Возможности неметрических цифровых камер в наземной фотограмметрии

Характеристика цифровой фотограмметрии, виды наземной съемки. Методы наземного лазерного сканирования. Предпосылки владения точной информацией из имеющегося снимка. Характеристика существующих алгоритмов калибровки снимков, их основные достоинства.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 29.06.2017
Размер файла 17,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Возможности неметрических цифровых камер в наземной фотограмметрии

О.В. Гермак, Н.А. Калачева, О.А. Гугуева

В настоящее время в фотограмметрии произошли значительные изменения. Для улучшения и автоматизации многих фотограмметрических процессов в современной фотограмметрии перешли на строгие и функциональные аналитические методы обработки [3].

На данный момент цифровое представление снимков получило довольно широкое применение, т.к. их трансформирование можно выполнить более строго, по сравнению с аналоговым фотоизображением. Кроме того, к цифровым снимкам можно применить преобразования, невозможные в аналоговой и аналитической фотограмметрии, например, проективные и нелинейные. Более того применение цифровых методов позволяет неоднократно копировать изображения с сохранением их качества, применять детальный анализ для улучшения их изобразительных свойств. Одно из основных достоинств цифровых изображений - это возможность создания высокоинформативных моделей изучаемых объектов и местности, что достигается применением векторных графических примитивов, как в плоскости снимка, так и в пространстве стереомодели [1, 3]. Таким образом, цифровая фотограмметрия доступна для многих отраслей народного хозяйства, т.к. не требует дорогостоящего оборудования.

Однако, на точности решаемых задач сказывается то, что цифровые снимки имеют более низкие изобразительные свойства и информативность, при сравнивании их с фотоснимками, кроме того для их обработки требуются большие вычислительные мощности [4].

В современных условиях наземная стереофотограмметрическая съемка (НСС), при меньшей стоимости работ, позволяет быстро, а также и в режиме «реального времени», получать большие объемы информации об изучаемых объектах. Вместе с тем, с использованием особых методов выполнения стереосъемки, имеются возможности для усовершенствования методов НСС.

На настоящий момент, для наземной стереофотограмметрической съемки появилось большое количество новых технических средств для получения снимков.

Перспективные сейчас методы наземного лазерного сканирования [5, 6] пока требуют использование методов НСС. Они дают возможность определять координаты большого количества опорных точек со значительной точностью, но их применение ограничено т.к., при относительно небольших объемах работ, используют дорогостоящее оборудование.

Использование систем глобального позиционирования (GPS - Global Position Systems) для создания геодезического обоснования значительно увеличивает точность решения задач, но по тем же причинам в основном применяется для геодезического обоснования аэросъемки [7, 8].

Для получения цифровых изображений в фотограмметрии применяют цифровые съемочные камеры (ЦСК) с большой информативной емкостью.

Использование непосредственно цифровых снимков позволяет полностью устранить фотохимический процесс и процесс сканирования, что исключает возникновение искажений за счет усадки фотоматериала и погрешностей сканирования, и как следствие потерь точности снимка. Кроме этого, возможность оперативного контроля получаемого изображения можно отнести к преимуществам большинства ЦСК. В основном они имеют высококачественные оптические системы, которые требуют учета нелинейных искажений. К недостаткам ЦСК относится низкое разрешение получаемого изображения, если сравнивать его со сканированными фотоснимками [8].

На данный момент для НСС используются в основном дорогостоящие прецизионные «профессиональные» цифровые съемочные камеры, которые обладают большой информационной емкостью. Параллельно с этим делаются попытки применять компактные «любительские» ЦСК, при относительно небольшой их стоимости. На рынке цифровых неметрических камер имеется большое разнообразие как профессионального, так и любительского оборудования. Например, довольно дорогие цифровые фотокамеры Canon EOS 5D c матрицей 21,1 мегапикселя и Hasselblad H4D c фотоприемной матрицей от 16 до 60 мегапикселей, а также относительно дешевая цифровая видеокамера с матрицей 640 пикс. х 480 пикс. Эти камеры имеют хорошие радиометрические характеристики, однако дисторсияобънктивоа может достигать 500 мкм. Большим достоинством этих камер является наличие в них оптической системы с переменным фокусным расстоянием, что позволяет более продуктивно выполнять съемку в стесненном пространстве улицы.

Предпосылкой владения точной информацией из имеющегося снимка, является знание точных калибровочных параметров неметрической цифровой камеры. Для того чтобы применять цифровые камеры для производственных целей, для каждой конкретной камеры необходимо знать и уметь учитывать систематические искажения (ошибки). Учет этих искажений вести довольно трудно, т.к. бытовые «любительские» камеры имеют ряд недостатков: не известны элементы внутреннего ориентирования, большая дисторсия объектива камеры и ряд других. Поэтому чтобы выявить соответствие полученных снимков центральной проекции, необходимо выполнять калибровку камеры. При калибровке камеры нужно решить определенные проблемы: создать систему координат снимка, найти элементы внутреннего ориентирования, определить дисторсию объектива.

Так как, объектом определения систематических искажений является снимок, то появляется такое понятие как калибровка снимков.

Существуют несколько алгоритмов калибровки снимков.

В камеральных условиях перед фотосъемкой может применяться метод предварительной калибровки неизвестных элементов внутреннего ориентирования и дисторсии объектива. Достоинство метода состоит в том, что работа в лабораторных условиях позволяет достичь высокой точности определения параметров, однако эти параметры не постоянны во времени.

Неизвестные элементы внутреннего ориентирования и дисторсии объектива могут определяться с помощью специального математического аппарата - метод калибровки в процессе обработки, для их определения необходимо иметь не менее пяти опорных точек, а рекомендуется при этом работать с 8-10 точками на модель. Однако необходимо отметить, что для работы с метрической камерой достаточно иметь три точки на модель.

В методе самокалибровки, используются принципы, подобные взаимному ориентированию стереопары в аналоговых фотограмметрических приборах. Для этого случая нет нужды в наличии большого числа опорных точек. В соответствии с условием коллинеарности каждая точка объекта, ее изображение и центр проектирования должны находиться на одной прямой, т.е. луче. Связкой называется совокупность этих лучей, которые проходят через единый центр проектирования, а метод обработки результатов -- методом связок. [2]

На сегодняшний день калибровка может быть полностью автоматизирована. Т.е. возможно использовать неспециальные цифровые камеры массового производства при низких и средних уровнях точности задач прикладной фотограмметрии.

цифровой фотограмметрия калибровка снимок

Список литературы

1. Адаменко М.В. Цифровые фотоаппараты [Текст]: Справочник 2002-2003 гг / Адаменко М.В. - Москва: Майор, 2004. - 256 с.

2. Коева М.Н., Петрова В.П., Жечев Д.В. Возможности неметрических камер в наземной фотограмметрии [Текст] // Геопрофи. Электронный журнал, 2003. - №4. - С.19-21.

3. Бирюков B.C. Обработка цифровых снимков в фотограмметрии [Текст]: Монография / Бирюков B.C. - Москва: ВИУ, 2001. - 194 с.

4. Быков Р.Е., Фрайер Р. Цифровое преобразование изображений [Текст] // М.: «Горячая линия Телеком», 2003. -- 228 с.

5. Надеждин Н.Я. Техника цифровой фотографии [Текст] -- М.: «КУДИЦ-ОБРАЗ», 2004. -- 240 с.

6. Чибуничев А.Г., Овсянников И.В. Калибровка цифровых камер на основе изображений прямых линий [Текст] // Сборник докладов международной научно-технической конференции, посвященной 225-летию МИИГАиК. -- М.: МИИГАиК, 2004, с. 157-163.

7. Brandstatter G. Fundamentals of Algebro-Projective Photogrammetry [Электронный ресурс]. - Режим доступа: http://planet-austria.at/0xc1aa500d_0x00022343.pdf (доступ свободный) - Загл. с экрана. - Яз. англ.

8. Ryuji Matsuokaa, Kiyonari Fukuea, A study on calibration of digital camera [Электронный ресурс]. - Режим доступа: http://www.isprs.org (доступ свободный) - Загл. с экрана. - Яз. англ.

9. Жадан М.П. Разработка методики автоматизированного дистанционного обследования несущих строительных конструкций зданий и сооружений [Электронный ресурс] // «Инженерный вестник Дона», 2009, №2. - Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2009/127 (доступ свободный) - Загл. с экрана. - Яз. рус.

10. Добрынин Н.Ф., Пимшина Т.М. Использование космических средств позиционирования при обработке аэро- и космической информации [Электронный ресурс] // «Инженерный вестник Дона», 2013, №3. - Режим доступа: http://www.ivdon.ru/magazine/archive/n3y2013/1835 (доступ свободный) - Загл. с экрана. - Яз. рус.

Размещено на Allbest.ru

...

Подобные документы

  • Создание карт и планов. Применение фотограмметрии для решение различных научных и прикладных задач. Использование изображения для определения форм, размеров и положения объекта. Первые воздушные съемки. Основные периоды развития фотограмметрии.

    презентация [2,1 M], добавлен 21.05.2015

  • Применение лазерного сканирования в промышленности на примере исполнительной съемки. Создание трехмерной цифровой модели и комплекта обмерных чертежей Майнского гидроузла. Основные технические характеристики наземного лазерного сканера Z+F IMAGER 5006h.

    курсовая работа [4,6 M], добавлен 22.03.2015

  • Общие сведения об учете горных пород и полезного ископаемого, извлеченных из недр. Маркшейдерские замеры для учета горной массы. Основное отличие метода лазерного сканирования от традиционных тахеометров. Основные технологии GPS-съемок, сбор данных.

    реферат [7,6 M], добавлен 08.01.2016

  • Высокая оперативность сбора пространственных данных об объектах съемки делает наземное лазерное сканирование весьма перспективным методом получения информации при организации мониторинга сложных инженерных сооружений. Методика наземной лазерной съемки.

    автореферат [2,3 M], добавлен 10.01.2009

  • Формулы связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки. Условие, уравнения и элементы взаимного ориентирования снимков. Построение фотограмметрической модели и ее внешнее ориентирование.

    реферат [276,9 K], добавлен 22.05.2009

  • Принцип действия наземных лазерных сканеров. Классификация ошибок в результатах наземного лазерного сканирования. Использование сигнала, отраженного от поверхности объекта. Анализ точности лазерных сканирующих систем. Условия проведения испытаний.

    реферат [2,0 M], добавлен 16.12.2015

  • Понятие съемки как совокупности измерений, выполняемых на местности с целью создания карты или плана местности. Государственные геодезические сети. Особенности теодолитной съемки. Методы тахеометрической съемки. Камеральная обработка полевых измерений.

    реферат [21,7 K], добавлен 27.08.2011

  • Основные задачи геодезии в кадастровых работах. Аэросъемочная система лазерного картографирования ALTM 3100. Сравнение традиционных съемок и лазерного сканирования. Принципы построения и функционирования воздушных лазерных систем, их преимущества.

    дипломная работа [2,4 M], добавлен 15.02.2017

  • Цифровая модель рельефа как средство цифрового представления пространственных объектов в виде трёхмерных данных. История развития моделей, виды, методы их создания. Использование данных радарной топографической съемки (SRTM) при создании геоизображений.

    курсовая работа [2,8 M], добавлен 10.04.2012

  • Выбор способа аэрофотографической съёмки, масштаба залета, фокусного расстояния АФА, высоты фотографирования и числа плановых, высотных и планово-высотных опознаков. Расчёт высоты сечения рельефа, аэросъемки. Составление проекта фотограмметрической сети.

    курсовая работа [304,1 K], добавлен 18.11.2014

  • Сведения о съемке. Геометрические свойства снимков. Комбинированный и стереотопографический методы аэрофототопографической съемки. Масштаб горизонтального аэрофотоснимка. Влияние рельефа на аэрофотоизображение. Измерение высот по разности параллаксов.

    презентация [59,4 K], добавлен 22.08.2015

  • Сущность мензульной съемки. Анализ основных приборов и устройств этого метода геодезии. Проверка приборов и устройств мензульной съемки, подготовительные работы. Порядок выполнения мензульной съемки, ее недостатки и достоинства, современное состояние.

    презентация [1,3 M], добавлен 29.11.2015

  • Аэрофотосъемка и ее основные методы и требования. Цифровые фотограмметрические технологии создания карт и ортофотопланов. Ортотрансформирование снимков в программном комплексе OrthoPhoto SDS. Создание фрагмента контурной части карты в программе MapInfo.

    курсовая работа [2,9 M], добавлен 11.02.2013

  • Физико-географическая характеристика объекта. Топографо-геодезическая изученность территории. Проект АФС и размещение планово-высотных опознаков (ОПВ). Определение маршрутов АФС и границ тройного перекрытия снимков. Проект геодезической сети сгущения.

    курсовая работа [653,7 K], добавлен 23.04.2017

  • Топографо-геодезическая сеть и масштаб съемки. Обоснование точности съемки магниторазведочных работ, аппаратуры для рядовой съемки и наблюдения вариаций. Установка к работе магнито-вариационной станции. Методика полевой съемки и подготовка аппаратуры.

    курсовая работа [490,5 K], добавлен 11.03.2015

  • Определение географических координат углов рамки исходной трапеции. Характеристика плановых и высотных геодезических сетей на участке. Применение аэрофототопографической съемки для создания планов крупных масштабов. Процесс вычисления с системой GPS.

    курсовая работа [502,3 K], добавлен 10.02.2013

  • Основные цели и задачи аэрокосмических съемок в геодезии и исследовании природных ресурсов Земли. Фотопленки и объективы, применяемые в аэрофотосъёмке. Технология обработки результатов съемки камерой. Космическая фотосъемка, спутниковые изображения.

    реферат [4,4 M], добавлен 15.12.2014

  • Преимущества методов дистанционного зондирования Земли из космоса. Виды съемок, методы обработки снимков. Виды эрозионных процессов и их проявление на космических изображениях. Мониторинг процессов фильтрации и подтопления от промышленных отстойников.

    курсовая работа [8,4 M], добавлен 07.05.2015

  • Основные характеристики GPS приемника Trimble R3. Определение координат точки при помощи GPS съемки. Создание цифровой модели местности с помощью Trimble DTMLink. Съемка береговой полосы и русла реки. Передача полевых данных из контроллера в компьютер.

    методичка [8,2 M], добавлен 27.04.2015

  • Причины использования метода дешифрирования снимков. Влияние ледников на природу планеты. Оценка снежно-ледовых ресурсов Земли из космоса. Значение космических снимков. Этапы программы "космической помощи". Необходимость применения рекреационных карт.

    реферат [20,2 K], добавлен 17.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.