Исследование напряженно-деформированного состояния обделки подземных сооружений в зонах сопряжений

Разработка пространственной численной модели сопряжения тоннеля и вертикального ствола. Расчет компонентов объемного тензора напряжений в конечных элементах обделки и породного массива, а также перемещения и деформации в узлах конечных элементов.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 31.10.2017
Размер файла 373,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование напряженно-деформированного состояния обделки подземных сооружений в зонах сопряжений

М.С. Плешко1, И.В. Войнов2, А.А. Насонов3

1 Донской государственный технический университет

2Ростовский государственный университет путей сообщения

3Шахтинский институт (филиал)

Южно-Российского государственного политехнического

университета (НПИ) имени М.И. Платова

Аннотация

В статье рассмотрено численное моделирование зоны сопряжения тоннеля с вертикальным стволом. Разработка и расчет моделей осуществлялся в программном комплексе «ЛИРА», реализующем метод конечных элементов. Разработана пространственная численная модель сопряжения тоннеля и вертикального ствола. В результате расчетов определены все компоненты объемного тензора напряжений в конечных элементах обделки и породного массива, перемещения и деформации в узлах конечных элементов. Задача решена в упругопластической постановке шагово-итерационным методом. Установлено, что в характерных зонах влияния сопряжений, наблюдается значительное увеличение интенсивности эквивалентных напряжений, которое приводит к снижению запаса несущей способности обделки в 2 раза и более по сравнению с протяженными участками подземных сооружений.

Ключевые слова: тоннель, ствол, сопряжение, напряженно-деформированное состояние, породный массив, бетонная крепь.

Введение

Современный комплекс транспортного тоннеля представляет собой сложную подземную сеть, которая, помимо самого тоннеля, включает обслуживающие штольни, камеры, сбойки, вертикальные стволы и др. Сопряжения основной тоннельной выработки с перечисленными сооружениями характеризуются большими пролетами и сложной пространственной геометрией. Это может привести к усложнению условий работы обделки при эксплуатации тоннеля и требует отдельного анализа при обосновании параметров несущих конструкций тоннеля [1-2].

Оценка несущей способности обделки тоннельного комплекса в зонах сопряжений методами строительной механики или механики сплошной среды весьма затруднена. На помощь приходят численные методы математического моделирования, получающие все большое распространение для решения аналогичных задач [3-7]. В качестве примера такого подхода в статье рассмотрено численное моделирование зоны сопряжения тоннеля с вертикальным стволом.

Методика исследования

Разработка и расчет моделей осуществлялся в программном комплексе «ЛИРА», реализующем метод конечных элементов.

Рассмотрена односторонняя схема сопряжения пролетом 6,0 м, примыкающая к стволу диаметром также 6,0 м. Сопряжение и ствол в рассматриваемой зоне закреплены железобетонной обделкой толщиной 500 мм, класс бетона В30. С целью сравнения, параллельно выполнялся расчет модели протяженного участка ствола в аналогичных условиях.

Пространственные численные модели имели форму цилиндра, его размеры для исключения влияния граничных условий приняты: высота - 80 м; диаметр - 90 м. Для разбивки модели использован универсальный пространственный изопараметрический восьмиузловой конечный элемент. Размеры конечных элементов на внешних областях модели составляли 2,5 - 5,0 м, на внутренних - 0,25 - 0,5 м. Таким образом, применён принцип совмещения густой и разреженной сеток для уменьшения объема информации, описывающей численную модель. Граничные условия на боковой и нижней поверхностях модели заданы в форме ограничения перемешенный по нормали к ним, верхняя грань загружалась равномерно распределенным горным давлением.

Задача решалась в упругопластической постановке шагово-итерационным методом. В результате расчетов определялись все компоненты объемного тензора напряжений в конечных элементах обделки и породного массива, перемещения и деформации в узлах конечных элементов. Далее определялись главные напряжения у1, у2, у3 и в соответствии с критерием прочности Кулона-Мора - эквивалентные напряжения:

(1)

где =/; = /,

здесь - предельное напряжение при одноосном растяжении;

- то же, при сжатии [9-10].

Результаты моделирования

С помощью разработанных численных моделей выполнена серия расчетов, получен массив данных по напряженно-деформированному состоянию обделки в зоне влияния сопряжения, выполнен количественный и качественный анализ. тоннель ствол сопряжение напряжение

Типичная картина распределения эквивалентных напряжений уэ в зоне сопряжения в форме изополей представлена на рис. 1.

Рис. 1. - Изополя эквивалентных напряжений в зоне сопряжения (фрагмент разреза численной модели)

Анализ распределения эквивалентных напряжений позволяет выделить несколько характерных зон на рассматриваемом участке (рис. 2).

Рис. 2. - Выделенные зоны участка сопряжения ствола:

1 - свод сопряжения; 2 - стенка ствола над сводом; 3 - стенка ствола, примыкающая к проему сопряжения; 4 - стенка ствола напротив проема сопряжения; 5 - стенка сопряжения; 6 - стенка ствола ниже сопряжения

Для оценки интенсивности эквивалентных напряжений в выделенных зонах был введен параметр отн:

(1)

где э.спр - максимальные эквивалентные напряжения в обделке в зоне сопряжения;

э.ств - максимальные эквивалентные напряжения в обделке ствола на протяженном участке в аналогичных условиях.

На рис. 3 представлена динамика изменения параметра отн в зоне 1 и 5 по мере удаления от проема сопряжения по оси L (см. рис. 2).

Рис. 3. - Графики изменения отн:

в зоне 5; в зоне 1;

На рис. 4 представлены графики изменения отн в зоне 2 и 6 по мере удаления соответственно от свода и почвы сопряжения.

Рис. 4. - Графики изменения отн:

в зоне 6; в зоне 2;

На рис. 5 приведены графики изменения отн в зоне 3 и 4 в направлении вверх по стволу. За начало отчета принята высотная отметка оси L (см. рис. 2).

Рис. 5. - Графики изменения отн:

в зоне 4; в зоне 3;

Представленные графики показывают, что во всех рассмотренных зонах, кроме четвертой, наблюдается значительное увеличение интенсивности эквивалентных напряжений, которое приводит к снижению запаса несущей способности обделки в 2 раза и более.

Выводы

Таким образом, в результате исследования подтверждены известные практические данные о том, что геомеханическая ситуация в зоне сопряжений подземных сооружений существенно сложнее чем на протяженных участках. При длительной эксплуатации это может привести к деформациям и разрушениям обделки, увеличению притока воды в тоннель, развитию процесса трещинообразования в окружающем породном массиве. Для повышения эффективности поддержания сопряжений, на наш взгляд, необходимо обосновать управляющие воздействия с учетом динамики изменения напряженно-деформированного состояния обделки в пространстве и времени. В частности, целесообразно проанализировать опыт эксплуатации и мониторинга сопряжений глубоких шахтных стволов в сложных горно-геологических условиях [8-10].

Литература

1. Н.С. Булычев. Механика подземных сооружений. Учеб. для вузов. - М.: Недра, 1994. 382 с.

2. Плешко М.С., Насонов А.А., Пашкова О.В. Разработка технических решений по повышению устойчивости участков сопряжений вертикальных стволов // Интернет-журнал Науковедение. 2014. № 5 (24). С. 15.

3. Панкратенко А.Н., Нгуен З.Ф., Саммаль А.С., Нгуен С.М. Исследование расчета многослойной крепи тоннелей, сооружаемых в технологически неоднородном массиве пород // Горный информационно-аналитический бюллетень (научно-технический журнал). 2016. № S13. С. 3-12.

4. Bock, S. Numerical modelling of a void behind shaft lining using FDM with a concrete spalling algorithm. Journal of Sustainable Mining. 2014. 13(2), Pp. 14 - 21.

5. Панкратенко А.Н., Нгуен К.Х., Самаль А.С., Бегалинов А.Б., Амантолов Д.Б. Математическое моделирование влияния технологии строительства микротоннелей методом прокола на напряженное состояние вмещающего массива и конструкцию крепи существующего тоннеля // Горный информационно-аналитический бюллетень (научно-технический журнал). 2015. № 11. С. 252-258.

6. Саммаль А.С., Панкратенко А.Н., Нгуен К Прогноз изменения напряженного состояния обделки тоннеля при проведении вблизи него выработки методом микротоннелирования // Транспортное строительство. 2015. № 1. С. 14-17.

7. Панкратенко А.Н., Саммаль А.С., Нгуен К.Х. Математическое моделирование напряженного состояния конструкции крепи тоннеля и окружающего массива пород при проведении в его окрестности выработки способами микротоннелирования // Горный информационно-аналитический бюллетень (научно-технический журнал). 2014. № 9. С. 277-281.

8. Страданченко С.Г., Плешко М.С., Армейсков В.Н. О необходимости проведения комплексного мониторинга подземных объектов на различных стадиях жизненного цикла // Инженерный вестник Дона. 2013. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.

9. Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. Study of technical solutions to strengthen the lining of the barrel in the zone of influence of construction near-wellbore production. ARPN Journal of Engineering and Applied Sciences. VOL. 10. NO. 1, JANUARY 2015. Pp. 14-19.

10. Плешко М.С., Насонов А.А., Гармонин Р.Э., Сироткин А.Ю. Элементы геотехнического мониторинга подземных сооружений, закрепленных железобетонными анкерами // Инженерный вестник Дона. 2015. №3. URL: ivdon.ru/ru/magazine/archive/n3y2015/3196.

References

1.N.S. Bulychev. Mehanika podzemnyh sooruzhenij. [Mechanics of underground structures]. Ucheb. dlja vuzov. M.: Nedra, 1994. 382 p.

2. Pleshko M.S., Nasonov A.A., Pashkova O.V. Internet-zhurnal Naukovedenie. 2014. № 5 (24). Pp. 15.

3. Pankratenko A.N., Nguen Z.F., Sammal' A.S., Nguen S.M. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2016. № S13. pp. 3-12.

4. Bock, S. Numerical modelling of a void behind shaft lining using FDM with a concrete spalling algorithm. Journal of Sustainable Mining. 2014. 13(2), Pp. 14 - 21.

5. Pankratenko A.N., Nguen K.H., Samal' A.S., Begalinov A.B., Amantolov D.B. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2015. № 11. Pp. 252-258.

6. Sammal' A.S., Pankratenko A.N., Nguen K Transportnoe stroitel'stvo. 2015. № 1. Pp. 14-17.

7. Pankratenko A.N., Sammal' A.S., Nguen K.H. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2014. № 9. Pp. 277-281

8. Stradanchenko S.G., Pleshko M.S., Armejskov V.N. Inћenernyj vestnik Dona (Rus). 2013. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.

9.Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. Study of technical solutions to strengthen the lining of the barrel in the zone of influence of construction near-wellbore production. ARPN Journal of Engineering and Applied Sciences. VOL. 10. №1, JANUARY 2015. Pp. 14-19.

10. Pleshko M.S., Nasonov A.A., Garmonin R.Je., Sirotkin A.Ju. Inћenernyj vestnik Dona (Rus). 2015. №3. URL: ivdon.ru/ru/magazine/archive/n3y2015/3196.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности оценки напряженно–деформированного состояния массива в многолетних мерзлых породах в зависимости от теплового режима выработки. Оценка видов действующих деформаций. Расчет распределения полных напряжений в массиве пород вокруг выработки.

    контрольная работа [47,6 K], добавлен 14.12.2010

  • Методы контроля напряженно-деформированного состояния технологических трубопроводов нефтеперекачивающей станции. Организация систем диагностического мониторинга на объектах нефтегазового комплекса. Способы оценки состояния технологических трубопроводов.

    отчет по практике [956,8 K], добавлен 19.03.2015

  • Организации работ по проектированию тоннеля, сооружаемого горным способом. Обоснование конструктивного решения портала. Нагрузки, действующие на обделку тоннеля. Расчет искусственной вентиляции тоннеля. Мероприятия по защите тоннеля от подземных вод.

    курсовая работа [49,8 K], добавлен 02.06.2012

  • Геологические условия в зоне строительства тоннелей. Анализ колец тоннеля с подробным анализом точности деформационных характеристик применительно к метрополитену г. Тегеран. Методика ориентирования подземных геодезических сетей способом двух шахт.

    автореферат [166,7 K], добавлен 08.01.2009

  • Геолого-гидрогеологические характеристики калийных месторождений. Типовые задачи управления сдвижением горных пород при подземной разработке. Расчет параметров, характеризующих изменение напряженно-деформированного состояния подрабатываемого массива.

    курсовая работа [642,8 K], добавлен 22.08.2012

  • Определение закона распространения компонентов в подземных водах района для минерализации Na, Ca. Анализ параметров статистического распределения компонентов в поземных водах района. Корреляционный и регрессионный анализ компонентов подземных вод.

    курсовая работа [210,0 K], добавлен 13.10.2012

  • Скорость перемещения штока гидроцилиндра. Определение внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчёт потерь давления в гидролиниях. Тепловой расчёт объемного гидропривода.

    курсовая работа [849,3 K], добавлен 06.05.2015

  • Движение воды в зонах аэрации и насыщения, водоносных пластах. Определение скорости движения подземных вод, установившееся и неустановившееся движение. Методы моделирования фильтрации. Приток воды к водозаборным сооружениям. Определение радиуса влияния.

    курсовая работа [340,2 K], добавлен 21.10.2009

  • Определение основных параметров упруго-пластичного состояния породного массива вокруг горизонтальной выработки. Испытание образцов горных пород на одноосное сжатие, статистическая обработка результатов. Оценка возможности пучения породы подошвы.

    контрольная работа [555,6 K], добавлен 29.11.2012

  • Основные характеристики водоносного горизонта. Главные составляющие математической модели подземных вод. Уравнения, описывающие их движение. Закон Дарси. Расчет гидравлической проводимости. Область применения пакета программного обеспечения MODFLOW.

    презентация [136,2 K], добавлен 16.10.2014

  • Проблема ухудшения качества подземных вод в результате антропогенной деятельности, их охрана как полезного ископаемого и как одного из основных компонентов природной среды. Оценка степени бактериального, химического и теплового загрязнения подземных вод.

    реферат [408,8 K], добавлен 03.05.2012

  • Исследование характера и закономерностей проявления горного давления в очистных выработках. Техника проведения измерений методом разгрузки. Классификация методов оценки напряженного состояния массива горных пород. Измерение деформаций области массива.

    реферат [2,8 M], добавлен 23.12.2013

  • Общие сведения и классификация коммуникаций. Рекогносцировка, обследование и нивелирование подземных коммуникаций. Трубокабелеискатели и их применение. Перенесение проектов подземных сооружений в натуру. Требования к планово–высотной съемочной основе.

    курсовая работа [4,0 M], добавлен 09.04.2013

  • Физико-географические условия массива Чатырдаг. Геоморфологические особенности распространения галечников. Гранулометрический, морфометрический, а также минералого-петрографический анализ обломков. Геолого-геоморфологическая история массива Чатырдаг.

    дипломная работа [1,8 M], добавлен 19.04.2012

  • Понятие подземных вод как природных вод, которые находятся под поверхностью Земли в подвижном состоянии. Роль подземных вод в ходе геологического развития земной коры. Геологическая работа подземных вод. Участие подземных вод в формировании оползней.

    презентация [3,1 M], добавлен 11.10.2013

  • Классификация подземных вод в соответствии с видом хозяйственного использования: пресные, минеральные лечебные и промышленные, а также термальные. Типы ресурсов: естественные, искусственные, привлекаемые, источники и основные факторы их формирования.

    презентация [1,1 M], добавлен 17.10.2014

  • Методические основы расчета геофильтрации подземных вод. Расчёт притока воды в карьер. Укрепление фильтрующего откоса. Определение параметров зоны высачивания и определение расхода фильтрации. Экологическое обоснование природоохранных сооружений.

    курсовая работа [126,3 K], добавлен 15.08.2011

  • Наземные геодезические работы при строительстве подземных сооружений. Высотное обоснование на дневной поверхности. Разбивка на поверхности трассы и коммуникаций. Маркшейдерские работы в подземных выработках и сооружениях. Подземная высотная основа.

    реферат [521,1 K], добавлен 05.04.2015

  • Состояние массива горных пород в естественных условиях. Оценка горного давления в подготовительных выработках. Схема сдвижения массива при отработке одиночной лавы. Виды разрушения кровли угольных пластов. Расчет параметров крепи очистной выработки.

    учебное пособие [11,5 M], добавлен 27.06.2014

  • Расчет дренажа при определенном уровне грунтовых вод; времени уменьшения минерализации подземных вод девонского горизонта; положение границы поршневого вытеснения чистых подземных вод сточными водами. Определение скорости миграции сорбируемого вещества.

    контрольная работа [2,2 M], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.