Рудно-магматические системы скарново-шеелит-сульфидных месторождений Востока России
Региональные и локальные факторы, определяющие закономерности размещения комплексов магматических пород. Выявление пространственно-временных и генетических соотношений магматических и флюидно-метасоматических процессов в рудно-магматических узлах.
Рубрика | Геология, гидрология и геодезия |
Вид | автореферат |
Язык | русский |
Дата добавления | 28.12.2017 |
Размер файла | 3,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2.2. Типоморфизм породообразующих и акцессорных минералов магматических пород.
Среди породообразующих и акцессорных минералов наиболее информативные биотит, менее - апатит, гранат и магнетит.
Биотиты магматических пород штока Лермонтовского месторождения и Шивкинского массива близки по составу. Они характеризуется повышенной глиноземистостью (l0=25-27%) и низкой (50-60%) железистостью (Степанов, Иванов, 1978; Гвоздев, 1984; Гвоздев и др., 1989).
Биотиты штока Центрального (месторождение Восток-2) на верхних горизонтах имеют глиноземистость (l0=21-24%) близкую к биотитам Лермонтовского месторождения, а на нижних - их состав (l0=19-21%) более близок к составу биотитов из пород Дальнинского массива (рис. 6). Расчеты температур кристаллизации магматических пород (по Трошину и др., 1981) показали, что наиболее высокотемпературные - гранодиориты Дальнинского массива (от 750 до 9000С); близки гранодиориты Центрального штока и краевых фаций Бисерного массива (780-8800С); наиболее низкотемпературные - порфировые граниты центральной части Бисерного массива (6000С и менее).
Биотиты интрузивных пород Агылкинской РМС имеют глиноземистость (l0=20-21 %), близкую к значениям для биотитов из гранитоидов глубоких горизонтов месторождения Восток-2 (Степанов, 1977; Степанов, Иванов, 1978; Гвоздев, 1984). Расчеты температур кристаллизации магматических пород показали их закономерное снижение в направлении от относительно более ранних фаз (дайки месторождения с вольфрамовой минерализацией - 798-8490С) к поздним (штоки с оловянной минерализацией - 793-8250С), при узком диапазоне вариаций калиевой щелочности.
В целом, биотиты рудогенерирующих штоков близки по составу к биотитам молибден-вольфрамовой формации (по Апельцину и др., 1980), а на диаграммах оценки окислительного состояния (рис. 7А) попадают в поле перекрытия параметров РМС с Au-Mo и Sn минерализацией (Налетов, 1981; Трошин и др., 1983; Гоневчук, 2002). Следует отметить, что на всех месторождениях состав биотита из роговиков контактового ореола очень близок к биотиту магматических пород (Гвоздев, 2001).
Апатит - акцессорный минерал, наиболее характерный для рудогенерирующих штоков и даек гранитоидов. Его состав такой же, как и состав апатита из кварцево-шеелитовых руд: фтор-апатит с содержаниями фтора до 3,96 мас.% - на Лермонтовском месторождении, до 2,72 мас.% - на Востоке-2 и до 2.02 мас.% - на Агылках. Во всех апатитах отмечаются повышенные содержания вольфрама. Установлено, что на Востоковской РМС его количество закономерно возрастает от 80-90 г/т в апатитах из гранитоидов до 150-400 г/т в апатитах из грейзенов и кварцево-шеелитовых руд (Руб и др., 1982; Крымский и др., 1998).
Гранаты вольфрамоносных гранитоидов Лермонтовской и Востоковской РМС имеют преимущественно альмандиновый состав (до 75 и 87% альмандинового минала соответственно) иногда с повышенными концентрациями пироповой (20 и 18% пиропового минала соответственно) и спессартиновой (11 и 7% спессартинового минала соответственно) составляющих (Руб, и др., 1982; Левашев, 1991). В целом, такой состав гранатов может свидетельствовать о повышеной магнезиальности магматических расплавов и продуцируемых ими скарнирующих флюидов на раннем постмагматическом этапе формирования вольфрамоносных РМС.
Магнетит - редкий акцессорный минерал в гранитоидах Лермонтовской и Востоковской РМС. По данным М.Г.Руб с соавторами (1982) в нем отмечаются повышенные концентрации (соответственно) ванадия до 1,35 и 1,30 мас.% V2O5, хрома до 0,42 и 0,35 мас.% Cr2O3, магния до 1,83 и 1,55 мас.% MgO и алюминия до 1,20 и 0,95 мас.% Al2O3, что типично для магматических пород - дифференциатов «основной» магмы (Вахрушев, 1972).
II.3. Метасоматические образования и руды типовых месторождений.
Метасоматические породы и руды типовых месторождений характеризуются одинаковыми типоморфными признаками (стадийность-последовательность минералообразования; минеральный состав продуктивных на вольфрам ассоциаций; элементный состав сопутствующей минерализации; типоморфизм минералов), отражающими эволюцию расплавов в процессе их кристаллизации. Метасоматические породы вольфрамоворудных РМС представлены скарнами, полевошпатовыми метасоматитами, грейзенами с сопутствующей им сульфидной минерализацией.
3.1. Скарны и околоскарновые породы.
Скарны изученных месторождений формировались в несколько периодов (стадий): ранний, средний и поздний. Они различаются по минеральному составу и имеют разную рудную специализацию (Гвоздев, 1984; 2000; 2006; Гвоздев и др., 1989).
В ранний период образовались минеральные ассоциации безрудных (менее 0.01% WO3) скарнов. На месторождениях Лермонтовском и Восток-2 они сложенные преимущественно гранатом (гроссуляр), волластонитом, везувианом и пироксеном (диопсид - ферросалит). В околоскарновых породах, развивающихся по алюмосиликатным породам (роговикам и гранитоидам), кроме пироксена, встречаются амфибол и плагиоклаз. Скарны имеют инфильтрационно-биметасоматическу природу и образуют как моно- и полиминеральные прожилки и зоны (до первых метров) в мраморах (зональность отсутствует), так и тела с зональным строением, возникающие на контакте мраморов с алюмосиликатными породами. Обобщенная метасоматическая колонка имеет следующий вид: алюмосиликатная порода (гранитоид, биотитовый роговик); амфибол-плагиоклазовая околоскарновая порода; пироксен-плагиоклазовая околоскарновая порода; пироксеновый скарн (часто отсутствует); пироксен-гранатовый или гранат-пироксеновый скарн (иногда с везувианом); гранатовый или гранат-везувиан-волластонитовый скарн (пироксен редок); волластонитовый скарн (часто с небольшим количеством граната и пироксена); зона гидротермально измененных мраморов (не всегда хорошо выражена); мрамор.
На месторождении Агылки «ранние» скарны более низкотемпературных фаций (пироксен-гранатовой и преимущественно пироксен-эпидотовой). Обобщенная метасоматическая колонка следующая: алюмосиликатная порода (гранитоид, биотитовый роговик); амфибол-плагиоклазовая околоскарновая порода; пироксен-плагиоклазовая околоскарновая порода (часто отсутствует); эпидотовый, пироксен-эпидотовый (иногда с гранатом) скарн; пироксеновый скарн (часто отсутствует); зона гидротермально измененных мраморов (не всегда хорошо выражена); мрамор.
В целом эти метасоматические колонки отражают эндогенную зональность минеральных ассоциаций скарнов относительно интрузивного контакта или дренирующих (рудоподводящих) структур. По времени формирования «ранние» скарны сближены с образованием роговиков.
Скарны среднего периода пересекают зоны «ранних» скарнов и имеют более простой минеральный состав. На всех рассмотренных месторождениях в них преобладает пироксен - геденбергит; реже встречается гранат. Строение околоскарновых пород, такое же, как и в предыдущем случае. В целом, метасоматические колонки имеют следующий вид: - гранит, гранодиорит, роговик; - амфибол-плагиоклазовая околоскарновая порода (часто отсутствует); - пироксен-плагиоклазовая околоскарновая порода; - пироксен-гранатовый скарн (иногда отсутствует); - пироксеновый скарн (редко с гранатом или эпидотом, флюоритом); - волластонитовый скарн (часто с небольшим количеством граната и пироксена; зона отсутствует в скарнах месторождений Агылки); - зона гидротермально измененных мраморов (не всегда хорошо выражена); - мрамор.
Особенность этих скарнов - близость по времени формирования к рудному этапу минерализации, на что указывает их повышенная вольфрамоносность (более 0.15% WO3) и постоянную вкрапленность сульфидных минералов (пирротин, халькопирит в сумме до 10-15%; арсенопирит - редок); иногда встречается флюорит. Шеелит-сульфидная (сопутствующая) минерализация наблюдается преимущественно в гнездах кварцевого состава, периферия которых часто сложена мелкими идиоморфными кристаллами геденбергита более поздней генерации, иногда в сростках с плагиоклазом (андезин). В центральных частях гнезд кроме пироксена наблюдаются включения мелких (до 1мм) идиоморфных кристаллов шеелита, апатита и сульфидов; в обрамлении гнезд - сульфидные минералы выполняют интерстиции зерен или по спайности замещают пироксен (амфибол - обычен, но имеет подчиненное распространение).
Скарны позднего периода - мало распространены и наблюдались на Лермонтовском месторождении (зоны, секущие скарново-шеелит-сульфидные руды) и рудопроявлении Тисовом (зоны среди мраморов, контактирующих с гранитоидами Бисерного массива - Востоковская РМС). Они слагают зоны мощностью до 1 метра преимущественно гранат (андрадит до 80%) - пироксенового (геденбергит, до 5%) состава; карбонат и сульфиды в сумме составляют от 5 до 15%. Особенность скарнов - сопутствующая полиметаллическая (пирит, сфалерит, халькопирит и галенит) минерализация.
3.2. Полевошпатовые метасоматиты.
По данным автора, полевошпатовые метасоматиты занимают в схемах стадийности минералообразования изученных вольфрамовых месторождений промежуточное положение между формированием «средних» скарнов и грейзенов, что соответствует начальному периоду стадии кислотного выщелачивания по Д.С.Коржинскому (1969). Наиболее широко они распространены на Лермонтовском месторождении, менее - на месторождениях Восток-2 и Агылки. Их особенность - пространственная и временная совмещенность с грейзенами, ассоциирующими с кварц-шеелитовой и сульфидной минерализацией.
На Лермонтовском месторождении зоны полевошпатовых пород развиваются по контакту гранитов с пироксеновыми скарнами, замещая и те и другие. Основные минералы: плагиоклаз, апатит, шеелит, сульфиды (пирротин, халькопирит); реже встречаются кварц, слюды (биотит, мусковит), амфибол, эпидот, ортоклаз и др. Обращает на себя внимание текстурный рисунок пород: он такой же, как и у слабо измененных гранитов, но с гнездами (до 1,5 см) шеелита неравномерно распределенными по массе породы. Здесь содержание WO3 не превышает 1-5%. Центральные части зон полевошпатовых метасоматитов характеризуются «ураганными» содержаниями WO3 более 10-15%. Взаимоотношения минералов указывают на следующую последовательность их кристаллизации: апатит - плагиоклаз (до № 80-91) - шеелит - сульфиды (с кварцем, мусковитом, реже хлоритом).
В строении метасоматитов иногда наблюдаются элементы минералогической зональности. Типовые разрезы показывают, что на флангах месторождения рудные залежи с полевошпатовыми породами имеют относительно простое, а в центральной - более сложное строение. По минеральному составу выделены зоны: 1- плагиоклазовая (№ 25-38); 2- шеелит-плагиоклазовая (№ 49-59; с апатитом); 3- сульфидно-плагиоклаз-шеелитовая; 4- сульфидно-амфиболовая. Четких контактов между зонами не наблюдается, а их минералогический состав часто зависит от состава пород, по которым они развиваются (1-3 - зоны по гранитоидам; 4 - по пироксеновым скарнам).
Несколько иное строение имеет тело полевошпатовых метасоматитов в центральной части месторождения. Здесь наблюдаются следующие зоны: 1- шеелит-апатит-плагиоклазовая; 2- сульфидно-плагиоклаз-шеелит-биотитовая (биотитовые грейзены); 3- сульфидно-амфиболовая; 4 - сульфидно-амфибол-кварцевая; 5- сульфидно-кварцевая. Первая и вторая зоны развиваются по гранитоидам; третья, четвертая и пятая - по пироксеновым скарнам.
Обращает внимание одинаковый минеральный состав зон с шеелитом, апатитом и плагиоклазом; различие - только в количественном соотношении этих минералов: в центральных частях месторождения зоны полевошпатовых метасоматитов более обогащены апатитом. Это участки, гнезда до 7 мм практически мономинерального состава; шеелит - ксеноморфные вкрапленники и совместно с сульфидами выполняет интерстиции идиоморфных кристаллов апатита; количество сульфидов редко превышает 5%, а содержания WO3 - не более 1-2%. Похожее строение имеют зоны полевошпатовых метасоматитов на месторождении Восток-2 (эндоконтакт гранитоидов штока Центрального, 560 горизонт). Здесь грейзенизированные гранитоиды штока сменяются зоной плагиоклаз-апатитового (до 50% апатита), далее - шеелит-апатит-плагиоклазового и кварц-шеелитового (богатые руды до 40% шеелита) состава. Полевошпатовые метасоматиты иногда рассекаются зонами (контакт тектонический) биотитовых грейзенов с гнездами сплошных сульфидных руд.
На месторождении Агылки полевошпатовые метасоматиты автором не встречены, но, судя по присутствию в рудах локальных участков серицит-мусковит-шеелитового состава, и пространственно сопряженных с ними более поздних ассоциаций биотитовых грейзенов (с альбитом, олигоклазом) их наличие возможно на глубоких горизонтах месторождения в зоне эндоконтакта не вскрытого эрозией штока гранитоидов.
3.3. Грейзены.
Грейзены широко распространены на всех изученных месторождениях. В них сосредоточено более 30% запасов вольфрама, а руды характеризуются высокими (часто более 2 %) концентрациями WO3. Основными минералами грейзенов являются кварц, слюды, апатит, шеелит и сульфиды; в небольшом количестве присутствуют плагиоклаз, калишпат, хлорит, сфен, турмалин, флюорит, сульфиды и др. По условиям залегания, вещественному составу и рудоносности выделяются две группы грейзенов: 1 - грейзены контактовой зоны магматичесих пород (распространены по всей площади рудного поля); 2 - околожильные грейзены (локальное распространение).
К первой группе относятся грейзенизированные породы гранитоидов (штоки и дайки месторождений) и примыкающих к ним биотитовых роговиков. Они приурочены к тектоническим структурам (разломы, зоны повышенной трещиноватости). В некоторых пробах подобных грейзенов содержания WO3 превышают 40 г/т и часто наблюдаются кварцевые прожилки, не содержащие промышленных концентраций шеелита.
Ко второй группе (околожильные грейзены) отнесены метасоматические породы, вдоль кварцевых жил с шеелитовой минерализацией. По составу слюд в этой группе можно выделить три типа грейзенов: 1 - мусковитовые, 2 - биотитовые, 3 - флогопитовые. Согласно наблюдаемым взаимоотношениям грейзенов с другими метасоматическими породами, они формируются после полевошпатовых метасоматитов, с которыми часто пространственно совмещены.
Мусковитовые грейзены распространены наиболее широко и слагают метасоматические зоны вдоль кварцево-шеелитовых прожилков, локализованных преимущественно в апикальной части штоков гранитоидов. Реже встречаются крутопадающие (60-75о) зоны грейзенов с кварц-шеелитовой минерализацией (до 1 м) среди роговиков или скарнов. Выделены следующие фации грейзенов (от центра к периферии): кварц-мусковитовая, кварц-альбит-мусковитовая, кварц-альбит-мусковит-хлоритовая. Во всех фациях присутствует шеелит, максимальные концентрации которого сосредоточены в кварц-мусковитовой и кварц-альбит-мусковитовой фациях. Четких границ между фациями не наблюдается. На Лермонтовском месторождении в этих грейзенах сконцентрировано максимальное количество шеелита и арсенопирита.
Биотитовые грейзены, по сравнению с мусковитовыми, менее распространены. На всех изученных месторождениях они наблюдались вдоль кварц-апатитовых, кварц-апатит-шеелитовых и кварц-апатит-мусковитовых прожилков, локализованных среди «вольфрамоносных» гранитоидов или ассоциирующих с ними биотитовых роговиков.
На месторождении Восток-2 одна из зон биотитовых грейзенов примыкает к зоне полевошпатовых метасоматитов, имеющих облик пегматитов; реже встречаются зоны грейзенов по биотитовым роговикам и пироксеновым (?) скарнам (фации с биотитом и амфиболом). Минеральный состав грейзенов вырьирует в широком диапазоне и во многом зависит от состава пород, по которым они сформировались: преобладает биотит (до 85%); постоянно присутствуют плагиоклаз (до 20%, преобладают альбит и олигоклаз), кварц (до 40%), апатит (до 10%), шеелит (до 45%), хлорит (пеннин, до 40%); редко встречаются - сфен, сагенит, стильпномелан, серицит, турмалин, мусковит, карбонат.
Флогопитовые грейзены встречены только на Лермонтовском месторождении, где они развиваются по зонам пироксеновых скарнов диопсидового состава. Породы имеют темно-зеленый (до черного) цвет и сложены флогопитом (от 10 до 60 %, часто хлоритизирован), арсенопиритом (20-30, в гнездах до 75%), сфалеритом (3-5, в гнездах до 20%), шеелитом (до 15%), кварцем (5-65%), апатитом (до 5%); присутствуют - пирротин, сфалерит, халькопирит, сфен, мусковит, амфибол, турмалин; реже наблюдаются реликтовые биотит и плагиоклаз (до 10 и 20% соответственно). Флогопит выполняет промежутки между идиоморфными кристаллами арсенопирита и шеелита, образуя чешуйчатые агрегаты с размером пластинок от 0,1 до 1,2 мм.
Последовательность кристаллизации минералов и их взаимоотношения во всех типах грейзенов одинаковые: плагиоклаз и апатит > шеелит и слюды > кварц, хлорит и сульфиды.
Сопоставляя полученные материалы с теоретическими разработками и экспериметальными данными (Коржинский, 1982; Жариков, 1982; Зарайский, 1989) можно прийти к выводам, что стадии кислотного выщелачивания соответствуют фации мусковитовых грейзенов и кварцево-шеелитовых руд, а биотитовые и флогопитовые грейзены - следует относить к позднещелочной стадии.
3.4. Сульфидные руды.
На всех типовых месторождениях разные минеральные типы сульфидных руд ассоциируют с разными метасоматическими породами и различаются по геохимической специализации. Среди сульфидных руд выделены минеральные типы: арсенопиритовый, пирротин-халькопиритовый и пирит-сфалерит-галенитовый (полиметаллический). Большинство арсенопиритовых руд пространственно совмещено с фациями мусковитовых и менее - биотитовых грейзенов. Пирротин-халькопиритовые руды характерны для шеелитсодержащих геденбергитовых скарнов «среднего периода», ассоциаций полевошпатовых метасоматитов, биотитовых грейзенов и сопряженных с ними амфиболовых метасоматитов (в случаях наложения на пироксеновые скарны). Полиметаллическая минерализация в рудах изученных месторождений имеет подчиненное распространение и наблюдается в кварцево-пирит-сфалерит-галенитовых (с карбонатом) прожилках кварц-альбит-мусковит-хлоритовой фации мусковитовых грейзенов.
В большинстве случаев для скарнов и околоскарновых пород (практически без вкрапленности сульфидных минералов) характерны повышенные концентрации Cu; для полевошпатовых метасоматитов, биотитовых грейзенов и окварцованных пироксеновых скарнов (вкрапленные пирротин-халькопиритовые руды) - Cu, Bi, реже As, Te и Au. Более широкий спектр элементов-примесей установлен для мусковитовых грейзенов, арсенопиритовых, пирротин-халькопиритовых и полиметаллических руд - Cu, Bi, Pb, Ag, As, Sn. Повышенные концентрации перечисленных элементов в породах и рудах обусловлены присутствием в них разных «сопутствующих» минеральных ассоциаций (галенит-сульфовисмутитовой, висмутино-висмутовой и др.), в состав которых входят халькопирит, сфалерит, станнин, самородные висмут и золото, галенит, серебросодержащие блеклые руды, гессит, сульфотеллуриды висмута, свинцово-сурьмяно-висмутовые сульфосоли и др. (Степанов и др., 1980; 1983; 1985; 1987; Гвоздев, 1979; 1984; 2002; Гвоздев и др., 1982; 2005).
II.4. Минералогия скарново-шеелит-сульфидных месторождений.
Все изученные месторождения имеют похожий набор породообразующих и рудных минералов, но различаются их количественным соотношением, обусловленным главным образом, степенью распространения тех или иных типов метасоматических пород (скарнов, грейзенов и др.), сопряженной с ними рудной минерализацией, а так же типоморфными признаками самих минералов (Гвоздев, 1984; 1987; 2006).
4.1. Типоморфизм породообразующих минералов.
К числу главных породообразующих минералов отнесены: в скарнах - пироксен, гранат, везувиан, волластонит, в околоскарновых породах - амфибол и плагиоклаз; в полевошпатовых метасоматитах и грейзенах - кварц, плагиоклазы, слюды; в сульфидных рудах - хлорит, эпидот, карбонаты.
Пироксен - в скарнах разных временных периодов варьирует по составу от диопсида до геденбергита. В «ранних» скарнах установлены пироксены от диопсида до ферросалита. Наиболее магнезиальные (диопсид-салит) - типичны для безгранатовых парагенезисов в скарнах, представляющих собой реликты среди кварцево-шеелитовых руд (Лермонтовское, Тисовое). Пироксены салит-ферросалитового состава на всех месторождениях характеризуют гранатсодержащие скарны и пироксен-плагиоклазовые околоскарновые породы. Пироксены из скарнов «среднего» и «позднего» периодов по химическому составу соответствуют геденбергиту, но различаются по содержанию иогансенитовой составляющей, количество которой в вольфрамоносных скарнах не превышает 10%, а в «поздних» (с полиметаллической минерализацией; Лермонтовское, Тисовое) - достигают 18%.
Гранат - представлен гроссуряром и андрадитом. Гроссуляр (14-25% андрадитового минала) - широко распространен в «ранних», реже «средних» вольфрамоносных скарнах; андрадит - в скарнах с полиметаллическим оруденением. Гранаты из высокотемпературных (с волластонитом) парагенезисов имеют малую долю альмандин-спессартитовой составляющей (не более 10%); в гранатах из пироксен-гранатового (без волластонитового) парагенезиса месторождения Агылки - достигают 20%. Из элементов-примесей следует отметить присутствие в гроссулярах примеси титана, максимальное количество которого (до 1,05% TiO2) установлено в гранатах Лермонтовского месторождения.
Амфибол - установлено две группы: 1 - роговые обманки; 2 - амфиболы тремолит-актинолитового и куммингтонит-грюнеритового рядов.
Первая группа (роговых обманок) наблюдалась только в магматических породах. Близкие к ним по составу амфиболы встречаются в биотитовых роговиках месторождений Лермонтовского и Восток-2. В них установлены повышенные содержания титана (более 1 мас.% TiO2), а в отдельных случаях, марганца (до 10,21 мас.% MnO - габбро-монцониты Самуро-Бикинского комплекса). Максимальные концентрации глинозема (до 11,55 мас.% Al2O3) отмечаются в роговой обманке из даек спессартитов месторождения Агылки.
Во второй группе (амфиболов) наиболее распространены амфиболы тремолит-актинолитового ряда метасоматических пород. Их состав зависит от состава пород, по которым они развиваются: тремолит - в метасоматитах вдоль кварцево-шеелитовых прожилков, локализованных среди диопсидовых скарнов (Лермонтовское); актинолит - в метасоматитах по геденбергитовым скарнам и околоскарновых породах; ферроактинолит - в сульфидных (пирротиновых; Лермонтовское, Агылки) рудах, реже в пироксен-гранатовых скарнах (Восток-2) и роговиках (Лермонтовское).
Установлено, что в направлении от ранних генераций (безрудные скарны) к поздним (шеелит-амфиболовые и шеелит-амфибол-сульфидные метасоматиты) в амфиболах, закономерно уменьшаются содержания кобальта, никеля, молибдена и вольфрама при увеличении концентраций ванадия, скандия, олова, меди, висмута и др. Наиболее высокими концентрациями халькофильных элементов характеризуются амфиболы стадий кислотного выщелачивания и позднещелочной (биотитовые и флогопитовые грейзены; Гордукалов и др., 1991).
Амфиболы куммингтонит-грюнеритового ряда встречается редко. По данным Г.Н.Степанова (1977) они распространены в метасоматических породах (амфибол-биотитовых роговиках, околоскарновых породах) и сплошных сульфидных рудах верхних горизонтов месторождения Восток-2.
Полевые шпаты - представлены калиевой (микроклин, ортоклаз) и натровой (плагиоклазы) группами. Состав плагиоклазов варьирует от альбита до анортита: в гранитоидах рудогенерирующих штоков и даек преобладают олигоклаз-андезин (в центральных частях крупных кристаллов - лабрадор); в околоскарновых породах - состав варьирует от олигоклаза (22% An) до битовнита (88% An), причем, более кислые (22-42% An) типичны для амфибол-плагиоклазовых, а более основные (53-88% An) - для пироксен-плагиоклазовых пород; в полевошпатовых метасоматитах с шеелитовой минерализацией плагиоклаз соответствует лабрадору-битовниту (49-63% до 82 %An), реже анортиту (91-92% An); в фациях биотитовых и мусковитовых грейзенов, сформировавшихся по гранодиоритам и роговикам - альбит (5-10% An), реже олигоклаз (исключение - биотитовые грейзены по полевошпатовым метасоматитам Лермонтовского месторождения - лабрадор 55% An).
Биотит. В грейзенах Лермонтовского месторождения биотиты имеют железистость (fо = 56,0-59,6%), близкую к железистости биотитов из магматических пород и биотитовых роговиков (fо = 46,9-60,5%), в то же время их глиноземистость (lо) более низкая (22%), по сравнению с биотитами из гранитоидов (23-25%). На месторождении Восток-2 биотиты из грейзенов имеют более низкую железистость (fо = 32-46%) по сравнению с биотитами магматических пород (fо = 42-50%) при близких значениях глиноземистости (lо =19-25%). Такая же закономерность в вариациях состава биотитов отмечается на месторождении Агылки. По комплексу свойств, все рассмотренные биотиты относятся к магнезиальным разностям флогопит-аннитового ряда и характеризуются постоянным присутствием в их составе фтора, часто более 0,45 мас.%.
4.2. Типоморфизм рудных минералов.
4.2.1. Главные.
Шеелит - месторождений Лермонтовского и Восток-2 по химическому составу близок к теоретическому. Для него характерны низкие содержания примеси молибдена, по сравнению с шеелитами месторождений вольфрам-молибденовой и вольфрам-оловянной формаций (Апельцин и др., 1980; 1985; Ивакин и др., 1965; Чернов и др., 1965; 1967; Иванов, 1974; Барабанов, 1975; Руб и др., 1977; Кудрина, 1985). В шеелитах отмечаются повышенные концентрации редкоземельных элементов иттриевой (до 0,055 мас.% - Лермонтовское) и лантан-цериевой (до 0,197 мас.% - Восток-2) групп; иногда - бериллия и скандия (в шеелитах из кварцевых жил и грейзенов мусковитового типа).
Пирротин - преобладает в рудах всех месторождений. По данным рентгено-структурного анализа установлено две его модификации: гексагональная и моноклинная. В скарнах и полевошпатовых метасоматитах преобладает гексагональный (до 65%), а в грейзенах и сульфидных рудах моноклинный (более 80%) пирротин. Химический состав - близок к теоретическому; по данным спектральных анализов отмечаются примеси висмута, меди, серебра, свинца, золота и др., обусловленные присутствием микровключений минералов этих элементов: самородных золота и висмута, халькопирита, висмутина, галенита, гессита, тетраэдрита и др. Установлено, что ранние (гексагональный) генерации пирротина, по сравнению с поздними (моноклинный) обогащены кобальтом, никелем, ванадием и титаном, (Гордукалов и др., 1991).
Халькопирит - один из главных сульфидных минералов в рудах месторождения Агылки; менее распространен в рудах месторождений Восток-2 и Лермонтовском. Максимальные концентрации халькопирита (до 40% от всего объема - Восток-2; более 70% - Агылки) сосредоточены в зонах биотитовых грейзенов с арсенопиритом, сформировавшихся по полевошпатовым метасоматитам или в зонах амфиболовых метасоматитов, образовавшихся по пироксеновым скарнам. Установлено, что халькопириты из разных ассоциаций содержат разную по составу эмульсионную вкрапленность: сфалерит и пирротин - в халькопиритах из скарнов и полевошпатовых метасоматитов; кубанит, валериит, станнин - из мусковитовых и биотитовых грейзенов. В халькопиритах, как и в пирротине, отмечаются повышенные концентрации висмута, серебра, золота и др. элементов.
Арсенопирит - наиболее распространен в рудах Лермонтовского месторождения, менее - Востока-2, редко встречается на Агылках; максимальные концентрации - в биотитовых, мусковитовых и флогопитовых грейзенах. Химический состав - близок к теоретическому (Гвоздев, 1984; Гордукалов и др., 1991). По отношению As:Fe арсенопириты подразделены на три группы: первая группа (As:Fe = 0,91-1,05) - арсенопириты из биотитовых и мусковитовых грейзенов, в которых установлены наиболее высокие концентрации кобальта (до 1520 г/т); вторая группа (As:Fe = 1,10-1,14) - арсенопириты из флогопитовых грейзенов и кварцево-шеелитовых прожилков, локализованных среди гранодиоритов штока месторождения; третья группа (As:Fe = 1.21-1,24) - мелкозернистые арсенопириты из прожилков или кварцево-шеелитовых руд с полиметаллической (сфалерит, галенит и др.) минерализацией. По отношению As:Fe = 0.91-1,05 арсенопириты из грейзенов и кварцево-шеелитовых прожилков месторождений Восток-2 и Агылки попадают в первую, относительно более высокотемпературную (по Кречмару и др., 1976) группу, что согласуется с данными, полученными по термобарометрии кварца, сингенетичного арсенопириту. В целом, высокотемпературные генерации арсенопирита характеризуются повышенными концентрациями титана, кобальта и никеля, а низкотемпературные - висмута, серебра и золота.
Сфалерит - второстепенный минерал, основные концентрации которого сосредоточены в кварцевосодержащих участках грейзенов биотитового, мусковитового и флогопитового типов. Как и халькопирит, сфалерит содержит разную по минеральному составу эмульсионную вкрапленность: халькопирит - в сфалеритах из скарнов, полевошпатовых метасоматитов и мусковитовых грейзенов; станнин и халькопирит - в сфалеритах из биотитовых грейзенов с арсенопиритом; пирротин - в сфалеритах из флогопитовых грейзенов и поздних кварцевых прожилков с галенитом неясного генезиса на флангах месторождений. Сфалериты относится к разностям с вариациями железа от 7,85 до 16,76 мас.% Fe; исключение - сфалериты из кварц-сульфидных прожилков локализованных в роговиках на флангах месторождения Агылки (3,55-4,50 мас.% Fe) и сфалериты из прожилков с сурьмяной минерализацией Лермонтовского месторождения (5-6 мас.% Fe). Типоморфной примесью сфалеритов типовых скарново-шеелит-сульфидных месторождений является кадмий. На всех месторождениях его количество закономерно возрастает от ранних генераций (менее 0,25 - 0,33 мас.% Cd) к поздним (1,32 - 1,46 мас.% Cd). В поздних генерациях сфалеритов Лермонтовского месторождения установлена примесь индия (до 0,02 мас.% In). По данным спектального анализа в сфалеритах отмечаются повышенные концентрации Cu, Bi, Sb, Pb, Ag и др. элементов.
4.2.2. Сопутствующие.
Руды изученных скарново-шеелит-сульфидных месторождений - комплексные. В них установлены: самородный висмут, висмутин, икунолит, хедлейит, гессит, сульфотеллуриды висмута, лиллианит, кобеллит, висмутовый джемсонит яскульскиит, бурнонит, Ag-тетраэдрит и др. (Найбородин, 1959; Дорофеев, 1961; Флеров и др., 1974; Нечелюстов и др., 1968; 1973; Степанов и др., 1980; Гвоздев, 1984; Гвоздев и др., 2002; 2005). Наблюдались следующие ассоциации сопутствующих минералов: 1 - сложных Pb-Bi сульфосолей; 2 - висмутино-висмутовая; 3 - галенит-сульфовисмутитовая; 4 - Pb-Sb сульфосолей (ассоциации 1-3 - на всех месторождениях; 4 - только на Лермонтовском). Установлено, что эти ассоциации характеризуют разные типы метасоматических пород, а их минералы имеют разные типоморфные особенности.
Ассоциация сложных Pb-Bi сульфосолей имеет подчиненное распространение и наблюдалась в кварцево-шеелитовых рудах и кварц-полевошпатовых прожилках с молибденитом (Лермонтовское, Восток-2), характеризующих стадию полевошпатовых метасоматитов. В ней присутствуют пирротин, молибденит и халькопирит; редко арсенопирит, сфалерит; из минералов висмута - преобладают козалит и самородный висмут, а мало распространены сульфотеллуриды висмута, галенит, икунолит и сложные Pb-Bi сульфосоли (реликты: беегерит - распадается на галенобисмутит с висмутином и самородным висмутом или на козалит с галенитом и самородным висмутом (Лермонтовское) или лиллианит с козалитом и жозеитом (Восток-2). Отчетливо прослеживается следующая последовательность кристаллизации висмутовых минералов: сложные Pb-Bi сульфосоли (беегерит, далее - лиллианит, галенобисмутит) - простые Pb-Bi сульфосоли (козалит, бурсаит) с галенитом - сульфиды (висмутин, икунолит) и сульфотеллуриды (ингодит, жозеиты) висмута - теллуриды висмута и самородный висмут.
Типоморфными особенностями минералов ассоциации являются присутствие повышенных концентраций в Pb-Bi сульфосолях сурьмы (до 3,7 мас.%) и серебра (до 1,91 мас.%); в сульфотеллуридах - свинца (до 13 мас.% ингодит Восток-2; до 18 мас.% ингодит Агылки); пониженных концентраций селена во всех минералах (обычно менее 0,3 мас.% Se) и кадмия (не более 0,33 мас.%) в сфалеритах.
Висмутино-висмутовая ассоциация имеет подчиненное распространение на месторождении Восток-2 и более широко представлена в рудах месторождений Лермонтовского и Агылки. Она встречается преимущественно во вкрапленных сульфидных рудах, развивающихся по пироксеновым скарнам, и грейзенах биотитового типа; иногда - в кварцевых прожилках с халькопиритом, образовавшихся в кварцево-шеелитовую стадию минерализации. Висмутовые минералы представлены преимущественно висмутином и самородным висмутом, а хедлейит, жозеит, тетрадимит, козалит и самородное золото мало распространены; из других рудных минералов в небольшом количестве присутствуют арсенопирит, пирротин, сфалерит, галенит и халькопирит. Повышенные концентрации свинца отмечаются в висмутине (до 2.0 мас.%), жозеите (до 3,62 мас.%) и тетрадимите (до 4,99 мас.%); серебра и сурьмы - в козалите (соответственно до 3,46 и 4,68 мас.%); в галените присутствуют примеси висмута (до 2,16 мас.%) и серебра (до 0,85 мас.%); самородное золото - высокой пробности (до 13 мас.% Ag - Лермонтовское; до 16,7 мас.% Ag -Агылки). По типоморфным особенностям минералов ассоциации висмутино-висмутовую и сложных Pb-Bi сульфосолей следует считать членами единого эволюционного ряда формирования руд.
Галенит-сульфовисмутитовая ассоциация преобладает в рудах изученных месторождений. На месторождении Восток-2 и Лермонтовском она пространственно тяготеет к участкам грейзенов мусковитового типа, с которыми ассоциируют богатые кварцево-шеелитовые и сульфидные (арсенопиритовые, пирротин-халькопиритовые) руды, часто имеющие массивную текстуру; на месторождении Агылки - это кварцевые прожилки мощностью от 0.1 см до 0.2 м, секущие скарны, кварц-шеелитовые и сульфидные руды. Прожилки на 90 - 99 % сложены кварцем; нередко в них присутствуют хлорит, карбонат (кальцит, сидерит), шеелит, слюды, сульфиды (халькопирит, пирротин, пирит, арсенопирит, галенит, сфалерит, станнин). Висмутовые минералы неравномерно распределены по массе прожилков, а в гнездах (до 1 см) составляют не более 1-2 % от их объема. Преобладают свинцово-сурьмяно-висмутовые сульфосоли (кобеллит-?, висмутовый джемсонит, козалит), бурнонит; менее распространены жозеит-В, тетрадимит, гессит, самородное золото, блеклая руда. С этой ассоциацией связаны основные концентрации висмута, золота, серебра и теллура в рудах месторождений.
Наблюдается следующая последовательность формирования сульфидных минералов: 1 - близкоодновременно кристаллизуются арсенопирит, Pb-Sb-Bi сульфосоли (кобеллит, Sb-козалит, яскульскиит, Bi-джемсонит, бурнонит; 2 - позднее (выполняют микротрещины, секущие арсенопирит) - пирротин, халькопирит, станин, сфалерит и галенит с включениями самородного висмута, сульфотеллуридов висмута, Ag-тетраэдритом, гесситом, штютцитом; 3 - еще позднее - пирит, висмутин, икунолит, сульфотеллуриды и теллуриды висмута (хедлейит), самородные висмут и золото. Типоморфные признаки минералов этой ассоциации следующие: сфалериты - содержат максимальные концентрации кадмия (1,3-1,46 мас.% Cd - Агылки) по сравнению со сфалеритами из ассоциаций Pb-Bi-сульфосолей и висмутино-висмутовой; концентрации висмута и серебра в галенитах часто превышают 2 и 1 мас.% соответственно (до 1,81 мас.% Вi и до 0,34 мас.% Ag - Лермонтовское; до 6,08 мас.% Bi и до 1,40 мас.% Ag - Восток-2; до 4,57 мас.% Bi и до 2,48 мас.% Ag - Агылки).
Ассоциация свинцово-сурьмяных сульфосолей наблюдалась только в рудах Центральной залежи месторождения Лермонтовского. Это кварц-карбонатные прожилки, рассекающие скарны и кварцево-шеелитовые руды. Из рудных минералов в прожилках присутствуют гудмундит, пирротин, сфалерит, халькопирит, галенит, станнин, менегинит, джемсонит, блеклые руды (Ag-тетраэдрит, фрейбергит), пираргирит и миаргирит.
Блеклые руды с разными концентрациями серебра подразделены на две группы парагенезисов: к первой - отнесен парагенезис Ag-тетраэдрита (до 22 мас.% Ag) со сфалеритом (менее 5 мас.% Fe), галенитом, джемсонитом и менегинитом; ко второй - парагенезис фрейбергита (28-49 мас.% Ag) с халькопиритом, миаргиритом и пираргиритом (Степанов Г.Н., Гвоздев В.И., и др., 1985). Судя по минеральному составу и типоморфным особенностям слагающих минералов (отсутствие примесей висмута, теллура и селена), эту ассоциацию, вероятно, следует связывать с другим, не вольфрамовым, этапом минерализации.
Такая временная разобщенность Pb-Bi и Pb-Sb минерализации на Лермонтовском и совмещенность на месторождениях Восток-2 и Агылки может быть объяснена более высокой степенью дифференциации расплавов S-типа в условиях относительно «закрытых» РМС или взаимодействием расплавов I-S-типа в процессе эволюции «открытых» РМС с глубинным источником.
II.5. Генезис типовых скарново-шеелит-сульфидных месторождений.
5.1. Геохимические и термобарометрические параметры магматических комплексов.
Рудно-магматические системы (РМС) скарново-щеелит-сульфидных месторождений ДВ региона на всех этапах эволюции (магматическом и постмагматическом) характеризуются восстановительными (на уровне кварц-фаялит-магнетитового буфера и ниже) условиями формирования (см. рис. 7-Б). По соотношению окисленности магматических пород и их кремнекислотности (Мишин, 1994) все вольфрамоносные комплексы попадают в область оловоносных РМС, имеющих «восстановленную», корово-мантийную природу расплавов. Это согласуется с авторскими данными по изучению включений в кварце (Хетчиков, Пахомова, Гвоздев и др., 1991; 1999) и с комплексом признаков, предложенных М.Т.Энауди и др., (1984) и Р.Дж.Ньюберри (1991), согласно которым: продуктивные магматические породы - восстановленная, ильменитовая серия; постмагматические метасоматиты - парагенезис гроссуляра с геденбергитом в скарнах; преобладание в сульфидных рудах пирротина.
Для магматических комплексов, продуцирующих однотипное (вольфрамовое) оруденение, характерны включения в минералах с одинаковым набором элементов, но разными по составу и количеству солями. Наиболее детально был изучен кварц магматических пород месторождений Восток-2 и Лермонтовского. Наблюдались расплавные, минеральные, кристаллофлюидные, флюидные, газово-жидкие и газовые включения. Причем, расплавные и минеральные включения более часто встречаются в породах крупных массивов и относительно редко - в рудогенерирующих штоках (полностью отсутствуют в плагиогранитах краевой фации штока Центрального).
Расплавные включения состоят из преобладающей по объему слабо раскристаллизованной силикатной части и флюидной фазы, представленной одним или несколькими пузырьками; в некоторых из них удается различать жидкую и газовую составляющие (криометрическим методом иногда определяется углекислота). Включения в кварце гомогенизируются при температуре 910-9200С (гранитоиды Лермонтовского штока), реже 930-9600С (гранодиориты Дальнинского и краевая фация биотит-роговообманковых гранитов Бисерного массивов). Это заметно выше температур (860-9100С), полученных для включений из гранодиоритов Центрального штока. Установленные температуры гомогенизации расплавных включений, вероятно, завышены и заметно превышают расчетные по термометрам (Трошин и др., 1981), что согласуется с наблюдениями Ф.Г.Рейфа (1990) на примере гранитоидов Забайкалья.
Минеральные включения в кварце вольфрамоносных гранитоидов представлены цирконом, апатитом в ранних и апатитом, цирконом, биотитом и полевым шпатом - в поздних фациях пород.
Кристаллофлюидные и флюидные включения более характерны для гранитоидов рудогенерирующих штоков Центрального и Лермонтовского; реже они встречаются в биотитовых и лейкократовых гранитах (главные фазы) Бисерного и Шивкинского массивов. В их составе преобладают анизотропные твердые фазы и менее распространены кубические кристаллики (галита-?, сильвина -?); флюидная фаза в виде газового пузырька и солевого раствора занимает до 20% объема вакуолей. Температура гомогенизации флюидной составляющей таких включений (в зависимости от % соотношения фаз) лежит в диапазоне 280 - 5000С; при более высоких температурах - происходит их разгерметизация. Судя по количеству флюидных включений и их характеристикам, можно сделать вывод, что формирование рудогенерирующих гранодиоритов происходило из расплавов с высокой флюидонасыщенностью и высоким флюидным давлением (Хетчиков и др., 1996; 1999), подтверждением чего может быть трубообразное тело эксплозивной брекчии (с обломками гранодиоритов, гранит-порфиров, биотитовых роговиков и скарнов) в штоке Центральном (Восток-2). Образование таких брекчий, вероятно, обусловлено накоплением флюидов в магматической камере в процессе кристаллизации гранодиоритов и ее взрывной разгрузкой при достижении критического флюидного давления (Степанов, 1977; Хетчиков и др., 1996; 1999).
Газово-жидкие включения широко распространены в кварце гранитоидов рудоносных штоков. Наблюдались включения: 1 - двухфазовые, с содержанием газа от 40 до 60% объема вакуолей; 2 - многофазовые, содержащие кроме солевого раствора и газа 1-2 и более твердых фаз (иногда третья фаза представлена жидкой углекислотой).
Газовые включения в кварце гранитоидов Лермонтовского штока встречаются сравнительно редко, по сравнению с кварцами плагиогранитов штока месторождения Восток-2 (краевая фация участками содержит до 90% от общего количества включений). На всех месторождениях большинство газовых и газово-жидких включений не достигают гомогенизации и разгерметизируются при температурах от менее 240 до 2650С.
Изучение включений криометрическим методом показало, что магматические комплексы, продуцирующие однотипное (вольфрамовое) оруденение, характеризуются включениями одинаковыми по набору элементов, но разными по количеству и составу солей. Так, в кварце гранитоидов вольфрамоносных штоков (Лермонтовского и Восток-2) включения содержат хлорид кальция и изредка хлорид калия, а углекислота во включениях иногда содержит примеси более низкотемпературных газов.
Особо нужно подчеркнуть различия по количеству и солевому составу флюидных включений в кварце гранитов крупных массивов (с непромышленным оруденением) и гранитов штоков (с промышленной минерализацией). Эти различия выражаются в отсутствии во включениях в кварце гранитоидов вольфрамоносных штоков солей магния и преобладание включений с карбонатными солями, в то время как в крупных массивах - наблюдаются обратные соотношения. В целом кварц гранитов штока Лермонтовского месторождения отличается заметно более разнообразным составом включений, по сравнению с кварцем гранитов, близко расположенного крупного массива.
Таким образом, перечисленные термобаро-геохимические особенности магматических флюидов в совокупности с петрохимическими характеристиками гранитоидов свидетельствуют о высокотемпературных параметрах пород вольфрамоносных комплексов, подтверждая глубинную природу их продуцирующих расплавов.
5.2. Стадийность и изотопно-геохимические параметры рудообразования.
Постмагматические процессы эталонных вольфрамоносных РМС наследуют природу и свойства их продуцирующих расплавов на всех этапах минерализации, характеризуя восстановительные условия формирования, на что указывают минеральный состав метасоматических пород и руд, типоморфные особенности минералов, данные термобарогеохимических и изотопных исследований (Малахов и др., 1989; Хетчиков, Пахомова, Гвоздев, 1991; Гвоздев и др., 1998; 1999; Гвоздев, 1984; 2001).
На всех месторождениях рудные тела сложены минеральными ассоциациями роговиков, скарнов, полевошпатовых метасоматитов, грейзенов и сульфидов, формирование которых соответствует четырем этапам минерализации: 1 - контактового метаморфизма, 2 - скарновому, 3 - рудному, 4 - пострудному.
В первый этап вмещающие терригенные породы (алевролиты, сланцы, песчаники) в контакте с массивами и штоками гранитоидов были интенсивно ороговикованы, а известняки преобразованы в мраморы. На месторождениях Лермонтовское и Восток-2 карбонатные породы по периферии контактового ореола представлены разностями темно-серого (известняки) и серого (слабо мраморизованные известняки), а в контактовой зоне - белого (мраморы) цвета. Значения 13С и 18О (Гвоздев и др., 1998; 1999), полученные для известняков этих месторождений (от 2.8 до 3.6‰ и от 23.1 до 23.8‰ соответственно), свидетельствуют об их морском генезисе. Близкие значения имеют серые и белые мраморы, наблюдаемые в контакте массивов и штоков гранитоидов (от 2.4 до 3.1‰ и от 22.0 до 24.1‰ соответственно). Это указывает на подчиненную роль гидротермального флюида при фракционировании изотопов углерода и кислорода в процессе контактного метаморфизма, а так же (узкий диапазон вариаций д18O и д13C) на относительную закрытость рудо-магматической системы в этот этап и отсутствие какого-либо значительного водообмена с окружающей средой.
Более значительные вариации изотопного состава этих элементов получены для пород, измененных при скарнировании. Кальциты из мраморов контакта со скарнами имеют значение 13С от +1.9 до -0.5, а 18О от 19.0 до 15 ‰, что указывает на возрастающую роль гидротермального флюида в период скарнообразования. Кальциты, выполняющие пустоты среди скарновых и рудных минералов, а также кальциты из пострудных прожилков имеют значение 13С от -0.5 до -13.0‰ и 18О от 17.0 до 3.0‰ соответственно (Гвоздев и др., 1999).
На месторождении Агылки мраморы, локализованные на периферии рудных тел, не только контактово-метаморфизованы, но и гидротермально изменены, на что указывают значения 13С и 18О (от -4,6 до -6,4 ‰ и 10,2 до 12,8 ‰ соответственно) близкие к значениям перекристаллизованных мраморов из контакта с пироксеновыми скарнами (от -3,9 до -4,0 ‰ и от 12,7 до 13,8 ‰ соответственно) и гидротермально измененных карбонатов месторождений Лермонтовского и Восток-2. По данным спектрального анализа примеси вольфрама в мраморах контактовых ореолов не установлено.
Во второй этап на всех месторождениях сформировались скарны нескольких временных периодов (стадий): ранний, средний и поздний.
«Ранние» скарны пространственно ассоциируют с меланократовыми породами гранодиоритового, тоналитового состава и наблюдаются в роговиках экзоконтактового обрамления крупных массивов (гранитоиды S- и I-S типов). Исключение - Лермонтовская РМС, где они встречаются и в контакте «рудогенерирующего» штока, который не выходит за пределы контактового ореола Шивкинского массива.
На Лермонтовской и Востоковской РМС эти скарны относятся к инфильтрационному типу и характеризуются более высокими, относительно средних и поздних скарнов, температурами формирования (пироксен-гранат-волластонитовая, пироксен-гранатовая фации; 750-5000С по В.А.Жарикову, 1968) и повышенной магнезиальностью, что отражается в их минеральном составе (преобладают пироксены диопсид-салитового состава, гранат - гроссуляр, везувиан, волластонит).
На Агылкинской РМС ранние скарны представлены более низкотемпературной пироксен-эпидотовой фацией (400-3500С; пироксен салит-ферросалитового состава; эпидот - цоизит-клиноцоизит; волластонит - не наблюдался). Промышленных содержаний вольфрама в «ранних» скарнах не установлено.
Скарны «среднего» временного периода наблюдаются непосредственно в контактах рудогенерирующих штоков и даек плагиогранитов и гранодиоритов (породы S-типа или I- S типа, обогащенные сиалическим материалом). Шеелитовую минерализацию этих скарнов согласно представлениям В.А.Жарикова (1968), следует подразделять на «сопутствующую» и «наложенную». «Сопутствующая» минерализация представлена гнездами (до нескольких сантиметров) кварц - плагиоклазового состава с мелкими идиоморфными кристаллами пироксена поздней генерации, шеелита, амфибола и сульфидами (пирротин, халькопирит). Взаимоотношения перечисленных минералов (отсутствуют структуры замещения и перекристаллизации) указывают на их последовательную кристаллизацию. Температура кристаллизации кварца из таких гнезд на всех месторождениях варьирует в диапазоне 300-350оС. На месторождении Восток-2 скарны и околоскарновые метасоматиты с сопутствующей минерализацией содержат повышенные (30-1000 г/т W), иногда промышленные (до 1,2% WO3) концентрации вольфрама. «Наложенная» минерализация связана с окварцеванием, амфиболизацией и сульфидизацией пироксеновых скарнов (преобладают структуры замещения, катаклаза и др.). Пространственно участки таких скарнов тяготеют к зонам полевошпатовых метасоматитов или грейзенов и обычно содержат промышленные концентрации вольфрама (от 0,1 до более 2,0% WO3).
...Подобные документы
Происхождение магматических пород, их классификация по различным признакам и пояснение причин различия текстуры и структуры пород. Общая характеристика главнейших представителей магматических пород: кислые, средние, основные, ультраосновные породы.
реферат [1,1 M], добавлен 20.10.2013Исследование особенностей осадочных и метафорических горных пород. Характеристика роли газов в образовании магмы. Изучение химического и минералогического состава магматических горных пород. Описания основных видов и текстур магматических горных пород.
лекция [15,3 K], добавлен 13.10.2013Минералогическое изучение магматических пород. Величина отношения - палагиоклаз. Кристаллизационная дифференциация базальтовой магмы. Суть палингенеза. Обстановка гранитообразования. Особенности коллизионных гранитов, обусловленные условием их генезиса.
реферат [130,4 K], добавлен 21.06.2016Глубинные разломы с геосинклинальными прогибами, чередование геосинклинального и платформенного режимов. Виды магматических пород, сравнительное изучение геологических структур с разной историей. Химический состав магматических и осадочных пород.
контрольная работа [1,2 M], добавлен 29.07.2009Сущность интрузивного магматизма. Формы залегания магматических и близких к ним метасоматических пород. Классификация хемогенных осадочных пород. Понятие о текстуре горных пород, примеры текстур метаморфических пород. Геологическая деятельность рек.
реферат [210,6 K], добавлен 09.04.2012Химический состав земной коры и Земли. Весовые кларки наиболее распространенных химических элементов. Формы залегания магматических горных пород. Геологическая деятельность озер и болот. Образование магматических пород. Разрывные движения земной коры.
контрольная работа [26,2 K], добавлен 26.02.2011Формы интрузивных тел. Изучение контактовых ореолов. Определение внутренней структуры интрузивов. Геодинамический анализ магматических пород Белореченского полигона. Состав, строение, мощность, распространенность, последовательность образования пород.
реферат [465,0 K], добавлен 21.06.2016Процессы образования и распространения офиолитовой формации в эвгеосинклиналях. Характеристика магматических формаций платформ и мобильных поясов. Породы группы нефелиновых сиенитов-фонолитов. Агпаитовый порядок кристаллизации магматических горных пород.
контрольная работа [27,4 K], добавлен 01.11.2009Анализ геолого-геохимической изученности Узбекистана, состояние золотого промысла. Разработка классификации золоторудных и золотосодержащих месторождений, основанной на рациональном комплексировании рудно-формационных и геолого-промышленных принципов.
автореферат [2,2 M], добавлен 13.06.2015Классификация магматических пород по происхождению и по содержанию SiO2. Географическое размещение вулканов, зоны современного вулканизма. Условия образования ледников. Общая характеристика материалов класса "самородные элементы". Процесс парагенезиса.
контрольная работа [940,8 K], добавлен 26.06.2013Общая схема образования магматических, осадочных и метаморфических горных пород. Петрографические и литологические методы определения пород. Макроскопическое определение группы кислотности. Формы залегания эффузивных пород. Породообразующие минералы.
контрольная работа [91,7 K], добавлен 12.02.2016Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.
презентация [949,2 K], добавлен 13.11.2011Породы палеозоя в районе месторождения Жайрем, их перекрытие песками, суглинками и глинами кайнозойского возраста мощностью несколько десятков метров. Железо-марганцевое оруденение, атасуйский тип месторождения. Распространение магматических пород.
презентация [168,3 K], добавлен 20.02.2013Образование магматических, осадочных и метаморфических горных пород. Основные виды горных пород и их классификация по группам. Отличие горной породы от минерала. Процесс образования глинистых пород. Породы химического происхождения. Порода горного шпата.
презентация [1,2 M], добавлен 10.12.2011Геоструктуры, формации и структурные этажи (ярусы). Малые пликативные и дизъюнктивные структуры, магматические тела. История тектонического развития. Анализ стратиграфической колонки и структурных форм залегания стратифицированных и магматических тел.
контрольная работа [25,9 K], добавлен 21.04.2011Петрография как наука. Магма и происхождение горных пород. Ультраосновные породы нормального ряда. Субщелочные породы, щелочные среднего и основного состава. Гранит, риолит и сиенит. Минеральный состав, текстуры и структуры метаморфических пород.
контрольная работа [7,1 M], добавлен 20.08.2015Три магматические формации, проявленные в районе Белореченского полигона. Взаимоотношение гранитов с амфибол-плагиоклаз-кварцевыми гнейсами с линзами серпентинитов. Химический состав (в %) ультрабазитов, базитов и гранитоидов Белореченского полигона.
реферат [7,1 M], добавлен 21.06.2016Геохимическая характеристика позднедокембрийских магматических пород поднятия Енганепэ. Блоки гранитоидов из зоны серпентинитового меланжа енганепэйского комплекса. Анализ петрографии пород массива Южный. Геологическая позиция конгломератов и гравелитов.
дипломная работа [84,0 K], добавлен 13.02.2016Классификация, состав и степень распространения минералов и горных пород в вещественном составе земной коры. Генезис магматических, метаморфических и осадочных пород. Океанические и континентальные блоки земной коры, анализ их структурных элементов.
дипломная работа [690,1 K], добавлен 11.11.2009- Исследование минералов с помощью поляризационного микроскопа. Петрографическое описание горных пород
Принцип действия поляризационного микроскопа. Определение основных показателей преломления минералов при параллельных николях. Изучение оптических свойств минералов при скрещенных николях. Порядок макроскопического описания магматических пород.
контрольная работа [518,6 K], добавлен 20.08.2015