Распределение солей в комплексном почвенном покрове типичных ландшафтов дельты реки Волги
Изучение влияния гидрологического режима и особенностей мезорельефа на солевое состояние почв бугровых ландшафтов дельты реки. Определение основного состава обменных катионов в почвах ландшафтов бугров Бэра в зависимости от степени засоления почв.
Рубрика | Геология, гидрология и геодезия |
Вид | автореферат |
Язык | русский |
Дата добавления | 25.12.2017 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Значения ЛРС в слое 0-5 см колеблются в пределах от 0,20 до 1,73 %. На вершине бугра содержание ЛРС почвы незначительно возрастает (0,20 %-0,53 %) с юга на север (катена А-катена D), что вероятно связано с микрорельефом территории. На склоне бугра изменение содержания ЛРС практически отсутствует. А в пределах межбугрового понижения и на шлейфе бугра содержание ЛРС почвы увеличивается в обратном направлении - с севера на юг (катена D - катена А). Подобное обстоятельство связано со сменой растительных сообществ.
Рис. 8. Топоизоплеты содержания ЛРС почвы по слоям опробования (А, В, С и D - геоморфологические профили)
В слое 20-25 см содержание ЛРС варьирует от 0,17 до 4,33 %. Содержание ЛРС в слое 20-25 см выше, чем в слое 0-5 см. На топоизоплетах четко выражены максимумы содержания ЛРС, которые соответствуют зоне перехода от луговых гидроморфных к буро-полупустынным почвам.
Анализ топоизоплет содержания ЛРС на глубине 40 см показал, что зона повышенных значений ЛРС наблюдается при переходе от луговых гидроморфных к буро-полупустынным почвам катены А и D (3,32-3,47 %). Зоны пониженных значений ЛРС находятся между катенами В и С (0,22-0,90 %). Значения ЛРС на глубине 40 см варьируют в пределах от 0,22 до 4,50 %.
В слое 60-65см значения ЛРС почв возрастают от 0,17 до 3,88%. Максимальные значения наблюдаются по катене D при переходе от луговых почв к бурым полупустынным. Благодаря сезонному переувлажнению в почвах шлейфа бугра попеременно возникают восходящие и нисходящие токи, с которыми связано перемещение солей, что и отражается в распределении солей по слоям.
Анализ полученных результатов позволяет утверждать, что наибольшие значения содержания ЛРС соответствуют слою 20-25 см и значительно варьируют в горизонтальном направлении в пределах одного почвенного слоя.
На рисунке 9 представлены топоизоплеты содержания ЛРС почвы в пределах исследованного ландшафта в горизонтальном направлении. Для построения изоплет использовали массив данных по заложенным четырем геохимическим профилям.
Рис. 9. Топоизоплеты содержания ЛРС почвы по геохимическим профилям
Анализ полученных изоплет показал, что в пределах всех четырех исследованных трансект в целом по профилю наблюдается увеличение содержания ЛРС почвы с глубиной. На каждой катене выделяются зоны высокого содержания ЛРС (в пределах исследованной территории), приуроченные в основном к переходной зоне от бурых полупустынных почв к луговым гидроморфным. Зоны невысоких значений ЛРС повсеместно приурочены к поверхностному слою почвы. Несмотря на общие закономерности, для каждой катены выявлены индивидуальные особенности.
По катене А значения содержания ЛРС почвы на расстоянии 40-120 м от вершины бугра возрастают (от 1,33 до 4,87 %), ясно выделяется зона с высокими значениями ЛРС при переходе почв от луговых к бурым полупустынным. Наименьшее содержание солей соответствует глубине 0-20 см луговых гидроморфных почв.
Анализ топоизоплет содержания ЛРС почвы по катене В позволил выявить аналогичную тенденцию, только площадь зоны с повышенными значениями содержания ЛРС несколько меньше, а содержание солей в этой зоне выше.
По катенам С и D площадь подобных зон повышенных значений содержания ЛРС почвы увеличивается, растягиваясь от переходной зоны луговых почв к бурым полупустынным в сторону луговых гидроморфных почв.
Определение содержания легкорастворимых солей по почвенным слоям и по геохимическим профилям позволяет получить полную картину пространственного варьирования их в почвенном покрове методом площадной сетки опробования.
Основными причинами вариабельности содержания легкорастворимых солей в исследованном ландшафте являются: смена растительных сообществ, особенности мезо- и микро- рельефа, гидрологический режим и морфологическое строение почвы.
Глава 4. Состав почвенного поглощающего комплекса почв бугровых ландшафтов дельты р. Волги
В главе рассматриваются общие понятия и термины, касающиеся катионнообменной способности почв, специфика обменных катионов в почвах аридных регионов (Пинский, 1978, 1991, 1997; Зубкова, 2002; Ванюшина, 2001; Веригин, 1979; Окорков, 1994; Jonson, 1859; Coleman N. T., 1966; Yaron B. И др.), солонцовые процессы, протекающие в почвах Волго-Ахтубинской поймы и дельты Волги (Ковда, 1951; Девятов, 1957; Бобко, 1963; Болышев, Тюрденева, 1953; Болышев, Воробьва 1958 и др.)
Общие сведения о содержании и составе обменных катионов основных исследованных типов почв дельты Волги представлены в таблице 2.
При изучении состава почвенного поглощающего комплекса в выбранных ландшафтах были выявлены следующие общие особенности. Максимальные значения емкости катионного обмена (ЕКО) (13,94-16,90 ммоль/100 г почвы) по катене А (восточная часть дельты) соответствуют вершине и склону бугра, представленными зональными бурыми аридными почвами. По катене В (восточная часть дельты) максимальные значения ЕКО соответствует шлейфу бугра (14,15-23,90 ммоль/100 г почвы). Емкость катионного обмена по катене В превышает значения по катене А. Содержание обменного кальция в % в верхних горизонтах этих почв, согласно нашим исследованиям, составляет 25,31-74,87 % от ЕКО. Содержание обменного магния составляет 10-51 % от ЕКО, обменного натрия 4,07 - 56,13 % от ЕКО.
Содержание обменного кальция с глубиной снижается, и в нижних горизонтах его значения составляют 18,03-25,27 % от ЕКО. Содержание обменного магния и натрия с глубиной возрастает (34,65-55,38 % и 27,02-37,11 % от ЕКО соответственно).
Таблица 2 - Содержание и состав обменных катионов в основных типах почв дельты Волги
Район |
Почва, № почвенного разреза |
Горизонт, см |
Сумма обменных катионов |
|||||||||
ммоль/100 г почвы |
% от суммы обменных катионов |
|||||||||||
ВД |
Бурая полупустынная ПР № А-00 (вершина бугра) |
Ad (0-7) |
8,64 |
1,92 |
0,48 |
0,50 |
11,54 |
74,87 |
16,64 |
4,16 |
4,33 |
|
B1 (7-22) |
6,40 |
2,56 |
0,39 |
0,24 |
9,59 |
66,74 |
26,69 |
4,07 |
2,50 |
|||
В солевой (22-57) |
4,48 |
3,52 |
1,64 |
0,33 |
9,97 |
44,93 |
35,31 |
16,45 |
3,31 |
|||
В2 (57-87) |
2,56 |
3,52 |
3,83 |
0,33 |
10,24 |
25,00 |
34,38 |
37,40 |
3,22 |
|||
В3 (87-110) |
3,52 |
4,80 |
5,17 |
0,44 |
13,93 |
25,27 |
34,46 |
37,11 |
3,16 |
|||
Солончак луговой гидроморфный ПР № В-02 (бугровое пространство) |
Iслой А гумм (0-8) |
2,56 |
1,92 |
0,72 |
0,18 |
5,38 |
47,58 |
35,69 |
13,38 |
3,35 |
||
II слой (8-25) |
0,64 |
1,92 |
1,14 |
0,06 |
3,76 |
17,02 |
51,06 |
30,32 |
1,60 |
|||
III слой (25-38) |
1,60 |
2,08 |
2,45 |
0,10 |
6,23 |
25,68 |
33,39 |
39,33 |
1,61 |
|||
IV слой (38-60) |
0,96 |
2,24 |
1,91 |
0,07 |
5,19 |
18,50 |
43,18 |
36,87 |
1,44 |
|||
ЗД |
Бурая полупустынная ПР № С-01 (вершина бугра) |
Ад (<1 см) |
11,68 |
1,76 |
1,97 |
0,67 |
16,07 |
72,67 |
10,95 |
12,23 |
4,15 |
|
А1 (1-9) |
9,28 |
4,16 |
4,36 |
0,42 |
18,22 |
50,94 |
22,84 |
23,91 |
2,31 |
|||
А насыпной (9-33) |
3,04 |
4,32 |
6,37 |
0,36 |
14,09 |
21,58 |
30,66 |
45,21 |
2,55 |
|||
В сцемен (33-50) |
4,32 |
3,84 |
3,72 |
0,29 |
12,17 |
35,50 |
31,56 |
30,58 |
2,36 |
|||
В солевой (>50 см) |
2,72 |
4,16 |
4,24 |
0,31 |
11,43 |
23,79 |
36,39 |
37,12 |
2,69 |
|||
Солончак гидроморфный ПР № С-15 (прибрежная зона соленого ильменя) |
Слой 1 (0-5) |
8,48 |
4,96 |
0,47 |
0,11 |
14,03 |
60,46 |
35,36 |
3,37 |
0,80 |
||
Слой 2 (5-12) |
2,56 |
4,48 |
1,27 |
0,25 |
8,56 |
29,91 |
52,34 |
14,87 |
2,89 |
|||
Слой 3 (12-17) |
1,92 |
5,12 |
0,99 |
0,28 |
8,32 |
23,09 |
61,57 |
11,94 |
3,39 |
|||
Слой 4 (17-25) |
1,92 |
5,12 |
0,99 |
0,28 |
8,32 |
23,09 |
61,57 |
11,94 |
3,39 |
|||
Слой 5 (25-31) |
2,24 |
4,8 |
1,89 |
0,23 |
9,16 |
24,46 |
52,42 |
20,61 |
2,51 |
|||
Слой 6 (31-34) |
2,24 |
4,8 |
1,89 |
0,23 |
9,16 |
24,46 |
52,42 |
20,61 |
2,51 |
|||
Слой 7 (34-44) |
2,24 |
4,48 |
1,48 |
0,35 |
8,55 |
26,21 |
52,42 |
17,28 |
4,09 |
|||
Слой 8 (44-48) |
2,24 |
4,48 |
1,48 |
0,35 |
8,55 |
26,21 |
52,42 |
17,28 |
4,09 |
|||
Слой 9 (48->50) |
1,28 |
5,12 |
3,92 |
0,49 |
10,81 |
11,84 |
47,35 |
36,27 |
4,54 |
|||
Солончак луговой оглеенный ПР № П-09 (прибрежная зона пресного ильменя) |
А1 (0-1) |
8,80 |
13,60 |
0,99 |
0,14 |
23,52 |
37,41 |
57,81 |
4,19 |
0,59 |
||
Слой 1 (1-10) |
7,76 |
9,60 |
0,22 |
0,05 |
17,62 |
44,03 |
54,47 |
1,22 |
0,28 |
|||
Слой 2 (10-35) |
6,72 |
5,60 |
0,31 |
0,05 |
12,68 |
53,01 |
44,18 |
2,44 |
0,36 |
|||
Слой 3 (35-60) |
6,72 |
4,16 |
0,39 |
0,06 |
11,33 |
59,31 |
36,71 |
3,41 |
0,57 |
Несмотря на высокий процент натрия в почвенном поглощающем комплексе (ППК) в отдельных горизонтов (56,13% от ЕКО), его абсолютные количества незначительны (менее 6 ммоль/100 г почвы).
Околобугровое пространство (восточная часть дельты) представлено луговыми гидроморфными почвами. Содержание обменного кальция в этих почвах составляет 5,16-59,05 % от ЕКО. Содержание обменного магния 31,30-67,13 % от ЕКО. Обменного натрия 3,16-20,65% от ЕКО.
Сопоставляя данные изменения ЕКО и доли обменного натрия (рис. 10), можно придти к выводу, что солонцеватость максимально проявляется в восточной дельте на склоне бугра при переходе от бурых полупустынных почв к солончакам луговым.
В западной части дельты Волги максимальные значения ЕКО приурочены к верхней части профиля почв вершины бугра (14,09 - 18,22; ммоль/ 100 г почвы). Невысокие значения ЕКО (6,38-9,98 ммоль/100 г) на шлейфе бугра по катене С говорят о преимущественно легком гранулометрическом составе (супесь, легкий суглинок, редко - тяжелый суглинок, глина). Низкие значения ЕКО указывают на частичную редукцию ППК.
Согласно данным % содержания обменного натрия от ЕКО (рис. 10), максимальная солонцеватость в западной части дельты проявляется на вершине бугра (31,12% - 45,21% от ЕКО). Вниз по склону она снижается.
Отчетливых тенденций изменения ЕКО с глубиной в восточной и западной части дельты не выявлено.
В исследуемых бугровых ландшафтах выявлена корреляционная зависимость между внедрением натрия в почвенный поглощающий комплекс и с его содержанием в водной вытяжке. Так, для восточной дельты установлена прямая корреляция между содержанием натрия в почвенном растворе и его содержанием в ППК на склоне (R=0,88) и шлейфе бугра (R=0,94) восточной (катена В) и южной экспозиции склона (катена А). Для западной части дельты такая корреляционная зависимость наблюдается на вершине бугра (R=0,90) (катена С). На склоне и на шлейфе бугра эта зависимость отсутствует (R=0,37 и R=0,48 соответственно).
Анализ построенных изоплет позволил вывить ряд закономерностей варьирования содержания обменных катионов в пределах ландшафта. Размах варьирования содержания обменного кальция для южного направления (катена А) составляет 7,68 ммоль/100 г почвы (0,96 ммоль/100 г почвы - 8,64 ммоль/100 г почвы), а для восточного направления (катена В) - 14,16 ммоль/100г (0,64 ммоль - 14,80 ммоль/100 г почвы). Таким образом, варьирование величин содержания обменного кальция в восточном направлении превышает почти в два раза.
В западной части дельты высокое содержание обменного кальция (5,92-11,68 ммоль/100 г почвы, что соответствует 74-72% от ЕКО) в поверхностном слое трансекты С, по видимому, связано с выщелачиванием солей Na под влиянием атмосферных осадков в нижележащие горизонты, где и происходит ионный обмен Са-Na. На шлейфе бугра количество обменного кальция не превышает 4,48 ммоль/100 г почвы, что соответствует 29,9% от ЕКО. Невысокие значения обменного кальция можно объяснить постоянным подтоком ионов натрия и магния при флуктуациях соленых вод ильменя. Доля кальция в ЕКО, несмотря на значительные различия в абсолютных количествах его содержания в почвах трансект С и П (западная часть дельты) составляет около 50 % от ЕКО. Невысокое относительное содержание обменного кальция в исследуемых трансектах свидетельствует о развитии процессов засоления и осолонцевания в бугровых ландшафтах западной дельты.
Рис. 10. Пространственное распределение содержания обменного натрия в % от ЕКО
На вершине и склоне бэровского бугра в восточной части дельты обменный магний содержится в незначительных количествах - от 0,64 ммоль до 2,24 ммоль/100г почвы. Максимум содержания обменного магния (8,64 ммоль/100г почвы) расположен в околобугровом пространстве на глубине 40 см.
Обменный магний по профилю распределен более равномерно, чем обменный кальций и натрий (западная часть дельты). Содержание обменного магния составляет в среднем от 25% на поверхности до 35% в нижней части профиля от ЕКО. В целом, можно отметить увеличение содержания обменного магния вниз по склону бэровского бугра в западной дельте. Сопоставляя содержания обменного натрия и магния в ППК в исследуемых почвах, можно предположить, что в солонцовых и среднесолонцеватых почвах магний является конкурентом натрия и лишь в условиях значительного преобладания в почвенном растворе последнего происходит образование солонца.
Сходные черты в распределении обменного натрия по почвенному профилю катен водораздельное пространство - соленый и пресный ильмень (западная часть дельты) позволяют сделать вывод об общности процессов осолонцевания двух столь контрастных ландшафтов. Гидрология и мезорельеф являются основными факторами, способствующими перераспределению обменного натрия. Сложный характер распределения, наличие двух зон осолонцевания говорит о резких изменениях гидрологии, которым подверглись оба ландшафта.
При изучении закономерностей изменения содержания обменных катионов в почвах на поверхности, в слое 20-25 см, 40-45 см и в слое 60-55 см на участке от вершины бугра до западины межбугрового понижения были выявлены следующие общие особенности. Для почв исследованных трансект наблюдается сходная тенденция распределения обменного кальция по слоям. Максимальное содержание обменного кальция соответствует вершине бугра, далее наблюдается уменьшение содержания обменного кальция в слоях околобугрового пространства. В восточной части дельты можно отметить отчетливую тенденцию увеличения содержания обменного магния с глубиной и максимальное его содержание в слое 40-45 см в околобугровом пространстве бэровского бугра. В западной части дельты не наблюдается выраженных максимумов содержания обменного магния в исследованных слоях.
Максимальные значения обменного натрия отмечены во всех слоях почв восточной части дельты и в слое 20-25 см западной части дельты, его значения с глубиной увеличивается, это свидетельствует о процессе осолонцевания.
Из приведенных результатов исследования обменных процессов в почвах дельты Волги становится ясным, что процессы осолонцевания - рассолонцевания почв бугров Бэра определяются составом почвенных растворов, который зависит от наличия в толще бугров солей морского генезиса, гидрологического режима, капиллярной проводимостью почв и мезорельефом. Выявлена прямая корреляция (R=0,88-0,90) между значениями содержания натрия в водной вытяжке с его содержанием в ППК. Степень осолонцевания почв, приуроченных к вершине и верхней части склона бугра почв, существенно не измениться в ближайшее время, так как сохраняется высокая относительная концентрация обменного натрия в нижних горизонтах, а эрозионные процессы применительно к солонцовому горизонту протекают медленно. Противовесом этим процессам в автоморфных ландшафтах может быть импульверизация и аэрально-эоловый перенос, а также вертикальное биогенное перемещение солей полынными ассоциациями.
Глава 5. Статистический анализ неоднородности солевого состояния почв
В главе рассматриваются различные аспекты изучения пространственной вариабельности почвенных свойств (Шеин и др., 2002; Qamar-Liz-Zaman, 2002; Бутылкина, Фаустова, Банников, 2003; Федотова, 2006; Шкроб, 2000; Bogaert, 2000; Paustian, 2002; Johansson, Sanden, Oberg, 2003; Cheng Shu-Ian и др., 2004 и др.). Наиболее распространенными методами изучения пространственной вариабельности свойств почв являются классические методы математической статистики (Самсонова, 2002; Градусов, Фрид, Градусова, 2002; Бахсолиани, 2003; Xie Hui и др., 2003 и др.).
Для выявления закономерностей в распределении солей в ландшафте были использованы статистические методы. Полученные результаты показали, что, несмотря на похожее геоморфологическое строение ландшафта, пространственное распределение содержания солей и отдельных ионов в пределах изученных ландшафтов ВД и ЗД имеет ряд различий.
Среднее значение содержания солей в почвах восточной части дельты Волги (1,18±0,32%) выше, чем в районе западных подстепных ильменей (0,34±0,04%). Наибольший размах варьирования величин содержания солей соответствует почвам бугра восточной части дельты Волги. Далее наблюдается уменьшение размаха варьирования величин содержания солей в околобугровом пространстве ВД. Наименьший размах варьирования соответствует почвам бугра ЗПИ. Наибольший размах варьирования величин содержания ионов в почвах восточной дельты. Максимальное значение содержания ионов соответствует почвам окололобугрового пространства восточной дельты (174,78 ммоль/100 г почвы). Этому значению соответствует и самое большое среднее значение (21,47±7,05 ммоль/100 г почвы) содержания ионов . Наибольший размах варьирования содержания ионов характерен для почв бугра ВД, наименьший - для почв околобугрового пространства ВД. Среднее значение в почвах околобугрового пространства ВД и в почвах бугра ЗПИ примерно одинаковы и составляют 7,81 ммоль/100 г почвы и 7,98 ммоль/100 г почвы соответственно. Максимальное значение содержания ионов соответствует почвам бугра восточной дельты (109,44 ммоль/100 г почвы). Этому значению соответствует и самое большое среднее значение (13,04±4,13 ммоль/100 г почвы) содержания ионов . Средние значения полученные для почв околобугрового пространства восточной дельты равны 10,04±2,66 ммоль/100 г почвы, для почв бугра западной дельты - 3,16±0,79 ммоль/100 г почвы, т.е. наименьшему среднему значению содержания ионов соответствуют почвы бугра западной части дельты Волги.
Сравнивая распределение общего содержания солей и их ионов водной вытяжки в почвах бугров восточной и западной части дельты Волги и околобугровом пространстве восточной дельты можно отметить, что вариабельность ионов , , и больше в почвах бугра, а для ионов натрия наибольшая вариабельность наблюдается в околобугровом пространстве восточной дельты. В западной части дельты вариабельность исследуемых ионов меньше. Можно предположить, что уменьшение вариабельности солей в западной дельте связано с образованием водоупорного солонцового горизонта в этих почвах.
На рисунке 11 показано квантильное представление общего содержания солей (ЛРС) и ионов водной вытяжки в почвах восточной и западной части дельты Волги.
Рис. 11. Статистики распределения содержания ЛРС и ионов , , , и в почвах бугровых ландшафтов дельты Волги
Статистический анализ распределения ионов солей в исследуемых ландшафтах (рис. 11) показал, что наибольшим размахом варьирования содержания ЛРС отличаются почвы бугра восточной части дельты Волги. Исключение составляют ионы , для них характерен наибольший размах варьирования в околобугровом пространстве восточной дельты и постепенное смещение медианных значений к нижнему квантилю при переходе от почв бугра к почвам околобугрового пространства восточной дельты.
Почвы бугров восточной и западной части дельты характеризуются практически одинаковым размахом варьирования содержания ионов и смещением медианных значений к нижнему квантилю.
Все полученные выборки величин содержания солей в бугровых ландшафтах восточной и западной части дельты Волги были проанализированы на достоверность различий между выделенными почвами с использованием непараметрических (Краскала-Уоллиса) методов статистики.
На рисунке 12 представлены диаграммы, характеризующие достоверность различий солевого состояния почв исследуемых ландшафтов, где по оси ординат отложен уровень достоверности (красной линией отмечен уровень достоверности =0,05), а по оси абсцисс - сравнимые величины общего содержания солей и ионов водной вытяжки исследуемых почв.
а
б
с
д
Рис. 12. Диаграммы, характеризующие достоверность различий солевого состояния почв в бугровых ландшафтах дельты (а - почвы ВД; б - почвы ЗД; с - вершины бугров ВД и ЗД; д - шлейф бугров ВД и ЗД).
Большая часть выборок для сравниваемых почв вершины и шлейфа бэровского бугра восточной дельты имеют значимые различия по содержанию катионов и анионов водной вытяжки. Не имеют достоверных различий по общему содержанию солей почвы шлейфа и вершины бугра восточной дельты (рис 12, а).
Для почв западной дельты диаграммы (рис. 12, б) показывают достоверное отличие по общему содержанию солей на вершине и шлейфе бэровского бугра и по содержанию ионов , , и . Наиболее сильно различаются почвы по содержанию ионов , и . Данные значимые различия связаны с протеканием в этих почвах солонцового процесса, который наиболее ярко выражен на вершине бугра, а также с наличием прослоек разного гранулометрического состава в почвах шлейфа бугра. Для содержания ионов в почвах вершины и шлейфа бэровского бугра западной части дельты различия не найдены, что объясняется изменение катионного состава солей, высоким содержание на вершине бугра и постепенной его замене на в почвах шлейфа бугра.
Сравнение содержания солей почв вершины бугров восточной и западной части дельты Волги (рис. 12, с) показало, что нет достоверных отличий по содержанию ионов . Для общего содержания солей и ионов , , и имеются достоверные различия.
Для почв шлейфов бугров восточной и западной дельты (рис. 12, д) существует достоверное отличие, как по общему содержанию солей, так и по содержанию ионов водной вытяжки. Данные значимые различия связаны с особенностями формирования почв межбугровых понижений. Выраженность процессов засоления в почвах шлейфа бугра восточной дельты определяется уровнем залегания минерализованных грунтовых вод, влиянием паводков и силой испарения влаги с поверхности почвы. В западной дельте опресняющее влияние полых вод Волги не сказывается, а засоляющее действие древних каспийских отложений проявляется особенно резко.
Проведенная статистическая оценка показала, что, несмотря на похожее строение геоморфологического ландшафта восточной и западной части дельты Волги пространственное распределение содержания солей в изучаемых почвах существенно различается.
Для получения более полной картины вариабельности распределения содержания солей в исследуемых ландшафтах была проведена статистическая оценка и сравнительный анализ распределения содержания солей на глубине 20 см, 40 см и 60 см по трансектам, заложенных в восточной и западной части дельты Волги. Выбор почвенных глубин 20 см, 40 см и 60 см не случаен. Морфологические исследования показали, что максимальное содержание солей в пределах бугра Бэра соответствует глубине 40 см. В связи этим было проанализировано солевое состояние почв выше и нижележащей глубины.
Статистическое распределение величин содержания солей в выборках по слоям представлено на рисунке 13. Для почв тансект В и С в слое 60 см отмечается значительный размах со смещением медианы в зону больших значений и сужение межквантильного размаха.
По сравнению с почвами трансекты В и С, величины, попавшие в 50%-й интервал в исследуемых слоях трансекты А и медиана больше.
Рис. 13. Статистики распределения содержания легкорастворимых солей на глубине 20 см, 40 см и 60 см в почвах бугровых ландшафтов дельты Волги
Достоверность данных различий устанавливали методами непараметрической статистики (рис. 14).
Рис. 14. Диаграммы, характеризующие достоверность различий содержания легкорастворимых солей (ЛРС) почв на глубине 20 см, 40 см и 60 см в бугровых ландшафтах восточной (трансекта А и В) и западной (трансекта С) частях дельты
По содержанию легкорастворимых солей достоверно отличаются почвы восточной дельты (трансекта В) на глубине 60 см (рис. 14). Почвы западной дельты (трансекта С) не имеют между собой достоверных отличий. Можно предположить, что данные значимые различия связаны с гидрологическим режимом и с особенностями формирования почв межбугровых понижений. Наличие растворенных солей, увеличивая удельный вес раствора, несколько подавляет капиллярный подъем. Выше капиллярной каймы испарение пленочной влаги менее интенсивно. Ниже границы капиллярной каймы оно также понижается. С понижением уровня грунтовых вод капиллярная кайма опускается на большую или меньшую глубину и тем самым обеспечивает закрепление легкорастворимых солей в почве.
По результатам исследований пространственной изменчивости солевого состояния в почвенном покрове в пределах коротких траншей, представленных в главе 3, была оценена степень вариабельности содержания и состава солей в почвах и почвенном покрове. Статистическое распределение величин содержания ионов водной вытяжки в выборках по горизонтам представлено на рисунке 15.
Рис. 15. Статистики распределения содержания ионов водной вытяжки в почвенных горизонтах траншей.
Для первой траншеи, начиная с горизонта В1 к нижележащим горизонтам отмечается значительный размах со смещением медианы в зону больших значений. Медианные значения содержания ионов , и с глубиной возрастают. Квантильный интервал и медианы смещены в сторону меньших значений, что свидетельствует о преобладании таковых в данной выборке. Наибольшая изменчивость отмечена в горизонтах Вsol и ВС. Согласно исследованиям Федотовой А.В. (2006), в нижней части почвенного профиля наблюдается значительное увеличение влажности почвы. Увеличение влажности в почвенном профиле способствует передвижению ионов почвенного раствора, чему свидетельствует увеличение размаха варьирования содержания ионов в почвенных горизонтах.
В верхних горизонтах Т1 размах варьирования содержания ионов в почвенных горизонтах практически отсутствует. Это связано с особенностями морфологического строения этих горизонтов. В верхних горизонтах отмечено рыхлость поверхностного слоя, переуплотнение, иссушенность, наличие столбчатой структуры, характерной для солонцов. Наличие столбчатой структуры препятствует передвижению ионов из нижележащих горизонтов к поверхности.
Статистическое распределение величин содержания ионов в почвенных горизонтах второй траншеи показало, что наибольший размах варьирования соответствует горизонту Вsol. Медианные и 50%-ти значения для каждого распределения смещены в сторону меньших, что обуславливает преобладание меньших значений в выборках. Особенно отчетливо это наблюдается для выборок, приуроченных к поверхностным горизонтам, что является характерной чертой почв исследуемой территории, где в поверхностных слоях преобладают низкие значения содержания солей.
Проведенные исследования показали, что по варьированию величин содержания солей по отдельным горизонтам имеются значительные различия.
Был проведен сравнительный статистический анализ на достоверность различий величин содержания легкорастворимых солей (ЛРС) между слоями исследуемых траншей (рис. 16).
Рис. 15. Диаграммы, характеризующие достоверность различий содержания ЛРС между слоями опробования двух траншей
Большая часть выборок для исследованных траншей по содержанию легкорастворимых солей имеют значимые различия. В первую очередь это характерно для поверхностных слоев почвы (0-5 см и 10-15 см). Данные значимые отличия между солевым состоянием почвы на вершине и шлейфе бугра в первую очередь связаны с различием водного режима исследованных почв. Как уже указывалось, почвы вершины бугра автоморфные, полностью отрезанные от влияния пульсирующего уровня грунтовых вод. Почвы шлейфа бугра имеют гидроморфное происхождение и ежегодно подвергаются влиянию грунтовых вод во время паводков. В меженный период происходит интенсивное испарение влаги из почвы, в результате чего соли аккумулируются в поверхностных горизонтах. Влиянием грунтовых вод объясняются также достоверные различия между солевым состоянием 40-45 см и 100-105 см слоя. Именно эти глубины соответствуют верхней границе капиллярной каймы в паводковый и меженный период соответственно. Солевой горизонт почв траншеи №2 располагается в слое 20 - 30 см, а для траншеи №1 - в слое 40 - 70 см. В почве траншеи №2 в слое 100 - 105 см находится гипсовый горизонт, что также объясняет достоверные различия между этими слоями. Как и следовало ожидать, практически не различаются между собой слои 60 - 65 см и 80 - 85 см, так как на данной глубине в почвах обеих траншей располагаются солевые горизонты.
Статистически распределения значений содержания ЛРС в почвах исследуемого ландшафта восточной части дельты представлены на рисунке 16.
Для данного ландшафта характерны большие размахи варьирования значений содержания легкорастворимых солей как в ландшафте (рис. 16, а) так и по слоям (рис. 16, б). Такой широкий размах варьирования говорит о том, что данный ландшафт характеризуется большой неоднородностью по содержанию солей.
аб
Рис. 16. Статистики распределения содержания ЛРС в ландшафте (а) и по слоям (б).
Это связано с микрорельефом, изменением характера растительности, а также комплексностью почвенного покрова данной территории. Наименьшим размахом характеризуются катены С и D и слой 0-5 см. Такое распределение значений в ландшафта связано с распыленностью и бесструктурностью верхних горизонтов. В слое 40-45 см и 60-65 см распределение значений ЛРС исследуемых почв является симметричным. Также это подтверждают невысокие значения дисперсии и стандартного отклонения. Сильное смещение медианных значений к нижнему квантилю в слое 0-5 см, 10-15 см и 20-25 см свидетельствует о преобладании в выборке величин, меньше средних.
Результаты исследований на достоверность различий представлены на рисунках 17 и 18.
Как видно из диаграммы (рис. 17) достоверных отличий содержания солей не выявлено по катенам. Однако, слой 0-5 см (рис. 18) характеризуется неоднородностью содержания солей в данном ландшафте. В остальных слоях почв исследуемого ландшафта достоверных отличий нет.
Рис. 17. Диаграммы, характеризующие достоверность различий содержания ЛРС между катенами в бугровом ландшафте
Рис. 18. Диаграммы, характеризующие достоверность различий содержания ЛРС между слоями бугрового ландшафта
Таким образом, по степени и характеру варьирования солей в верхнем горизонте почвы исследуемого ландшафта достоверно отличаются. По распределению солей в пространстве достоверных различий нет. Такое распределение значений свидетельствует о более равномерном распределении солей в пространстве и о высокой степени засоления.
ВЫВОДЫ
Для территории дельты Волги характерна комплексность почвенного покрова, определяемая засолением почв. Эта комплексность определяется как разницей в режиме затопления разных участков дельты, так и наличием специфических элементов рельефа ландшафта бугров Бэра. Границы перехода между различными почвенными разностями четко выражены в почвенном покрове территорий западной части дельты Волги, где потерян паводковый режим.
Бугры Бэра создают специфическую мезокатену, где в верхней части сформированы автоморфные засоленные солонцеватые почвы, в средней части засоленные, в нижней - солончаковые, луговые и ильменно-болотные почвы. В почвах восточной части дельты распространены процессы миграции солей, сопровождающиеся длительным засолением, а потом рассолением, что и отразилось на формировании их солевого профиля. Почвы западных подстепных ильменей подвергаются быстрому обсыханию, промывное влияние паводков уменьшается и происходит нарастание засоления почв. В околобугровом пространстве засоление имеет самое широкое распространение и ярко проявляется в почвах со стороны южных склонов бугров.
Солонцеватость автоморфных бурых полупустынных почв определяется промывкой верхних горизонтов от растворимых солей, во время которой часть ионов натрия входит в почвенный поглотительный комплекс. Для восточной части дельты установлена прямая корреляция между содержаниями ионов натрия в почвенном растворе и в почвенном поглощающем комплексе на склоне (R=0,88) и шлейфе бугра (R=0,94). Для западной части дельты такая корреляционная зависимость наблюдается на вершине бугра (R=0,90). На склоне и на шлейфе бугра подобная зависимость отсутствует (R=0,37 и R=0,48 соответственно), что связано с особенностями мезорельефа исследуемых ландшафтов.
Траншейные исследования на различных геоморфологических элементах бугра Бэра (вершина и склон) показали высокую вариабельность величин содержания солей в почвах. По непараметрическому критерию достоверно различаются почвы вершины и шлейфа бэровского бугра восточной дельты по содержанию в них ионов , , и , но почвы в этих позициях не имеют достоверных различий по общему содержанию солей.
Наиболее заметно различаются почвы западной части дельты по содержанию в них ионов , и . Данные значимые различия связаны с протеканием в этих почвах солонцового процесса, который наиболее ярко выражен на вершине бэровского бугра, а также с наличием прослоек разного гранулометрического состава в почвах шлейфа бугра. Для содержания ионов в почвах вершины и шлейфа бэровского бугра западной части дельты различия не найдены, что объясняется изменением катионного состава солей, высоким содержание на вершине бугра и постепенной его замене на в почвах шлейфа бугра.
В пределах коротких траншей между почвенными разностями одного почвенного типа происходит увеличение солей, как в горизонтальном, так и в вертикальном направлениях. В составе солей преобладают ионы натрия, хлора и сульфат-ионы, их содержание резко увеличивается между почвенными разностями в пределах одного почвенного типа. На разных геоморфологических элементах рельефа обнаружены достоверные отличия по солевому состоянию между почвенными горизонтами. Данные значимые отличия связаны с различием водного режима исследованных почв.
Распределение содержания солей в почвах восточной и западной части дельты, несмотря на похожее геоморфологическое строение ландшафта, имеет ряд различий. Почвы восточной части дельты испытывают современное соленакопление. Однако активность его проявления сильно варьирует в зависимости от мезорельефа. В почвенном покрове западных подстепных ильменей преобладают автоморфные почвы. Они не испытывают современного соленакопления и характеризуются стабильным солевым составом. Засоление автоморфных почв района западных подстепных ильменей - реликтовое, связанное с древними морскими трансгрессиями. Эти реликтовые морские соли определяют общий высокий солевой фон западной части дельты.
Установлено, что на распределение солей в почвах на ландшафтном уровне оказывает влияние мезо- и микрорельеф участка. Зависимость содержания солей почвы от рельефа уменьшается с глубиной почвенного профиля. Переходы между почвенными типами от зональных к интразональным сопровождаются значительным увеличением диапазона изменчивости и межквартильным размахом, а также увеличением степени варьирования значений содержания солей. Интразональные почвы околобугрового пространства обладают большей пространственной вариабельностью солесодержания.
СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ
1. Статьи в рецензируемых журналах, рекомендованных ВАК для публикации основных результатов диссертационных работ
2. Яковлева Л.В., Федотова А.В. Солевое состояние почв бугров Бэра в западном и восточном районах дельты Волги // Вестник Томского государственного университета. 2005. - № 15. -С. 64-67.
3. Пилипенко В.Н., Федотова А.В., Яковлева Л.В., Перевалов С., Современное состояние почвенного покрова дельты Волги // Южно-Российский вестник геологии, географии и глобальной энергии. 2006. - № 1(14). - С. 98-106.
4. Яковлева Л.В., Федотова А.В., Беднев А.В. Экология засоленных почв // Вестник Московского государственного областного университета. 2006. Серия: естественные науки. - Вып. № 2. Химия и химическая экология. - С. 82-85.
5. Яковлева Л.В., Федотова А.В., Беднев А.В. Эколого-химическая характеристика солончаков дельты р. Волги // Вестник Московского государственного областного университета. 2006. Серия: естественные науки. - Вып. № 2. Химия и химическая экология. - С. 85-87.
6. Яковлева Л.В., Беднев А.В. Солевое состояние почв бугра Бэра района западных подстепных // Вестник Оренбургского государственного университета. 2007. - № 10. Специальный выпуск (75) - Ч. 1. - С. 49-51.
7. Яковлева Л.В., Пштаева А.Н. Химический состав грязей соляных озер Астраханской области // Вестник Оренбургского государственного университета. 2007. - № 10. Специальный выпуск (75) - Ч. 2. - С. 280-283.
8. Яковлева Л.В., Танин И.З. Сравнительный анализ химического состава и свойств бурых полупустынных почв Прикаспийской низменности // Вестник Оренбургского государственного университета. 2007. - № 10. Специальный выпуск (75) - Ч. 2. - С. 340-342.
9. Зенова Г.Н., Манучарова Н.Л., Федотова А.В., Яковлева Л.В. Галофильные и алкалофильные актиномицеты засоленных и щелочных почв // Почвоведение. 2007. - № 11. - С. 1347-1351.
10. Карпачевский Л.О., Яковлева Л.В., Федотова А.В. Засоление почв бугра Бэра в дельте реки Волга // Почвоведение. 2008. - № 2. - С. 153-157.
11. Карпачевский Л.О., Яковлева Л.В., Федотова А.В. Беднев А.В. Распределение обменных катионов в почвах катены бугра Бэра // Почвоведение. 2008. - № 10. - С. 1163-1170.
12. Публикации в журналах, продолжающихся изданиях и сборниках
13. Яковлева Л.В., Федотова А.В. Особенности распределения гидрофильных кремниевых соединений в солонцах в связи с трансгрессией уровня Каспийского моря // Эколого-биологические проблемы Волжского региона и Северного Прикаспия. Астрахань. 2002. - С. 52-54.
14. Федотова А.В., Яковлева Л.В. Сравнительно-исторический метод при оценке изменений водно-физических свойств почв Волго-Ахтубинской поймы в связи с трансгрессией уровня Каспийского моря // Эколого-биологические проблемы Волжского региона и Северного Прикаспия. Астрахань. 2002. - С.47-49.
15. Федотова А.В., Яковлева Л.В. Особенности процессов засоления при изменении водного режима почв Астраханской области // Роль почвы в формировании естественных и антропогенных ландшафтов. Казань: «Фэн». 2003. - С. 449-452.
16. Пилипенко В.Н., Шеин Е.В., Перевалов С.Н., Сальников А.Л., Федотова А.В., Яковлева Л.В. Почвенно-растительная характеристика бугров Бэра Прикаспийской низменности // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2003. - С. 142-145.
17. Пилипенко В.Н., Шеин Е.В., Перевалов С.Н., Сальников А.Л., Федотова А.В., Яковлева Л.В. Почвенно-растительный мониторинг дельты Волги // Успехи современного естествознания. М.: «Академия естествознания». 2003. - № 12. - С. 101-103.
18. Пилипенко В.Н., Шеин Е.В., Перевалов С.Н., Умарова А.Б., Бутылкина М.А., Федотова А.В., Яковлева Л.В. Почвенно-физическая и геоботаническая характеристика бугров Бэра в прикаспийской низменности // Фундаментальные физические исследования в почвоведении и мелиорации». М.: Изд-во МГУ. 2003. - С. 201-204.
19. Пилипенко В.Н., Федотова А.В., Яковлева Л.В. Солевое состояние лугово-солончаковых почв дельты реки Волги // Сб. докл. Межд. экологического форума «Сохраним планету Земля». Санкт-Петербург. 2004. - С. 181-184.
20. Pilipenko V.N., Shеin E.V., Perevalov S.N., Salnikov A.L., Fedotova A.V., Yakovleva L.V. Soil-vegetation of Caspian Sea basin (Case Study: Delta of Volga) // Abstract of the first International Conference of Mazandaran University on the Caspian Sea . 2003. - Р. 96.
21. Яковлева Л.В. Основные черты солевого режима почв Волго-Ахтубинской поймы // Материалы IV съезда ДОП «Почвы - национальное достояние России». Новосибирск, Наука-Центр. 2004. - Кн. 2. - С. 321.
22. Пилипенко В.Н., Федотова А.В., Яковлева Л.В. Изменение почвенного покрова дельты Волги при колебаниях уровня Каспийского моря // Материалы IV съезда ДОП «Почвы - национальное достояние России». Новосибирск, Наука-Центр. 2004. - Кн. 2. - С. 307.
23. Пилипенко В.Н., Перевалов С.Н., Сальников А.Л., Федотова А.В., Яковлева Л.В. Состояние почвенного покрова дельты Волги при колебаниях уровня Каспийского моря // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2004. - С. 74-75.
24. Федотова А.В., Яковлева Л.В. Пространственное варьирование сопротивления пенетрации основных типов почв в ландшафте бугров Бэра // Журнал фундаментальных и прикладных исследований «Естественные науки» Астрахань: Изд-во Астраханский университет. 2004. - № 8. - С. 133-137.
25. Пилипенко В.Н., Шеин Е.В., Перевалов С.Н., Умарова А.Б., Бутылкина М.А., Федотова А.В., Яковлева Л.В. Изменчивость почвенно-физических свойств и растительности ландшафтов бугров Бэра в дельте реки Волги // Тр. Института почвоведения МГУ-РАН «Роль почв в биосфере». - Вып. 4 «Почвы и биоразнообразие». 2004. - С. 130-144.
26. Пилипенко В.Н., Федотова А.В., Яковлева Л.В. Особенности формирования почв Прикаспийской низменности // Материалы научной сессии по фундаментальному почвоведению. Москва. 2004. - С. 172-173.
27. Яковлева Л.В. Экологические последствия влияния нефти и нефтепродуктов на окружающую среду // Видовое разнообразие и динамика развития природных и производственных комплексов Нижней Волги. Т. 2. Водная мелиорация, акваресурсы, экология, экономика и социальные отношения./Под ред. А.А. Жилкина, В.П. Зволинского, Н.А Черных. М.: Изд-во Современные тетради. 2003. - 528 с.
28. Федотова А.В., Перевалов С.Н., Яковлева Л.В. Роль почвы в формировании естественных фитоценозов волжской дельты // Биосферные функции почвенного покрова. Пущино. 2005. - С. 98-99.
29. Пилипенко В.Н., Федотова А.В., Яковлева Л.В. Современное состояние засоленных почв дельты Волги // Фундаментальные исследования. 2005. - № 8. - С. 58-60.
30. Пилипенко В.Н., Шеин Е.В., Перевалов С.Н., Умарова А.Б., Федотова А.В., Яковлева Л.В., Фокин Д.Ю. Почвенный покров района западных подстепных ильменей // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2005. - С. 111-113.
31. Пилипенко В.Н., Владыченский А.С., Федотова А.В., Перевалов С.Н., Яковлева Л.В., Аветян С.А. Морфологические особенности почвенного покрова луговых ландшафтов дельты Волги // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2005. - С. 113-116.
32. Яковлева Л.В., Беднев А.В. Экологические аспекты засоления почв // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2005. С. 122-124.
33. Мухин А.А., Федотова А.В., Яковлева Л.В., Давлетова З.А. Сравнительная характеристика гумусного состояния почв бугров Бэра // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2005. - С. 128-130.
34. Пилипенко В.Н., Перевалов С.Н., Федотова А.В., Яковлева Л.В. К вопросу экологического состояния дельтовых биоценозов // Россия и Восток. Обучающееся общество и социально-устойчивое развитие каспийского региона. Т 3. «Проблемы социально-устойчивого развития Каспийского региона». Астрахань. 2005. - С. 504-508.
35. Федотова А.В., Шеин Е.В., Яковлева Л.В. Особенности почвенного покрова восточной и западной частей дельты Волги // Экология речных бассейнов. Владимир: ВГУ. 2005. - С. 121-125.
36. Яковлева Л.В., Федотова А.В. Современное соленакопление в почвах дельты Волги // Почва как связующее звено функционирования природных и антропогеннопреобразованных экосистем. Иркутск. 2006. - С. 234-235.
37. Яковлева Л.В., Пштаева А.Н., Беднев А.В. Солевое состояние солончака лугового восточной части дельты Волги // Проблемы ресурсосберегающего производства и переработки экологически чистой сельскохозяйственной продукции. Астрахань. 2006. - С. 31-34.
38. Яковлева Л.В., Беднев А.В. Особенности распределения обменных катионов в засоленных почвах дельты Волги // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2006. - С. 93-94.
39. Яковлева Л.В., Танин И.З., Стрелков С.П., Урюпкина И.В. Изучение основных химических свойств бурых полупустынных почв // Эколого-биологические проблемы бассейна Каспийского моря. Астрахань. 2006. С. 101-103.
40. Яковлева Л.В. О составе обменных катионов в почвах дельты Волги // Пространственно-временная организация почвенного покрова: теоретические и прикладные аспекты. Санкт-Петербург. 2007. - С. 383-386.
41. Беднев А.В., Гузь Д.В., Яковлева Л.В. Осолонцевание почв ландшафта бугров Бэра района западных подстепных ильменей // Экология в современном мире: взгляд научной молодежи. Улан-Удэ. 2007. - С. 135-136.
42. Яковлева Л.В., Пштаева А.Н. Исследование солевого состава лечебных грязей Нижнего Поволжья // Биоресурсы, биотехнологии, экологически безопасное развитие регионов юга России. Сочи. 2007. - С. 43-46.
43. Мухин А.А., Яковлева Л.В. Гумусное состояние некоторых экологически чистых тепличных субстратов // Биоресурсы, биотехнологии, экологически безопасное развитие регионов юга России. Сочи. 2007. - С. 27-29.
44. Яковлева Л.В., Беднев А.В. Характеристика почвенного поглощающего комплекса почв дельты Волги // Ноосферные изменения в почвенном покрове. Владивосток. 2007. С. 268-270.
45. Мухин А.А., Яковлева Л.В. Сравнительная характеристика гумусного состояния некоторых тепличных субстратов // Экология биосистем: проблемы изучения, индикации и прогнозирования. Астрахань. 2007. - Ч. 1. - С. 250-251.
46. Яковлева Л.В., Пштаева А.Н. К вопросу об истории изучения тинакской лечебной грязи // Экология биосистем: проблемы изучения, индикации и прогнозирования. Астрахань. 2007. - Ч. 1. - С. 220-222.
47. Яковлева Л.В., Беднев А.В. Распределение обменных катионов в почвах района западных подстепных ильменей дельты Волги // Экология биосистем: проблемы изучения, индикации и прогнозирования. Астрахань. 2007. - Ч. 1. - С. 188-189.
48. Шеин Е.В., Пилипенко В.Н., Архангельская Т.А., Умарова А.Б., Федотова А.В., Яковлева Л.В., Банников М.В., Дембовецкий А.В. Пространственная изменчивость свойств почв: методы изучения и значение для функционирования биоты // Экология биосистем: проблемы изучения, индикации и прогнозирования. Астрахань. 2007. - Ч. 1. - С. 166-167.
49. Яковлева Л.В., Пштаева А.Н. Солевое состояние солончаков дельты Волги // Организация почвенных систем. Методология и история почвоведения. Пущино. 2007. - С. 342-345.
50. Мухин А.А., Федотова А.В., Яковлева Л.В., Давлетова З.А. Фракционный состав гумуса почв типичных ландшафтов дельты Волги // Гуминовые вещества в биосфере. Москва. 2007.- С. 593-600.
51. Мухин А.А., Яковлева Л.В. Гумусное состояние некоторых тепличных субстратов // Плодородие почв - уникальный природный ресурс - в нем будущее России. Санкт-Петербург. 2008. - С. 83-84.
52. Яковлева Л.В., Федотова А.В. Пространственная изменчивость физико-химических свойств в зональных почвах Прикаспийской низменности // Материалы V съезда ВОП. Ростов-на-Дону. 2008. С. 507-508.
53. Федотова А.В., Яковлева Л.В. Почвенный покров Волжской дельты в условиях зарегулированного речного стока // Материалы V съезда ВОП. Ростов-на-Дону. 2008. - С. 315.
54. Яковлева Л.В., Беднев А.В. Особенности осолонцевания почв бугров Бэра района западных подстепных ильменей // Развитие агропромышленного комплекса: перспективы, проблемы и пути решения. Астрахань. 2008. - С. 25-27.
55. Яковлева Л.В., Танин И.З. Изучение химических свойств зональных почв района западных подстепных ильменей // Развитие агропромышленного комплекса: перспективы, проблемы и пути решения. Астрахань. 2008. - С. 174-176.
56. Яковлева Л.В., Беднев А.В. Сравнительный анализ состава обменных катионов в почвах бугров Бэра района западных подстепных ильменей // Эколого-биологические проблемы бассейна Каспийского моря и водоемов внутреннего стока Евразии. Астрахань. 2008. - С. 137-139.
57. Яковлева Л.В., Тассова А.Н. Изучение состава токсичных и нетоксичных солей лечебных грязей соляных озер Астраханской области // Эколого-биологические проблемы бассейна Каспийского моря и водоемов внутреннего стока Евразии. Астрахань. 2008. - С. 202-204.
58. Яковлева Л.В., Танин И.З. Экологические аспекты засоленных почв Нижнего Поволжья // Актуальные проблемы экологии и сохранения биоразнообразия. Владикавказ. 2009. - С. 226-230.
59. Методические и учебные пособия
60. Федотова А.В., Яковлева Л.В. Почвоведение: программа, методические рекомендации и контрольные задания. - Астрахань: Издат. дом «Астраханский университет», 2003 - 18 с.
61. Яковлева Л.В., Федотова А.В. Полевая практика по почвоведению: программа и методические рекомендации. - Астрахань: Издат. дом «Астраханский университет», 2003 - 22 с.
62. Яковлева Л.В., Мухин А.А., Горшкова М.А. Агрохимия: практикум. - Астрахань: Издат. дом «Астраханский университет», 2006. - 90 с.
63. Булгаков Д.С., Яковлева Л.В. Агроэкологическая оценка земель: методические рекомендации. - Астрахань: Издат. дом «Астраханский университет», 2006 - 17 с.
64. Яковлева Л.В., Перевалов С.Н., Попова Е.А. Почвы Астраханской области: методические рекомендации. - Астрахань: Издат. дом «Астраханский университет», 2006 - 17 - Астрахань: Издат. дом «Астраханский университет», 2009 - 17 с.
65. Яковлева Л.В., Федотова А.В. Химический анализ почв: рабочая тетрадь. - Астрахань: Издат. дом «Астраханский университет», 2009. - 43 с.
Размещено на Allbest.ru
...Подобные документы
Анализ роли физико-географических и техногенных факторов в формировании природно-антропогенной трансформации почв и ландшафтов Керченского полуострова. Вторичные почвенные процессы. Данные мониторинга состояния почвенного покрова и ландшафта территории.
дипломная работа [5,5 M], добавлен 22.04.2011Определение географического положения, морфометрических и морфологических характеристик бассейна реки Амур. Изучение гидрологического режима реки Амур: сток, типы питания, фазы водности и степень загрязнения реки. Использование реки в народном хозяйстве.
курсовая работа [78,9 K], добавлен 25.12.2010Знакомство с физико-географической характеристикой бассейна реки Сенегал, анализ особенностей гидрологического режима. Рассмотрение Сенегальского артезианского бассейна. Наводнения и засухи как основные опасные гидрологические процессы в бассейне реки.
реферат [9,9 M], добавлен 25.12.2014Закономерности развития, строения, функционирования, размещения ландшафтов в пространстве и принципы классификации. Полярные и приполярные, бореальные и бореально-суббореальные, субтропические, тропические, субэкваториальные и экваториальные ландшафты.
реферат [18,4 K], добавлен 21.03.2009Изучение сценариев трансформации тундровых ландшафтов при увеличении мощности сезонно-талого слоя и в условиях климатических флуктуаций, на примере Анадырской низменности Чукотки. Поверхностно-элювиальные ландшафты пологих склонов и плоских водоразделов.
статья [214,0 K], добавлен 21.02.2011Особенности физико-географических условий и гидрологического режима в бассейне реки Енисей. Состояние ледяного покрова перед вскрытием. Температура дня в весенний период. Разработка методики краткосрочного прогнозирования сроков вскрытия р. Нижний Енисей.
курсовая работа [986,1 K], добавлен 29.10.2013Работы по изучению влияния евразийских гидросферных катастроф на педосферу раскрывают теоретические проблемы истории и генезиса почвенного покрова. Грядово-ложбинные формы рельефа территории Западной Сибири являются носителями азональных ландшафтов.
доклад [779,9 K], добавлен 07.01.2009Общие характеристики, особенности природных условий бассейна Нила и характер его гидрографического режима. Значение дельты реки для экономического благополучия Египта. Проблема распределения вод Нила и методы реализации "Проекта развития южной долины".
реферат [1,2 M], добавлен 08.12.2012Ландшафт и геосистема. Метод изучения ландшафтов. Ландшафтный подход в природоведении. Модель в ландшафтоведении. Схема ландшафтного исследования. Развитие природы и человеческого общества. Отношения человека с природой. Составляющая природообустройства.
реферат [31,5 K], добавлен 16.02.2009Требования для функционирования культурных ландшафтов. Принципы рационального природопользования. Инвентаризация природных ресурсов. Проблема сбалансированного соотношения между формами использования территории и формирования природно-технических систем.
реферат [18,2 K], добавлен 24.03.2009Геопривязка топографических карт для определения административного деления и для создания геоинформационной системы. Выполнение операции по направлению и аккумуляции потока реки. Создание потоковой сети по бассейну Сурхандарья. Параметры суббассейнов.
презентация [8,3 M], добавлен 30.05.2022Экономическая оценка и ценность ландшафтов и их динамика. Агрогеосистема как техноприродная ресурсовоспроизводящая и средообразующая геосистема. Основы систематизации и организации территории ландшафта. Общие критерии природной устойчивости геосистем.
реферат [17,9 K], добавлен 26.03.2009Образование и характеристики волновых дельт. Принципиальная схема формирования дельты при стабильном уровне моря. Ассоциации дельтовой равнины. Развитие разрезов фронта дельты. Закономерная связь месторождений нефти с дельтовыми отложениями палеорек.
контрольная работа [593,9 K], добавлен 13.12.2011Характеристика географического положения, истории освоения, стратиграфии, геологической истории хребта Джугджур. Исследование особенностей климата, теплообеспеченности, влажности. Описания питания рек, типов водного режима, ландшафтов, флоры и фауны.
дипломная работа [4,7 M], добавлен 23.09.2011Географическое положение бассейна, физико-географические условия реки Оскол. Изучение ее гидрологического режима и биологических ресурсов. Описание Червонооскольского водохранилища, экологическая ситуация на нем. Зейское и Бурейское водохранилища р. Амур.
дипломная работа [691,2 K], добавлен 13.09.2015Изучение химических и физических свойств почвы. Описание особенностей субарктических ландшафтов. Общая характеристика лесотундровой зоны в отношении почвообразования, ее принципиальная общность с тундрой и с северной тайгой. Мозаичный почвенный покров.
презентация [2,5 M], добавлен 29.03.2015Географические факторы режима уровней воды в реке. Исследование уровневого режима реки Большой Иргиз. Характеристика весеннего половодья на территории Саратовской области в 2012 году. Геоинформационные технологии при моделировании зон затопления.
курсовая работа [5,2 M], добавлен 24.04.2012Описание факторов образования каштановых почв: климат, рельеф, вода и выветривание. Морфологическое строение почв, мощность отдельных горизонтов, гранулометрический состав. Степень подверженности эрозионным процессам. Хозяйственное использование почв.
курсовая работа [41,3 K], добавлен 17.10.2011Анализ русловых деформаций по сопоставленным и совмещенным планам. Построение продольного профиля по оси судового хода. Исследование скоростного режима участка съемки. Анализ экологического состояния участка реки с учетом влияния господствующих ветров.
курсовая работа [137,5 K], добавлен 21.11.2010Характеристики гидрографической сети. Морфометрические характеристики бассейна. Физико-географические факторы стока: подстилающей поверхности, климатические. Сток и порядок его распределения. Анализ водного режима и определение типа питания реки.
курсовая работа [70,6 K], добавлен 19.11.2010