Исследование напряженно-деформированного состояния обделки подземных сооружений в зонах сопряжений
Разработка пространственной численной модели сопряжения тоннеля и вертикального ствола. Расчет компонентов объемного тензора напряжений в конечных элементах обделки и породного массива, а также перемещения и деформации в узлах конечных элементов.
Рубрика | Геология, гидрология и геодезия |
Вид | статья |
Язык | русский |
Дата добавления | 31.10.2017 |
Размер файла | 373,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование напряженно-деформированного состояния обделки подземных сооружений в зонах сопряжений
М.С. Плешко1, И.В. Войнов2, А.А. Насонов3
1 Донской государственный технический университет
2Ростовский государственный университет путей сообщения
3Шахтинский институт (филиал)
Южно-Российского государственного политехнического
университета (НПИ) имени М.И. Платова
Аннотация
В статье рассмотрено численное моделирование зоны сопряжения тоннеля с вертикальным стволом. Разработка и расчет моделей осуществлялся в программном комплексе «ЛИРА», реализующем метод конечных элементов. Разработана пространственная численная модель сопряжения тоннеля и вертикального ствола. В результате расчетов определены все компоненты объемного тензора напряжений в конечных элементах обделки и породного массива, перемещения и деформации в узлах конечных элементов. Задача решена в упругопластической постановке шагово-итерационным методом. Установлено, что в характерных зонах влияния сопряжений, наблюдается значительное увеличение интенсивности эквивалентных напряжений, которое приводит к снижению запаса несущей способности обделки в 2 раза и более по сравнению с протяженными участками подземных сооружений.
Ключевые слова: тоннель, ствол, сопряжение, напряженно-деформированное состояние, породный массив, бетонная крепь.
Введение
Современный комплекс транспортного тоннеля представляет собой сложную подземную сеть, которая, помимо самого тоннеля, включает обслуживающие штольни, камеры, сбойки, вертикальные стволы и др. Сопряжения основной тоннельной выработки с перечисленными сооружениями характеризуются большими пролетами и сложной пространственной геометрией. Это может привести к усложнению условий работы обделки при эксплуатации тоннеля и требует отдельного анализа при обосновании параметров несущих конструкций тоннеля [1-2].
Оценка несущей способности обделки тоннельного комплекса в зонах сопряжений методами строительной механики или механики сплошной среды весьма затруднена. На помощь приходят численные методы математического моделирования, получающие все большое распространение для решения аналогичных задач [3-7]. В качестве примера такого подхода в статье рассмотрено численное моделирование зоны сопряжения тоннеля с вертикальным стволом.
Методика исследования
Разработка и расчет моделей осуществлялся в программном комплексе «ЛИРА», реализующем метод конечных элементов.
Рассмотрена односторонняя схема сопряжения пролетом 6,0 м, примыкающая к стволу диаметром также 6,0 м. Сопряжение и ствол в рассматриваемой зоне закреплены железобетонной обделкой толщиной 500 мм, класс бетона В30. С целью сравнения, параллельно выполнялся расчет модели протяженного участка ствола в аналогичных условиях.
Пространственные численные модели имели форму цилиндра, его размеры для исключения влияния граничных условий приняты: высота - 80 м; диаметр - 90 м. Для разбивки модели использован универсальный пространственный изопараметрический восьмиузловой конечный элемент. Размеры конечных элементов на внешних областях модели составляли 2,5 - 5,0 м, на внутренних - 0,25 - 0,5 м. Таким образом, применён принцип совмещения густой и разреженной сеток для уменьшения объема информации, описывающей численную модель. Граничные условия на боковой и нижней поверхностях модели заданы в форме ограничения перемешенный по нормали к ним, верхняя грань загружалась равномерно распределенным горным давлением.
Задача решалась в упругопластической постановке шагово-итерационным методом. В результате расчетов определялись все компоненты объемного тензора напряжений в конечных элементах обделки и породного массива, перемещения и деформации в узлах конечных элементов. Далее определялись главные напряжения у1, у2, у3 и в соответствии с критерием прочности Кулона-Мора - эквивалентные напряжения:
(1)
где =/; = /,
здесь - предельное напряжение при одноосном растяжении;
- то же, при сжатии [9-10].
Результаты моделирования
С помощью разработанных численных моделей выполнена серия расчетов, получен массив данных по напряженно-деформированному состоянию обделки в зоне влияния сопряжения, выполнен количественный и качественный анализ. тоннель ствол сопряжение напряжение
Типичная картина распределения эквивалентных напряжений уэ в зоне сопряжения в форме изополей представлена на рис. 1.
Рис. 1. - Изополя эквивалентных напряжений в зоне сопряжения (фрагмент разреза численной модели)
Анализ распределения эквивалентных напряжений позволяет выделить несколько характерных зон на рассматриваемом участке (рис. 2).
Рис. 2. - Выделенные зоны участка сопряжения ствола:
1 - свод сопряжения; 2 - стенка ствола над сводом; 3 - стенка ствола, примыкающая к проему сопряжения; 4 - стенка ствола напротив проема сопряжения; 5 - стенка сопряжения; 6 - стенка ствола ниже сопряжения
Для оценки интенсивности эквивалентных напряжений в выделенных зонах был введен параметр отн:
(1)
где э.спр - максимальные эквивалентные напряжения в обделке в зоне сопряжения;
э.ств - максимальные эквивалентные напряжения в обделке ствола на протяженном участке в аналогичных условиях.
На рис. 3 представлена динамика изменения параметра отн в зоне 1 и 5 по мере удаления от проема сопряжения по оси L (см. рис. 2).
Рис. 3. - Графики изменения отн:
в зоне 5; в зоне 1;
На рис. 4 представлены графики изменения отн в зоне 2 и 6 по мере удаления соответственно от свода и почвы сопряжения.
Рис. 4. - Графики изменения отн:
в зоне 6; в зоне 2;
На рис. 5 приведены графики изменения отн в зоне 3 и 4 в направлении вверх по стволу. За начало отчета принята высотная отметка оси L (см. рис. 2).
Рис. 5. - Графики изменения отн:
в зоне 4; в зоне 3;
Представленные графики показывают, что во всех рассмотренных зонах, кроме четвертой, наблюдается значительное увеличение интенсивности эквивалентных напряжений, которое приводит к снижению запаса несущей способности обделки в 2 раза и более.
Выводы
Таким образом, в результате исследования подтверждены известные практические данные о том, что геомеханическая ситуация в зоне сопряжений подземных сооружений существенно сложнее чем на протяженных участках. При длительной эксплуатации это может привести к деформациям и разрушениям обделки, увеличению притока воды в тоннель, развитию процесса трещинообразования в окружающем породном массиве. Для повышения эффективности поддержания сопряжений, на наш взгляд, необходимо обосновать управляющие воздействия с учетом динамики изменения напряженно-деформированного состояния обделки в пространстве и времени. В частности, целесообразно проанализировать опыт эксплуатации и мониторинга сопряжений глубоких шахтных стволов в сложных горно-геологических условиях [8-10].
Литература
1. Н.С. Булычев. Механика подземных сооружений. Учеб. для вузов. - М.: Недра, 1994. 382 с.
2. Плешко М.С., Насонов А.А., Пашкова О.В. Разработка технических решений по повышению устойчивости участков сопряжений вертикальных стволов // Интернет-журнал Науковедение. 2014. № 5 (24). С. 15.
3. Панкратенко А.Н., Нгуен З.Ф., Саммаль А.С., Нгуен С.М. Исследование расчета многослойной крепи тоннелей, сооружаемых в технологически неоднородном массиве пород // Горный информационно-аналитический бюллетень (научно-технический журнал). 2016. № S13. С. 3-12.
4. Bock, S. Numerical modelling of a void behind shaft lining using FDM with a concrete spalling algorithm. Journal of Sustainable Mining. 2014. 13(2), Pp. 14 - 21.
5. Панкратенко А.Н., Нгуен К.Х., Самаль А.С., Бегалинов А.Б., Амантолов Д.Б. Математическое моделирование влияния технологии строительства микротоннелей методом прокола на напряженное состояние вмещающего массива и конструкцию крепи существующего тоннеля // Горный информационно-аналитический бюллетень (научно-технический журнал). 2015. № 11. С. 252-258.
6. Саммаль А.С., Панкратенко А.Н., Нгуен К Прогноз изменения напряженного состояния обделки тоннеля при проведении вблизи него выработки методом микротоннелирования // Транспортное строительство. 2015. № 1. С. 14-17.
7. Панкратенко А.Н., Саммаль А.С., Нгуен К.Х. Математическое моделирование напряженного состояния конструкции крепи тоннеля и окружающего массива пород при проведении в его окрестности выработки способами микротоннелирования // Горный информационно-аналитический бюллетень (научно-технический журнал). 2014. № 9. С. 277-281.
8. Страданченко С.Г., Плешко М.С., Армейсков В.Н. О необходимости проведения комплексного мониторинга подземных объектов на различных стадиях жизненного цикла // Инженерный вестник Дона. 2013. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.
9. Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. Study of technical solutions to strengthen the lining of the barrel in the zone of influence of construction near-wellbore production. ARPN Journal of Engineering and Applied Sciences. VOL. 10. NO. 1, JANUARY 2015. Pp. 14-19.
10. Плешко М.С., Насонов А.А., Гармонин Р.Э., Сироткин А.Ю. Элементы геотехнического мониторинга подземных сооружений, закрепленных железобетонными анкерами // Инженерный вестник Дона. 2015. №3. URL: ivdon.ru/ru/magazine/archive/n3y2015/3196.
References
1.N.S. Bulychev. Mehanika podzemnyh sooruzhenij. [Mechanics of underground structures]. Ucheb. dlja vuzov. M.: Nedra, 1994. 382 p.
2. Pleshko M.S., Nasonov A.A., Pashkova O.V. Internet-zhurnal Naukovedenie. 2014. № 5 (24). Pp. 15.
3. Pankratenko A.N., Nguen Z.F., Sammal' A.S., Nguen S.M. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2016. № S13. pp. 3-12.
4. Bock, S. Numerical modelling of a void behind shaft lining using FDM with a concrete spalling algorithm. Journal of Sustainable Mining. 2014. 13(2), Pp. 14 - 21.
5. Pankratenko A.N., Nguen K.H., Samal' A.S., Begalinov A.B., Amantolov D.B. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2015. № 11. Pp. 252-258.
6. Sammal' A.S., Pankratenko A.N., Nguen K Transportnoe stroitel'stvo. 2015. № 1. Pp. 14-17.
7. Pankratenko A.N., Sammal' A.S., Nguen K.H. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2014. № 9. Pp. 277-281
8. Stradanchenko S.G., Pleshko M.S., Armejskov V.N. Inћenernyj vestnik Dona (Rus). 2013. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.
9.Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. Study of technical solutions to strengthen the lining of the barrel in the zone of influence of construction near-wellbore production. ARPN Journal of Engineering and Applied Sciences. VOL. 10. №1, JANUARY 2015. Pp. 14-19.
10. Pleshko M.S., Nasonov A.A., Garmonin R.Je., Sirotkin A.Ju. Inћenernyj vestnik Dona (Rus). 2015. №3. URL: ivdon.ru/ru/magazine/archive/n3y2015/3196.
Размещено на Allbest.ru
...Подобные документы
Особенности оценки напряженно–деформированного состояния массива в многолетних мерзлых породах в зависимости от теплового режима выработки. Оценка видов действующих деформаций. Расчет распределения полных напряжений в массиве пород вокруг выработки.
контрольная работа [47,6 K], добавлен 14.12.2010Методы контроля напряженно-деформированного состояния технологических трубопроводов нефтеперекачивающей станции. Организация систем диагностического мониторинга на объектах нефтегазового комплекса. Способы оценки состояния технологических трубопроводов.
отчет по практике [956,8 K], добавлен 19.03.2015Организации работ по проектированию тоннеля, сооружаемого горным способом. Обоснование конструктивного решения портала. Нагрузки, действующие на обделку тоннеля. Расчет искусственной вентиляции тоннеля. Мероприятия по защите тоннеля от подземных вод.
курсовая работа [49,8 K], добавлен 02.06.2012Геологические условия в зоне строительства тоннелей. Анализ колец тоннеля с подробным анализом точности деформационных характеристик применительно к метрополитену г. Тегеран. Методика ориентирования подземных геодезических сетей способом двух шахт.
автореферат [166,7 K], добавлен 08.01.2009Геолого-гидрогеологические характеристики калийных месторождений. Типовые задачи управления сдвижением горных пород при подземной разработке. Расчет параметров, характеризующих изменение напряженно-деформированного состояния подрабатываемого массива.
курсовая работа [642,8 K], добавлен 22.08.2012Определение закона распространения компонентов в подземных водах района для минерализации Na, Ca. Анализ параметров статистического распределения компонентов в поземных водах района. Корреляционный и регрессионный анализ компонентов подземных вод.
курсовая работа [210,0 K], добавлен 13.10.2012Скорость перемещения штока гидроцилиндра. Определение внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчёт потерь давления в гидролиниях. Тепловой расчёт объемного гидропривода.
курсовая работа [849,3 K], добавлен 06.05.2015Движение воды в зонах аэрации и насыщения, водоносных пластах. Определение скорости движения подземных вод, установившееся и неустановившееся движение. Методы моделирования фильтрации. Приток воды к водозаборным сооружениям. Определение радиуса влияния.
курсовая работа [340,2 K], добавлен 21.10.2009Определение основных параметров упруго-пластичного состояния породного массива вокруг горизонтальной выработки. Испытание образцов горных пород на одноосное сжатие, статистическая обработка результатов. Оценка возможности пучения породы подошвы.
контрольная работа [555,6 K], добавлен 29.11.2012Основные характеристики водоносного горизонта. Главные составляющие математической модели подземных вод. Уравнения, описывающие их движение. Закон Дарси. Расчет гидравлической проводимости. Область применения пакета программного обеспечения MODFLOW.
презентация [136,2 K], добавлен 16.10.2014Проблема ухудшения качества подземных вод в результате антропогенной деятельности, их охрана как полезного ископаемого и как одного из основных компонентов природной среды. Оценка степени бактериального, химического и теплового загрязнения подземных вод.
реферат [408,8 K], добавлен 03.05.2012Исследование характера и закономерностей проявления горного давления в очистных выработках. Техника проведения измерений методом разгрузки. Классификация методов оценки напряженного состояния массива горных пород. Измерение деформаций области массива.
реферат [2,8 M], добавлен 23.12.2013Общие сведения и классификация коммуникаций. Рекогносцировка, обследование и нивелирование подземных коммуникаций. Трубокабелеискатели и их применение. Перенесение проектов подземных сооружений в натуру. Требования к планово–высотной съемочной основе.
курсовая работа [4,0 M], добавлен 09.04.2013Физико-географические условия массива Чатырдаг. Геоморфологические особенности распространения галечников. Гранулометрический, морфометрический, а также минералого-петрографический анализ обломков. Геолого-геоморфологическая история массива Чатырдаг.
дипломная работа [1,8 M], добавлен 19.04.2012Понятие подземных вод как природных вод, которые находятся под поверхностью Земли в подвижном состоянии. Роль подземных вод в ходе геологического развития земной коры. Геологическая работа подземных вод. Участие подземных вод в формировании оползней.
презентация [3,1 M], добавлен 11.10.2013Классификация подземных вод в соответствии с видом хозяйственного использования: пресные, минеральные лечебные и промышленные, а также термальные. Типы ресурсов: естественные, искусственные, привлекаемые, источники и основные факторы их формирования.
презентация [1,1 M], добавлен 17.10.2014Методические основы расчета геофильтрации подземных вод. Расчёт притока воды в карьер. Укрепление фильтрующего откоса. Определение параметров зоны высачивания и определение расхода фильтрации. Экологическое обоснование природоохранных сооружений.
курсовая работа [126,3 K], добавлен 15.08.2011Наземные геодезические работы при строительстве подземных сооружений. Высотное обоснование на дневной поверхности. Разбивка на поверхности трассы и коммуникаций. Маркшейдерские работы в подземных выработках и сооружениях. Подземная высотная основа.
реферат [521,1 K], добавлен 05.04.2015Состояние массива горных пород в естественных условиях. Оценка горного давления в подготовительных выработках. Схема сдвижения массива при отработке одиночной лавы. Виды разрушения кровли угольных пластов. Расчет параметров крепи очистной выработки.
учебное пособие [11,5 M], добавлен 27.06.2014Расчет дренажа при определенном уровне грунтовых вод; времени уменьшения минерализации подземных вод девонского горизонта; положение границы поршневого вытеснения чистых подземных вод сточными водами. Определение скорости миграции сорбируемого вещества.
контрольная работа [2,2 M], добавлен 29.06.2010