана Суртсей, возникшего в море к югу от Исландии в 1963 году [Thorarinsson, 1965, 1966]. Условия образования и типы вулканических продуктов, образующихся при извержении на шельфе, подробно рассмотрены в работах [Ахметьев и др., 1978, Гептнер, 1980]. Отложения морского парагенеза известны среди эоплейстоценовых и плейстоценовых толщ. Формирование их продолжается в Исландии в наши дни.
Интрагляциальный парагенез объединяет отложения, образовавшиеся при извержении вулканов в толще ледниковых покровов. Появление и распространение интрагляциальных отложений связано с существованием уже в плиоцене на территории Исландии мощных ледниковых покровов. Этим обстоятельством определяются рамки стратиграфического распространения интрагляциальных отложений. Молодые отложения этого парагенеза распространены в верхнем плейстоцене. В строении длительно формировавшихся интрагляциальных построек вскрываются неоднократно чередующиеся в разрезе накопления подушечных лав, подушечных брекчий, гидроэксплозивных туфов и тефроидов, потоков субаэральных лав и ледниковых отложений (основных морен). Подробнее строение интрагляциальных отложений рассмотрено в работах [Ахметьев и др., 1978, Гептнер, 1977, 1980].
Паралический парагенез. Отложения этого парагенеза формировались в основном в водной обстановке на шельфе и на прилегающей суше при извержении в толще ледниковых покровов и за их пределами в межледниковые периоды. Наибольшая мощность отложений гляциального шельфа, достигающая 1-1,5 км, отмечена в современной зоне рифтогенеза на севере и юге острова.
Основными компонентами паралического парагенеза являются подушечные лавы и гиалокластиты. Подушечные лавы и гиалокластиты неоднократно сменяют друг друга в разрезе, а по латерали связаны фациальными переходами. Туфы, т.е. продукты эксплозивной деятельности практически отсутствуют. Формирование отложений происходило при неоднократном и значительном перемещении края ледниковых покровов, спускавшихся на шельф Исландии. Суммарная наблюдавшаяся мощность плейстоценовых паралических отложений в береговых разрезах достигает 600-700 метров.
Горизонты субаэральных лав и основных морен, залегающие среди подушечных лав и гиалокластитов маркируют периоды прекращения подводных извержений и распространения ледниковых покровов на шельф соответственно. Широкое развитие гиалокластики в составе паралического парагенеза обусловлено спецификой подводного извержения базальтов, заключающееся в том, что наряду с формированием подушечных лав большую роль играло подводное лавовое фонтанирование (пульверизация и разбрызгивание раскаленного расплава в воду), продуцирующее большое количество гиалокластики.
Гранулометрический и минералогический состав вулканотерригенных отложений платобазальтов. Во время накопления платобазальтов кластический материал формировался главным образом за счёт разрушения и переотложения свежей, несцементированной тефры (синхронно-переотложенный материал). Это определило специфику минералого-петрографического состава и гранулометрический состав образовавшихся пород. Гравелиты глыбовые, валунные и галечные накопления в платобазальтах имеют локальное распространение. Главную роль в строении вулканотерригенных отложений играют песчаники, пески и алевролиты. Слоистость в тонкозернистых отложениях горизонтальная, нечёткая, слабо проявляющаяся при смене гранулометрического состава обломков. В горизонтах, соответствующих времени активной деятельности крупных вулканических аппаратов центрального типа в толще миоценовых платобазальтов присутствуют диамиктиты, слагающие неслоистые и несортированные отложения селевых потоков и гравитационных обвалов. Мелкозернистый состав вулканотерригенных отложений, слабая обработка кластических компонентов, плохо выраженная горизонтальная слоистость с линзовидным распределением материала разного гранулометрического состава указывают на накопление основной массы вулканотерригенных пород мелкими, временно существовавшими потоками. Их формирование произошло в основном за счёт выпавшей из воздуха тефры и переотложения её ветром и временными водотоками. На периферии конусов выноса возникали благоприятные условия для образования озерных и болотных отложений. Важно подчеркнуть, что в составе миоценовых вулканогенно-осадочных отложений нет пород, включающих терригенный глинистый материал. Этот факт определенно указывает на отсутствие процесса преобразования (выветривания) рыхлых осадков на поверхности лав или переотложения продуктов гидротермально измененных базальтоидов.
Отложения на наземных и подводных склонах вулканов
Наиболее активным и мощным агентом разрушения лавовых толщ были ледники, с появлением которых связано возникновение глубоко расчлененного рельефа. В это время формируются отложения разного генезиса, содержащие большое количество базальтовой гиалокластики - продукта подледных и подводных извержений. На суше особенности развития ледниковых покровов целиком или в значительной степени определяли существование помимо морен и водноледниковых образований появление других осадочных отложений, среди которых важную роль играют коллювиальные, делювиальные, солифлюкционные накопления.
Главным фактором, влиявшим в ледниковый период на появление и формирование основных особенностей вулканогенно-осадочных отложений, являлся подлёдный (подводный) вулканизм. В первую очередь это сказалось на разнообразии отложений, формировавшихся на склонах и по периферии вулканических построек действовавших в интрагляциальных, а на шельфе в морских условиях (подводный коллювий, субаэральный коллювий, тефроделювий). Склоновые отложения четко подразделяются на две группы. Одну, наиболее широко распространенную, составляют отложения, формировавшиеся одновременно с вулканическими извержениями. Это склоновые отложения синхронные извержению.
По составу и характеру распространения четко выделяется два типа эксплозивной вулканокластики базальтового состава. При наземных эксплозиях тефра полностью или в большей части состоит из окристаллизованного (тахилитового) материала, отлагавшегося на небольшом расстоянии от центров извержения, ареал распространения не превышает 2030 км. В наземной обстановке на поверхности лавовых покровов тонкая фракция тефры легко переотлагалась ветром. Тефра, образующаяся при извержении расплава в воду или ледниковый покров (гидроэксплозии), содержит большое количество закалочного (сидеромеланового) стекла. Основная масса сидеромелановой тефры слагает насыпной конус или отлагается в водоёме в непосредственной близости от центра извержения и переотлагается затем течениями. При подлёдных извержениях рыхлый материал выносится селевыми потоками.
Другая группа склоновых отложений образуется при разрушении относительно древних вулканогенных отложений. Это гравитационный коллювий, представленный, в основном, грубообломочным материалом, слагающим более или менее мощные шлейфы подножья. В составе этой группы рассматриваются склоновые отложения, накапливавшиеся в зоне гидротермальных проявлений (сольфатарные поля) на поверхности земли, включающие большое количество глинистых минералов разного состава.
3. Вулканогенно-осадочные отложения гляциального шельфа Исландии
Большие мощности вулканогенно-осадочных отложений формировались в пределах гляциального шельфа в конце плиоцена и особенно в плейстоцене. Эти отложения отличаются рядом характерных особенностей, связанных с извержением вулканов в толще ледникового покрова на побережье и в воде на прилегающем шельфе.
Состав, строение и мощность отложений гляциального шельфа Исландии зависят от того, образуются они в зоне рифтогенеза или на флангах рифтовой системы. В зоне рифтогенеза состав и количество обломочного материала определялся в основном характером и интенсивностью вулканических извержений. За пределами зоны активных вулканических проявлений главную роль при накоплении обломочного материала на шельфе играла экзарационная деятельность ледников.
За последние 4-5 млн. лет территория Исландии испытала около 20 ледниковых периодов [Geirsdottir et al., 2007]. Возраст наиболее древних ледниковых горизонтов (около 2 млн лет) установлен в разрезе шельфовых отложений группы Брейдавик. В составе этих отложений выделяется 12 горизонтов диамиктитов, переслаивающихся с водноледниковыми и вулканогенными отложениями отождествляемыми с ледниковыми периодами [Eiriksson, 1981]. Нельзя исключить и того, что часть диамиктитов могла быть сформирована катастрофическими водно-ледниковыми потоками при подлёдных извержениях и не может соответствовать периодам продвижения на шельф ледниковых покровов.
Вулканогенно-осадочные шельфовые отложений изучались в разрезах, протягивающиеся на большое расстояние на севере юге, юго-западе и острова. На севере, на полуострове Тьёднес в бухте Брейдавик в разрезе плиоцен-плейстоценовых отложений вскрыты отложения наземных и подводных извержений. Здесь гиалокластиты и наземные потоки лав переслаиваются с водноледниковыми отложениями, основными моренами и морскими осадками. Обломочный вулканотерригенный материал состоит главным образом из продуктов разрушения базальтов. Помимо базальтов были найдены единичные обломки гранитов и гнейсов, свидетельствующие о возможности поступления в прибрежные районы Исландии в плиоцене экзотического каменного материала с дрейфующим льдом. Рыхлые вулканогенные образования представлены главным образом мелкозернистой базальтовой (сидеромелановой) гиалокластикой, формировавшейся при извержениях в толще ледниковых покровов и на шельфе в открытом водном бассейне в результате гидроэксплозий.
На юге на расстоянии нескольких десятков километров в обрывах древнего клифа изучены вулканогенные и вулканотерригенные отложения, формировавшиеся при подлёдных извержениях на шельфе или на прилегающей к нему низменной части суши. В составе осадочных отложений основную роль играют донные морены (тиллиты), прослеженные на большое расстояние. Строение шельфовых отложений в этом районе подробно рассматривается в работе [Исландия и срединно-океанический хребет. Стратиграфия. Литология., 1978]
На юго-восточном фланге рифтовой зоны формирование шельфовых отложений исследовалось в пределах крупного эрозионного вреза в мощной толще вулканитов, непосредственно примыкающей к краю современного ледникового покрова Ватнайёкудль. Здесь вулканогенные, ледниковые (тиллиты) и морские плиоцен-плейстоценовые отложения, заполняют крупную погребенную троговую долину. В днище трога залегает горизонт тиллита (основная морена), вложенный в мощную толщу подушечных лав. Максимальная мощность осадочных отложений оценивается в 120 метров. Осадочные отложения представлены тонко- и среднезернистыми, горизонтально- и волнисто-слоистыми мелкозернистыми тефрогенными песчаниками. Кровля осадочной толщи сильно эродирована ледником и перекрыта тиллитом. Среди крупных обломков в этом горизонте тиллита найдены породы, содержащие морские раковины пелеципод, фораминиферы и балянусы. На основании этих находок можно считать, что вулканогенно-осадочные отложения здесь формировались в прибрежной обстановке и частично сложены морскими осадками.
На полуострове Рейкьянес скважинами вскрыто более 1000 метров вулканогенно-осадочных шельфовых отложений, включающих раковины морских моллюсков. Разрез здесь состоит из многократного переслаивания осадочных отложений с гиалокластитами, залегающими в виде вытянутых линз, и потоками лав наземных базальтов. Извержения вулканов происходили, вероятно, на небольшой глубине и при неравномерном погружении этого участка шельфа. В этом случае также как это наблюдалось на современном острове-вулкане Суртсей (1963-66 гг.) выше уровня воды формировались пласты наземных лав [Thorarinsson, 1966, Einarsson, 1994].
Важнейшей чертой гляциального шельфа в зоне активных вулканических проявлений являются большие мощности отложений и наличие в их составе несортированных грубообломочных отложений катастрофических водных потоков. При извержении в толще льда формируются мощные потоки талых вод, транспортирующие и отлагающие большое количество несортированных осадков. Контакты и вложение неслоистых, несортированных осадков катастрофических потоков в слоистых отложений наблюдались в разрезах плиоцен-плейстоценовых шельфовых отложений. В селевых отложениях видны многочисленные следы размыва, крупные обломки, “плавающие” в средне- и тонкозернистом матриксе, состоящем из разнообразной гиалокластики и пористых обломков тефры.
4. Состав, строение и условия формирования горизонтов базальтовой тефры в толще платобазальтов
В составе стратифицированных вулканогенных толщ платобазальтов эксплозивные образования имеют подчинённое значение. При наземных извержениях базальтов по способу образования в составе вулканокластического материала можно различать тефру фреатомагматических, фреатических и гидроэксплозивных извержений и лавового фонтанирования. По вещественному составу среди эксплозивных отложений платобазальтов выделяется три группы. Одну составляют витрокластические пеплы, состоящие в основном из обломков сидеромеланового стекла (сидеромелановая тефра). Нередко, помимо стекла, в небольшом количестве (первые проценты) присутствуют крупные кристаллы (вкрапленники) плагиоклазов и пироксенов. Другую группу составляют эксплозивные отложения, состоящие главным образом из литокластических обломков (шлаки, лапилли и более мелкие, обычно пористые обломки) с небольшим количеством стекла в мезостазисе (тахилитовая тефра). Смесь витро- и литокластики слагает третью группу тефровых отложений.
Типичной чертой строения разрезов платобазальтов является частое чередование отдельных потоков базальтовых лав с синхронно, и синхронно-переотложенной тефры, включающей мелко- и тонкозернистые фракции сидеромеланового стекла, основного компонента “красных горизонтов”. Суммарная мощность тефры в лавовой толще может достигать 2% при средней мощности горизонтов тефры 2030 см. Каждый горизонт представляет собой серию сильно вытянутых линз, мощность отдельных раздувов в которых достигает иногда 50 см и более. Слои тефры различной мощности (от первых см. до 1 м), перекрывающиеся пластами лавы, окрашены в красный и красно-кирпичный цвет (red beds).
Особенно отчетливо эффект внешнего воздействия (прогрева) перекрывающих лавовых потоков виден тогда, когда породы "красных горизонтов" содержат крупноалевритовые и песчаные обломки сидеромеланового стекла. В этом случае центральные части обломков сохраняют первоначальный желто-зеленый или бледно-коричневый цвет, а окисленная зона красного цвета развита только по периферии частиц. В нижней части наиболее мощных слоёв тефры обломки сидеромеланового стекла остается не окисленными. Появление красного цвета связано с замещением в сидеромелановом стекле большей части закисного железа окисным. Это удалось подтвердить при прогреве в лабораторных условиях современной сидеромелановой кластики.
Зоны красного цвета появляется не только в слоях базальтовой тефры, но в рыхлых отложениях другого генезиса, если они содержали значительное количество сидеромелановых обломков в аллювиальных, озерных, ледниковых (тиллитах) отложениях, перекрытых потоками лав. Красный цвет в этих отложениях отмечается только в тех случаях, когда лавы изливались на осадки, слагавшие сухую поверхность. В подошве лавовых потоков, излившихся в озеро или на влажный и мягкий грунт в долине реки зона красного цвета отсутствует.
В литературе существует представление, что межбазальтовые горизонты красно-коричневого цвета (red beds), образовавшиеся на переотложенных ветром пеплах, являются почвенными образованиями, отражающими климатические условия значительно более теплые современных, сходные с латеритами [Saemundsson, 1978; Roaldest, 1883, Einarsson, 1994]. Проведённое нами исследование не подтверждают такой точки зрения. Межбазальтовые отложения красного цвета не имеют признаков почвообразования. Даже в самых мощных горизонтах (11,5 м) отсутствует вертикальная зональность, характерная для отложений, преобразованных почвенными процессами. Условия формирования “красных горизонтов” (red beds) базальтовой тефры или осадочных пород с участием сидеромеланового стекла установлены вполне определенно. Появление красного цвета в этих отложениях, связано с термическим воздействием излившихся на них лав.
5. Изменение пород на поверхности земли и при воздействии низкотемпературных подземных вод
При изучении особенностей гидротермальной минерализации вулканитов на поверхности земли и глубоко в толще пород важно было выяснить, как долго вулканический материал, после извержения на поверхности земли или под водой, остаётся неизменённым, если на него не было воздействия нагретых подземных вод? Был проанализирован имеющийся в литературе и собственный материал о составе наземных и подводных лав и гиалокластитов, образовавшихся при извержении базальтов в мелководных озёрных, ледниково-озёрных и морских обстановках, а также на контакте расплава с водой и паром на поверхности земли. Полученные результаты показали, что кристаллические разности базальтов вне зоны воздействия нагретых вод длительное время (миллионы лет) остаются неизменёнными. Все минеральные образования, заполняющие газовые полости и трещины в наземных и подводных вулканитах, являются вторичными, образовавшимися после консолидации расплава.
В работе рассматривается пример взаимодействия базальтового расплава с водой в поверхностных условиях на примере вулканитов, сформировавшихся в зоне фреатических эксплозий на лавовом потоке. Исследованы особенности строения двух мощных лавовых покровов, заполнивших обширное обводнённое понижение в рельефе. Лавовое озеро молодого потока Лаксау, образовалось около 2000 лет назад, заполнив болотистое понижение на территории современного озера Миватн. Канатная структура на поверхности лав свидетельствует о большой подвижности расплава, вытекавшего из лавового озера и распространившегося вниз по долине реки на большое расстояние. Поток базальтовой лавы мощностью около 15 м во время фреатических взрывов и эксплозий подвергался интенсивному воздействию поверхностных вод и пара. Свидетелями этого являются многочисленные шлаковые конуса фреатических эксплозий и лавовые колоны, образовавшиеся в месте прорыва и быстрого охлаждения и консолидации расплава паром. Все породы здесь остались свежими, минералы вкрапленники (плагиоклазы и оливины) не имеют следов изменения. Мельчайшие газовые полости (визикулы) в лаве и в тефре фреатических эксплозий остаются пустыми. Результаты химических анализов свидетельствуют об отсутствии окисления и изменений в лавах и тефре, испытавших воздействие горячего пара и экспонировавшихся на поверхности земли в течение 2000 лет
Не обнаружено изменения состава базальтов, образовавшихся при подлёдных (подводных) извержениях. Верхняя и нижняя части крупных лавовых подушек отличаются по структуре: в нижних частях крупные газовые полости вытянуты вертикально, а в верхних зоны крупной везикульярности распределены согласно с рельефом поверхности подушки. Это связано с разной скоростью остывания и консолидации расплава в разных частях крупной подушечной отдельности. В верхней части, остывавшей быстрее, консолидация расплава происходила с поверхности, а в нижней медленнее в результате чего и газовая фаза могла дольше проникать вверх через расплав. Подушечные лавы не содержат вторичных минералов и не имеют признаков химического изменения (окисления) во время или после извержения. Содержание воды в базальтах в нижней и верхней частях лавовых подушек практически одинаково. Нижние части подушек обогащёны крупными кристаллами оливина и отличаются повышенным содержанием MgO, что определенно указывает на низкую вязкость расплава и возможность гравитационного оседания кристаллов оливина.
Изучение современных лав и тефры вулкана-острова Суртсей (извержение в 1963-66 гг.) также не даёт оснований согласиться с представлением о том, что при активном контакте базальтового расплава и воды (пара) происходит изменение состава расплава и формирование вещества, предшественника глинистых минералов [Шутов, 1982; Коссовская и др., 1982; Peacock, 1926 и др.]. Исследование гиалокластики на сканирующем микроскопе показало, что закалочное сидеромелановое стекло даже в самых мелких фракциях остаётся свежим. Сопоставление химического состава сидеромелановой гиалокластики и лав наземных извержений подтвердило их полное тождество и отсутствие следов воздействия воды на расплав в момент гидроэксплозий.
Палагонит и процесс палагонитизации. Исследовались особенности состава и распределения петрогенных элементов в закалочном сидеромелановом стекле и на начальной стадии его изменения на поверхности земли в современных климатических условиях и в толще движущегося льда, а также в обстановке гидротермального воздействия. Эта стадия изменения сидеромеланового стекла, рассматривающаяся во многих работах, называется палагонитизацией, а формирующееся вещество палагонитом.
Палагонит вещество непостоянного химического состава характерный продукт вторичного изменения базальтового закалочного стекла, широко распространенного на дне океанов и в составе вулканитов на океанических островах. Образование палагонита происходит как в водных условиях, так и на суше, в зоне изменения гиалокластитов и корок закалки на поверхности канатных и подушечных базальтов. Исследование вулканических стекол разного состава показало, что палагонит это продукт изменения только базальтового закалочного стекла сидеромелана. Анализ взаимоотношения сидеромелана, палагонита и комплекса вторичных минералов определённо указывает на эпигенетический характер процесса палагонитизации [Гептнер, 1977б]
Состав, структура и условия образования сидеромелановых стекол. Сидеромеланом называется прозрачное и полупрозрачное базальтовое стекло, в котором рудные минералы отсутствуют полностью или встречаются очень редко, в то время как валовое содержание железа достигает 10, а иногда и более процентов. Предполагается, что генетическая связь палагонита и сидеромелана обусловлена существованием слабых структурных связей в силикатном каркасе этого типа стекла и равномерным распределением в нём большей части железа в виде легко окисляющейся двухвалентной формы.
Постепенный переход закалочного сидеромеланового стекла в тахилитовый тип породы и в раскристаллизованные базальты неоднократно наблюдался в шлифах при изучении даек, на поверхности субаэральных и субаквальных лавовых тел, крупных обломков субаэральной тефры вулкана и пульверизационных гиалокластитов.
Сходство сидеромелановых стекол и генетически связанных с ними базальтов подтверждено при исследовании химического состава подушечных лав, гидроэксплозивных сидеромелановых туфов и субаэральных потоков толеитовых базальтов, слагающих единый интрагляциальный вулканический комплекс трещинного извержения (хр. Каульфстиндар юго-западная Исландия), а также для сидеромелановой гидроэксплозивной тефры, стеклянной фазы обломков тефры и лав щелочных оливиновых базальтов наземного этапа извержения вулкана-острова Суртсей (1963-67 гг).
Распределение петрогенных элементов в стекле. Сравнительный анализ характера распределения петрогенных элементов в корке закалки и в подушечных лавах показал, что все петрогенные элементы могут быть разделены на две группы: элементы, распространенные в стекле и минералах вкрапленниках, и элементы, которые концентрируются только в стекле. К первой группе относятся Si, Al, Ca, Na, Fe и Mg, а ко второй Ti и K. Si и Ca довольно равномерно распределены между стеклом, пироксенами и плагиоклазами, а Al и Na значительно больше в плагиоклазах, чем в стекле. Fe, Mg, Ti и K равномерно распределены в стекле, а в оливинах и пироксенах содержание Mg по сравнению со стеклом резко увеличивается. Ti и K в плагиоклазах, пироксенах и оливинах отсутствуют [Гептнер, Селезнева, 1979].
Палагонитизация сидеромеланового стекла. Палагонитом предложено называть вещество, формирующееся при гидратации и частичном выщелачивании, химически и структурном изменении сидеромелана. Химический состав палагонита непостоянен, т.к. степень гидратации и интенсивность выноса различных элементов из стекла зависят от того, в каких условиях они происходят (температура, химический состав и минерализация соприкасающихся со стеклом вод).
В обстановке интенсивной палагонитизации, когда обломки сидеромелана оказываются измененными почти полностью, внешний контур обломков, замещенных сначала палагонитом, а потом глинистыми минералами, остается неизменённым, четким, а заключенные в него вкрапленники оливина, пироксена или плагиоклаза часто сохраняются свежими. По микроструктурным особенностям выделяются зональный и незональный (чешуйчатый) типы палагонита. На контакте с сидеромеланом часто образуется крупнопористый палагонит. Этот тип палагонита назван “корешковым” [Гептнер, 1977б]. Детальное исследование на сканирующем микроскопе показало, что формирование палагонита с подобной структурой может быть связано с деятельностью бактерий, участвующих в разрушении стекла.
При исследовании процесса преобразования закалочного стекла и замещения его палагонитом в зоне воздействия на стекло нагретой воды установлено, что малоподвижными, практически не распространяющимися за пределы изменяющегося стекла были Ti и Fe. Перераспределение и концентрация титана отмечена только в зоне “корешковой” палагонитизации. Согласно полученным данным при формировании палагонита в гидротермальных условиях из стекла выносятся только (или в основном) Mg, Na и Ca. Остальные петрогенные элементы сидеромеланов практически полностью наследуются палагонитом, а это означает, что значительная часть компонентов, слагающих минералы цемента, запечатывающих гиалокластиты, поступала в зону изменения породы с гидротермальными растворами.
При изменении пород в зоне воздействия пресных нагретых вод смектиты и цеолиты образовались позже палагонита и цементируют палагонитизированные обломки гиалокластики. Это определенно указывает на то, что формирование минералов, цементирующих рыхлую гиалокластику, произошло в основном за счет элементов, принесенных гидротермами. Вторичные минералы в крупных межзерновых пространствах нередко образуют стратиформные полосчатые выделения, которые “притыкаются” к зоне палагонитизации. Подобные соотношения свидетельствуют о существовании перерыва между образованием палагонита и комплексом вторичных минералов цемента в гиалокластитах.
Изменение базальтового стекла в зоне выветривания и в толще движущегося льда. При изучении палагонитизации в зоне выветривания анализировалось сидеромеланове стекло современного извержения вулкана Суртсей, а также стекло тефры из горизонта в зоне абляции, базальтовая тефра из скважины, пробуренной в толще ледникового покрова, и тефра подлёдного извержения вулкана Катла (1357 г.), залегающая на прибрежной низменности в слое болотистой почвы.
При исследовании стекол разных размерных фракций гидроэксплозивной тефры вулкана Суртсей (1963-66 гг.), экспонировавшейся на поверхности насыпного конуса 6 лет, установлено, что изменения обломков всех размерных фракций (песчаной и пелитовой) нет. Поверхность пепловых частиц совершенно свежая, ровная, с сохранившимися следами пластических деформаций и мельчайших газовых пузырьков. Обломки грубой пелитовой размерности имеют острые углы и грани. Это позволяет считать, что при низких температурах и высокой влажности, существующих сейчас в южной Исландии, сидеромелановое стекло на поверхности земли может оставаться неизмененным в течение нескольких лет.
Напротив, в ледовой обстановке сидеромелановое стекло достаточно быстро разрушается. В результате содержание в моренах большого количества легко разрушающегося сидеромеланового стекла привело к тому, что даже среди самых молодых плейстоценовых ледниковых отложений, никогда не подвергавшихся гидротермальной переработке, появились сцементированные основные морены, по своей прочности нисколько не уступающие древним тиллитам. Плейстоценовые тиллиты особенно часто встречаются в тех районах острова, где ледники покрывали толщи формации Моуберг, содержащие большое количество базальтовой (сидеромелановой) гиалокластики. Образование прочного тиллита в процессе переработки движущимся ледником сидеромеланового стекла установлено на примере изучения вещественного состава плейстоценовых основных морен, располагающихся вне зон современной или древней гидротермальной деятельности.
6. Биоморфные структуры (минерализованные микроорганизмы) в палагоните
При изменении базальтового стекла и замещении его палагонитом в условиях умеренно-холодного и влажного климата на поверхности земли важную роль играет микробиальная активность.
Среди исследованных микроструктур палагонита, образовавшегося в зоне выветривания и в почве, выявлен ряд структурных элементов, которые могут рассматриваться как минерализованные фрагменты микробиоты. В палагоните из толщи движущегося льда, подобные микроструктурные образования не встречены.
В составе минерализованной микробиоты можно различать: 1 единичные круглые и овальные тела и их скопления, располагающиеся на поверхности отдельных зон палагонита; 2 круглые уплотнения, выделяющиеся в пористой структуре палагонита; 3 бесструктурные нити и вытянутые и ветвящиеся структуры со слабо выраженным зональным строением. Нити и круглые тела часто встречаются совместно; 4 на поверхности зональных образований присутствуют скопления мельчайших комочков, которые предположительно могут быть идентифицированы как нанобактерии [Folk, 1993, Folk, Lynch, 1997]. Минерализованные микроорганизмы в почве встречаются рядом с крупными фрагментами частично минерализованной органики растительного происхождения.
Микроструктура минерализованных микроорганизмов
Идентификация минерализованной микробиоты выполнена по литературным данным и на основе сравнительного анализа с остатками современных, частично минерализованных микроорганизмов в гидротермалитах, формирующихся из горячих подземных вод и на прогретых участках сольфатар.
...Подобные документы
Основные этапы развития учения о нефтегазоносных бассейнах. Принципиально новый этап изучения осадочных бассейнов. Элементы районирования нефтегазоносных бассейнов. Очаги нефтегазообразования и зоны нефтегазонакопления. Литогенез глубоководных осадков.
реферат [39,3 K], добавлен 24.01.2011Процессы химического и физического преобразования минералов и горных пород в верхних частях земной коры и на ее поверхности. Гипергенез и кора выветривания, причины физического разрушения или дезинтеграции. Факторы литогенеза, осадочные горные породы.
реферат [26,9 K], добавлен 23.04.2010Осадочные и вулканогенно-осадочные месторождения. Вулканогенные и осадочные компоненты полезных ископаемых. Размещение колчеданных месторождений на Урале. Волковское медно-титаномагнетитовое месторождение. Процесс формирования осадочных бентонитов.
контрольная работа [64,1 K], добавлен 06.05.2013Анализ особенностей образования сапфиров в природе. Изучение физико-оптических свойств, месторождений и главных стран-экспортеров этого драгоценного камня. Методы выращивания синтетических корундов. Сравнение стоимости природных и синтетических сапфиров.
контрольная работа [67,5 K], добавлен 13.10.2012Главные сведения о минералах и их основные свойства. Исследование происхождения, условий нахождения и природных ассоциаций минералов. Классификация изверженных, осадочных и метаморфических пород. Принцип формирования картотеки рентгеновских данных.
реферат [45,8 K], добавлен 04.04.2015Исследование особенностей осадочных и метафорических горных пород. Характеристика роли газов в образовании магмы. Изучение химического и минералогического состава магматических горных пород. Описания основных видов и текстур магматических горных пород.
лекция [15,3 K], добавлен 13.10.2013Высокая оперативность сбора пространственных данных об объектах съемки делает наземное лазерное сканирование весьма перспективным методом получения информации при организации мониторинга сложных инженерных сооружений. Методика наземной лазерной съемки.
автореферат [2,3 M], добавлен 10.01.2009Цель палеогидрологических реконструкций - обнаружение рудных месторождений. Петрологическое изучение пород. Расшифровка тектонических событий. Исследовании месторождения, оценка глубины эрозии гидротермальной системы при современной земной поверхности.
реферат [2,3 M], добавлен 06.08.2009Хемогенные и органогенные осадочные горные породы. Геологическая деятельность рек. Развитие речных долин. Тектоническое районирование Российской Федерации. Элементы залегания геологических объектов. Горные породы и полезные ископаемые Кемеровской области.
контрольная работа [255,0 K], добавлен 25.01.2015Исследование особенностей почв различных природных зон России. Анализ рельефа, растительности и климата местности. Изучение гранулометрического состава разреза, содержания карбонатов и гумуса в почве. Валовый состав почвы. Почвенный поглощающий комплекс.
курсовая работа [42,0 K], добавлен 25.04.2015Горные породы как природные образования, слагающие разнообразные геологические тела, анализ основных групп: магматические, осадочные, метаморфические. Характеристика и особенности видов природных каменных материалов: мрамор, известняк, песчаник.
реферат [66,9 K], добавлен 06.12.2012Описание главных особенностей внутреннего волнения в шельфовой зоне Белого моря. Общая характеристика и схема расположения районов работ выполняемых 20–24.07.2011 года. Расчет профиля частоты Вяйсяля-Брента, а также определение параметра Урселла.
курсовая работа [2,7 M], добавлен 16.05.2014Изучение закономерностей гидрохимического режима водоема и выяснение влияния различных видов антропогенных воздействий на естественный гидрохимический режим. Пространственно-временной анализ гидробиологических показателей в водных объектах района.
дипломная работа [1,1 M], добавлен 01.04.2017Характеристики гидротермальных систем и их геологические позиции. Глубина внедрения интрузий. Проницаемость пород фундамента и пород, слагающих вышележащие толщи. Образование длинных латеральных зон растёков. Размеры типичной гидротермальной системы.
реферат [189,6 K], добавлен 06.08.2009Анализ жилищной ситуации: сфера обслуживания населения, проживающего в данном микрорайоне и пограничных участках. Исследование культурно-исторических и природных объектов. Повышение уровня автомобилизации на улицах, прилегающих к исследуемой территории.
курсовая работа [105,2 K], добавлен 24.05.2009Геологическая съемка в районах развития вулканогенных образований. Предполевое дешифрирование аэрофотоматероалов и составление предварительной геологической карты. Методика опробования вулканогенных пород для выявления их минералогических особенностей.
реферат [24,5 K], добавлен 12.12.2010Сравнительный анализ технологий управления региональной недвижимостью, а также общие рекомендации по их реорганизации на территории Тульской области. Оценка экономической эффективности использования конвертера данных геоинформационной системы GeoCad.
дипломная работа [540,9 K], добавлен 08.11.2010Геологическое строение и нефтегазоносность района. Изучение геологических особенностей залежей нефти в баженовской свите верхней юры и нижней части ачимовского комплекса усть-тазовской серии. Оценка перспектив доразведки и опытно-промышленной разработки.
дипломная работа [1,7 M], добавлен 04.10.2013Обзор строения вулканов северной Камчатки, их основных частей и составляющих. Изучение химического состава продуктов извержения, установление очагов наибольшей вулканической активности. Анализ современных методов исследования вулканической деятельности.
курсовая работа [9,1 M], добавлен 17.05.2012Общая характеристика осадочных горных пород как существующих в термодинамических условиях, характерных для поверхностной части земной коры. Образование осадочного материала, виды выветривания. Согласное залегание пластов горных пород, типы месторождений.
курсовая работа [2,6 M], добавлен 08.02.2016