Техногенная трансформация геологической среды Верхнекамского соленосного бассейна

Оценка масштабов техногенного воздействия на геологическую среду соленосных бассейнов в процессе добычи и переработки калийных руд. Оценка фоновых характеристик состояния геологической и сопредельных сред до начала эксплуатации соляных месторождений.

Рубрика Геология, гидрология и геодезия
Вид автореферат
Язык русский
Дата добавления 27.12.2017
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Галитизация сильвинитов и сильвинитизация карналлитов в условиях выноса вещества привела к сокращению объемов пород разреза ВЗТ1. Мощность пласта В в зоне сильвинитизации карналлита, например, уменьшилась более чем в два раза. Если в скважинах № 8П,9П и 10П мощность карналлитового пласта В достигала 5,25 - 6,93 м, то в скважинах № 5П и 6П мощность сильвинитов пласта В уменьшалась соответственно до 2,71 и 2,60 м, Последующая их литификация под воздействием геостатического давления сформировала мульду оседания как в водозащитной толще, так и в надсоляной толще с развитием деформаций в ее краевой части и образованием Абрамовского лога на земной поверхности (см. рис. 6). Дислокации вторичного уплотнения пород обычно представлены субвертикальными разрывами со следами перемещений по всему разрезу. Разрывные дислокации вторичного уплотнения соляных пород в настоящее время обнаружены на участках, расположенных к западу от крупных зон разубоживания в пределах рудников СКПРУ-2, в районе скважин 130-131, СКПРУ-3 (4 -я панель), БКПРУ-4 (опытная панель).

После фильтрации растворов восходящим потоком в карналлитовой части разреза в районе западных частей 10 и 14 западных панелей сформировались трещины, заполненные свободными газами - метаном и водородом, которые высвобождались при термодинамометаморфизме карналлитовых пород, предшествовавшем их сильвинитизации.

В процессе доизучения подготавливаемого к отработке Усть-Яйвинского участка, в месте предполагаемого нарушения водозащитной толщи Соликамским надвигом, нами была пробурена скважина № 1106. В процессе бурения скважины в переходной зоне соляно-мергельной толщи (верхняя часть ВЗТ) вскрыты прямые признаки тектонического нарушения: гранулированная и плитчатая каменная соль, тектоническая брекчия. Наиболее интересным был факт обнаружения в этой зоне синего галита, говорящий, по нашему мнению, о наличии здесь в геологическом прошлом сквозной проницаемой зоны, по которой осуществлялась миграция снизу растворенных калийных, калийно-магниевых и натриевых солей. В результате было установлено как само наличие, так и положение тектонического нарушения в водозащитной толще, для охраны которой здесь будут предусмотрены соответствующие параметры отработки и тем самым повышена безопасность ведения горных работ.

2. Фоновые характеристики состояния геологической и сопредельных сред изучаются до начала эксплуатации соляных месторождений. Исследования включают: уточнение строения калийных пластов, оценку гидрогеологических условий их разработки, выявление природы геофизических аномалий, оценку состояния атмосферного воздуха, качество поверхностных и подземных вод, загрязнения снежного и почвенного покровов, величины радиационного фона, состояния флоры и фауны (глава 3).

Целью мониторинга геологической, а также сопредельных сред является установление тенденций их развития на основе регистрации и анализа отклонений их параметров и принятие управленческих решений по предотвращению негативных процессов. Эта цель достигается за счет предварительного определения параметров фонового состояния окружающей среды, любые их отклонения выявляются немедленно.

В ближайшие годы начнется отработка Усть-Яйвинского участка ВКСБ, для которого нами было проведено определение фонового состояния геологической и сопредельных сред (рис. 8).

Участок расположен на территории г. Березники и Усольского района Пермского края. Водные объекты представлены р. Камой (Камское водохранилище) и ее левобережными притоками - реками Яйвой и Ленвой, питаемыми многочисленными ручьями. Основным источником хозяйственно-питьевого водоснабжения в районе являются подземные воды, приуроченные к терригенно-карбонатным отложениям уфимского яруса. Для технических нужд используются воды р. Камы и ее притоков.

По результатам детальной разведки (Квиткин, 1991) определено состояние геологической среды и строение калийных пластов, наличие аномальных зон в водозащитной толще, оценены гидрогеологические условия разработки на планируемых к отработке участках нового шахтного поля. На территории участка пробурено 86 скважин: структурных - 7; разведочных - 69; гидронаблюдательных (для нужд БКПРУ-3) - 4; водозаборных - 3; гидрогеологических - 7, контрольно - стволовых - 3. Кроме того, на территории участка в разные годы выполнялись геофизические работы методами грави -, электро-, магнитометрии и сейсморазведки в профильном и площадном вариантах различных масштабов. К настоящему моменту выполнено геологическое доизучение Усть-Яйвинского участка бурением структурных и разведочных скважин.

Рис. 8 Схема расположения пунктов определения фонового состояния геологической и сопредельных сред на Усть-Яйвинском участке ВКМКС

В пределах участка развиты нижнепермские отложения, залегающие в нормальной стратиграфической последовательности. На фоне относительно спокойного залегания пород на участке местами в них наблюдаются внутриформационные складки различных порядков. Пликативными дислокациями затронуты соляные пласты преимущественно в центральной части участка. Внутрисоляная тектоника характеризуется преимущественно складками второго порядка и лишь на площадях, где деформациям подверглись серии пластов, высота складок достигает 10 - 15 м.

Зоны замещения сильвинита каменной солью располагаются в основном на севере и северо-востоке Усть-Яйвинского участка (рис. 9). Их площади по отношению к общей площади участка составляют: в пласте КрIIIа-б - 4,1%, в пласте КрII - 1,2%, в пласте АБ - 0,1%. Гидрогеологические условия разработки оцениваются как сложные в связи с развитием в надсолевых отложениях ряда гидравлически связанных между собой и поверхностными водами водоносных горизонтов, в связи с чем необходима разработка мероприятий по предотвращению затопления будущего рудника.

В условиях Верхнекамского соленосного бассейна защита рудников от затопления надсолевыми водами обеспечивается, прежде всего, сохранностью пород водозащитной толщи (ВЗТ) над отрабатываемыми горизонтами. ВЗТ на Усть-Яйвинском участке включает в себя часть сильвинито-карналлитовой зоны, покровную каменную соль и переходную пачку соляно-мергельной толщи (рис.10).

Мощность ВЗТ на участке колеблется от 100 до 169,6 м. К аномальным зонам необходимо отнести:

- зону замещения сильвинита каменной солью пластов от КрШ до АБ в северо-западном районе участка (см. рис.9);

- выявленные геофизические аномалии.

К наиболее значимым для оценки состояния горного массива геофизическим работам, в результате проведения которых выявлены данные аномалии, относится гравиметрическая съёмка масштаба 1:25000, выполненная ПГО «Уралгеология» в 1986-1990 гг. (Нояксова, 1990) и электроразведочные наблюдения по сети 800-1500х200-250 м с детализацией на отдельных участках по сети 250-350х100-200 м, проведённых Пермской геологоразведочной экспедицией в 1987 г. (Беляев, 1989).

В результате комплексной переинтерпретации с использованием современных интерпретационных систем и вычислительной техники достигнуто повышение информативности и детальности данных гравиразведочных и электроразведочных работ (Новоселицкий, Колесников, 2004). Поэтому основное внимание при анализе геологической среды было уделено аномальным особенностям геофизических полей, выделенным в процессе переинтерпретации.

На одном из аномальных участков нами пробурена скважина № 1101. Данные бурения позволили уточнить особенности геологического строения и состояния пород надсоляной толщи (забой скважины был остановлен в кровле ВЗТ) и объяснить природу геофизических аномалий, которые были обусловлены, как и предполагалось, повышенной трещиноватостью пород в низах надсоляной толщи. В интервале глубин 155 - 180 м расходометрическими исследованиями была выявлена водопроводящая зона, представленная слабым трещиноватым мергелем и комковатой глиной. В статическом режиме здесь зафиксирован переток с дебитом 0,3 л/с и в динамическом - около 3 л/с. Кроме того, в этом интервале удельное электрическое сопротивление по данным каротажа упало до 10 Омм.

В результате переинтерпретации данных электроразведки выделены два линейных участка субмеридионального простирания, сходных по совокупности аномальных особенностей электрического поля (см. рис. 9).

Разведочная скважина № 1102 нами пробурена в непосредственной близости от пикетов ВЭЗ, на которых зафиксированы аномальные особенности электрического поля. Действительно, в надсоляной части разреза в интервале гдубин 190 - 215 м выявлена зона трещиноватых мергелей с низким удельным электрическим сопротивлением, равным в среднем 3 - 6 Омм.

Наиболее контрастной из всех выделенных отрицательных аномалий гравитационного поля является IX, максимальный эффект которой достигает 0,05 мГал. Для выявления природы данной аномальной зоны нами проведено бурение разведочной скважины № 1103. В результате скважиной вскрыт в интервале 130 - 134 м трещиноватый мергель. На этой же глубине расходометрическими исследованиями выявлена водопроводящая зона. В интервале 172 - 176 м вскрыта зона сильнотрещиноватых пород, также представленных мергелем.

В районе Усть-Яйвинского участка нами оценивалось также фоновое состояние подземных вод и основных сопредельных сред.

1. Установлено, что состояние атмосферного воздуха в зоне действия будущего горнодобывающего производства пока не подвержено значительным техногенным нагрузкам (табл. 1).

2. Качество подземных вод в основном соответствует СанПиН 2.1.4.1074-01 (табл. 2).

3. Радиационный фон не превышает существующие нормативы (табл. 3).

Средние значения МЭД гамма-излучения во всех точках, включая фоновую, изменяются незначительно и не превышают существующие нормативы.

Плотность потока радона во всех точках также не превышает существующие нормативы, однако полученные значения в разных точках наблюдения отличаются между собой в 2-4 раза.

4. В воде рек содержание загрязняющих веществ небольшое (табл. 4).

5. В воде родников концентрация основных загрязняющих веществ не превышает ПДК р./хоз.

6. Загрязнение снежного покрова в целом незначительно превышает уровень фонового загрязнения по большинству показателей.

7. Уровень загрязнения почвенного покрова в основном незначительно превышает уровень фонового загрязнения по определяемым показателям.

Рис. 9. Геофизические аномалии в северной части Усть-Яйвинского участка. Масштаб 1: 25000

Рис. 10 Геолого-гидрогеологический разрез северной части Усть-Яйвинского участка (по С.Ю. Квиткину)

Размещено на http://www.allbest.ru/

Таблица 1

Средние концентрации определяемых веществ в атмосферном воздухе в районе Усть-Яйвинского участка

Единица измерения

Количество наблюдений

Пыль

Оксид углерода

Диоксид азота

Диоксид серы

Хлорид водорода

Октябрь-декабрь 2004 г

мг/м3

36

0,1

1,6

0,008

0,003

0,086

ПДК

36

0,7

0,5

0,2

0,1

0,4

Март-май 2005 г.

мг/м3

34

0,29

1,6

0,006

0,003

0,083

ПДК

34

1,9

0,5

0,2

0,1

0,4

В целом за весь период

мг/м3

70

0,2

1,6

0,007

0,003

0,084

ПДК

70

1,3

0,5

0,2

0,1

0,4

Усть-Яйвинский участок характеризуется разнообразием во всех составляющих природного комплекса: разнообразие типов лесов, лесных биотопов; разнообразие позвоночных видов рыб, водных беспозвоночных, являющихся кормовой базой рыб. Общее состояние растительности удовлетворительное и отвечает задачам выполнения водоохранных, защитных, бальнеологических и рекреационных функций лесов зеленой зоны г. Березники. Лесное хозяйство на современном этапе ведется в соответствии с нормативами и правилами. Каких-либо негативных последствий воздействия на лесную растительность в последнее время не обнаружено.

Таблица 2

Результаты санитарно-гигиенического исследования воды из действующих на Усть-Яйвинском участке водозаборных скважин

Номер скважины

Дата отбора

Показатели, (мг/дм3)/величина допустимого уровня

мутность

окисляемость перманг.

аммиак

нитриты

нитраты

общая жесткость

сухой

остаток

хлориды

сульфаты

железо

ПАВ

нефтепр.

кальций

магний

калий +

натрий

БПК5

фосфаты

не >1,5

не >5,0

не >2,0

не >3,0

не >45,0

не >7,0

не >>1000

не >350

не >500

не >0,3

не >0,5

не >0,1

-

не >50

-

-

не >3,5

Скважина №258

29.10.04

0,17

0,37

<0,05

<0,003

3,47

3,90

256,0

23,0

22,07

<0,05

0,020

0,048

64,13

8,51

10,5

1,57

0,18

11.03.05

0,26

0,22

<0,05

<0,003

1,90

3,90

251,0

25,0

30,05

0,066

0,050

0,035

54,11

14,6

6,5

2,05

0,13

08.06.05

<0,10

0,25

<0,05

<0,003

0,62

3,80

297,0

22,0

37,91

<0,005

0,012

0,097

62,12

8,51

12,9

0,16

0,17

07.07.05

<0,10

0,31

0,05

0,003

1,60

4,20

286,0

24,0

21,08

0,08

0,030

0,05

60,12

9,73

1,0

1,75

0,13

Скважина № 302

29.10.04

0,26

0,22

<0,05

0,049

<0,10

1,80

263,5

6,0

18,45

<0,05

0,080

0,020

32,06

2,43

75,7

1,72

0,05

11.03.05

0,93

1,31

0,180

0,030

<0,10

2,40

290,0

10,0

59,20

0,491

0,090

0,035

32,06

9,73

77,8

1,75

0,46

08.06.05

0,20

1,52

0,18

0,012

<0,10

2,10

266,0

7,0

42,72

0,41

0,017

0,042

28,06

8,51

75,6

0,34

0,04

07.07.05

<0,10

0,54

0,05

0,0058

0,56

1,90

256,0

8,0

22,38

0,13

0,060

0,02

28,06

6,08

67,50

1,50

0,024

Таблица 3
Результаты радиационного контроля

п/п

Место отбора

Плотность

потока радона,

мБк/(м2с)

МЭД

гамма-излучения,

мкЗв/ч

норматив - 80

норматив - 0,30

1

Западная окраина детского комплекса

35

0,06

2

В районе садовых участков

18

0,07

3

ЛЭП южнее мехколонны № 24

51

0,07

4

Окрестности д. Легино

71

0,07

5

Поляна в 200 м от профилактория «Строитель»

69

0,07

6

11 км автодороги на Володин Камень

72

0,06

7

15 км автодороги на Володин Камень

35

0,07

8

Окрестности д. Харитоновичи

52

0,07

9

Окрестности д. Володин Камень

36

0,06

10

Окрестности д. Белая Пашня

57

0,06

Разнообразие лесных биотопов позволяет существовать достаточно богатому набору видов, тяготеющих к таёжной зоне, несмотря на достаточно солидную рекреационную нагрузку, определяющуюся близостью г. Березники. Это разнообразие составляет более 50 % от всех позвоночных, обитающих в Пермском крае. В результате комплексного обследования установлено, что на территории сформировался и успешно функционирует высокопродуктивный природный комплекс с высокой степенью устойчивости к незначительному солевому загрязнению.

Данные, полученные в рамках работ по анализу фонового состояния окружающей среды в зоне действия горнодобывающего производства на Усть-Яйвинском участке, явятся основой для организации и ведения в будущем мониторинга изменений геологической и сопредельных сред. После начала горно-подготовительных и очистных работ на участке следует ожидать проявления таких негативных процессов, как:

1) развитие деформаций в массиве горных пород, проявляющихся на земной поверхности в виде ее оседания;

2) повышение сейсмической активности (техногенной);

3) загрязнение атмосферного воздуха в основном выхлопными газами автомобилей и почв хлористым калием при его просыпи по тракту транспортировки;

Таблица 4

Результат гидрохимического обследования рек Яйвы, Ленвы

Водный объект

Дата отбора

Расходы, м3

Показатели, мг/дм3

взвешен. в-ва

нефтепродукты

БПК5

ХПК

азот аммония

азот нитратов

азот нитритов

фосфаты

железо общее

СПАВ

натрий

калий

кальций

магний

хлориды

сульфаты

сухой остаток

р. Яйва

(д. Володин-Камень)

29.10.04

82,6

2,0

0,02

<0,5

25,5

0,20

0,29

<0,005

<0,005

1,21

0,01

36,0

30,8

5,5

55,9

40,3

232

10.03.05

24,9

5,2

0,04

0,60

27,6

0,09

0,75

0,006

0,005

0,44

0,01

115

11,0

67,8

16,2

194

70,9

621

06.05.05

477

4,6

0,04

0,58

20,6

0,06

0,37

<0,005

<0,005

1,12

<0,01

19,0

3,0

13,6

3,9

35,7

16,9

142

07.07.05

115

1,0

0,04

1,09

28,0

0,26

0,16

<0,005

<0,005

0,39

0,01

43,3

2,89

39,3

6,9

67,0

45,7

295

р. Лёнва

(в районе г/п № 4)

28.10.04

0,18

31,8

<0,02

1,60

39,7

0,57

1,32

0,018

<0,005

0,13

0,02

795

819

197

3010

59,4

5040

11.03.05

0,15

88,6

0,06

-

265

41,2

1,33

0,020

0,009

0,23

<0,01

3010

1470

1620

379

9650

258

20100

08.05.05

0,49

24,0

0,04

1,81

46,1

3,48

1,25

0,008

<0,005

0,04

0,01

720

207

644

165

2660

65,0

6020

08.07.05

0,23

28,6

0,04

0,62

76,0

3,40

0,92

0,012

<0,005

0,37

0,02

628

84,83

817

214

2960

57,5

6950

р. Лёнва (г/п. №5, д. Балахонцы, а/д мост)

29.10.04

0,42

93,0

0,04

1,29

52,2

27,8

1,36

0,015

<0,005

0,07

0,04

3050

959

223

6450

226

11040

10.03.05

0,29

109

0,04

-

510

66,8

2,30

0,021

<0,005

0,29

0,01

4670

2660

1640

452

13100

440

37300

06.05.05

1,13

34,0

0,06

1,35

47,1

30,5

1,48

0,028

<0,005

0,14

<0,01

2270

877

817

187

6120

208

19270

07.07.05

0,53

65,0

0,05

0,59

136

30,2

1,42

0,160

<0,005

0,16

0,01

2720

1145

1010

246

7320

250

18040

4) загрязнение поверхностных и подземных вод в результате просыпи по тракту транспортировки калийной руды и при увеличении техногенной нагрузки на шламохранилище и солеотвал БКПРУ-3.

Мониторинг геологической среды целесообразно осуществлять на следующих объектах:

1) подземные горные выработки;

2) профильные линии грунтовых реперов для наблюдений за сдвижениями земной поверхности;

3) профильные линии геофизических наблюдений;

4) гидрогеологические скважины.

Наблюдения за сопредельными средами будут производиться ( см. рис. 8):

1) за поверхностными водами - 2 гидрометрических створа, 7 родников;

2) за атмосферным воздухом, почвой, снежным покровом, радиационным фоном - 10 пунктов;

3) лесоэкологический мониторинг - 6 пунктов;

4) за гидробионтами - 5 станций наблюдения;

5) орнитологический мониторинг - 1 участок.

Режимные сети мониторинга необходимо расширять и трансформировать в соответствии с развитием горных работ и строительством поверхностного комплекса.

3. Мониторинг геологической среды эксплуатируемых соляных месторождений осуществляется комплексом исследований, включающим дистанционное зондирование, инструментальные наблюдения за сдвижением земной поверхности, выявление связи ее деформаций с объемами добытой руды, ведение сейсмологического контроля, проведение сейсмо-, электро-, гравиразведки на участках с аномальным строением водозащитной толщи, регистрацию гидродинамического, гидрогеохимического и газового режима подземных вод (глава 4).

Мониторинг (от латинского mоnitor - предупреждающий, предостерегающий) - комплексная система наблюдений, оценки и прогноза изменения состояния окружающей среды под влиянием антропогенных факторов. Этот термин появился перед проведением Стокгольмской конференции ООН по окружающей среде (июнь, 1972) в дополнение к понятию «контроль». Большой вклад в разработку теории мониторинга внесли Ю.А. Израэль, В.А. Королев и др. С самого начала в трактовке мониторинга проявились две точки зрения. Многие зарубежные исследователи предлагали осуществлять систему непрерывных наблюдений одного или нескольких компонентов окружающей среды с заданной целью и по специально разработанной программе. Ю.А. Израэль предложил понимать под мониторингом только такую систему наблюдений, которая позволяет выделить изменения состояния биосферы под влиянием антропогенной деятельности (т.е. мониторинг только антропогенных изменений окружающей природной среды). «Мониторинг - это система наблюдений, позволяющая выделить изменения биосферы под влиянием человеческой деятельности (мониторинг антропогенных изменений окружающей среды» (Израэль, 1974).

В 80-е годы был введен термин литомониторинг, который в отличие от мониторинга окружающей среды характеризуется более узким содержанием, охватывающим в качестве объекта наблюдений только литосферу. Одновременно с этим термином появилось и понятие «мониторинг геологической среды». Обобщив известные определения, В.А.Королев (1995) заключил, что «мониторингом геологической среды называется система постоянных наблюдений, оценки, прогноза и управления геологической средой или какой - либо ее частью, проводимая по заранее намеченной программе в целях обеспечения оптимальных экологических условий для человека в пределах рассматриваемой природно-технической системы».

Исходя из вышеизложенного, мониторинг геологической среды (МГС) предусматривает разработку рекомендаций по предотвращению или ослаблению негативных последствий антропогенной деятельности. Для Верхнекамского соленосного бассейна это могут быть рекомендации по снижению последствий ведения горных и (или) нефтедобычных работ.

Объектом МГС является участок недр, в пределах которого осуществляется изучение состояния геологической среды и прогноз развития различных негативных процессов и явлений под влиянием горных и нефтедобычных работ и связанной с ними промышленной инфраструктуры.

Целью МГС является информирование органов представительной и исполнительной властей, управления Государственным фондом недр о возможном проявлении опасных процессов при эксплуатации калийных рудников и месторождений нефти.

Основными задачами МГС и сопряженных с ней сред являются:

а) проведение систематических наблюдений за состоянием массивов горных пород в районе действующих калийных рудников и нефтедобывающих скважин, подземных и поверхностных вод, экзогенных и эндогенных геологических процессов для получения данных, характеризующих закономерности развития негативных явлений и факторы, их вызывающие;

б) сбор и получение данных о природных и техногенных факторах, определяющих возникновение сейсмичности, развитие процессов загрязнения поверхностных и подземных вод, почв, растительности, изменение рельефа земной поверхности;

в) анализ, обработка и хранение информации о состоянии геологической среды в разные периоды времени;

г) регулярное составление и проверка долго-, средне - и краткосрочных прогнозов активизации различных негативных процессов и явлений, в том числе прогноз чрезвычайных ситуаций, которые могут возникнуть в процессе горных работ или нефтедобычи;

д) периодическое проведение специального обследования территории Верхнекамского соленосного бассейна и оценка подверженности населенных пунктов, водозаборов, промышленных объектов негативному техногенному воздействию;

е) разработка рекомендаций по охране и рациональному использованию геологической среды.

Подготовительные работы включают в себя следующие основные этапы исследований: выявление распространения и оценку характера и степени изменений геологической среды под влиянием горных работ, нефтедобычи и промышленной инфраструктуры региона Верхнекамского соленосного бассейна; районирование территории по степени пораженности геологической среды под влиянием техногенеза и организация опорно-наблюдательной сети.

Значительная техногенная нагрузка на недра, обусловленная добычей из них различных полезных ископаемых, наряду со сложным строением геологической среды, привела к существенному изменению геодинамической обстановки в регионе. В горном массиве происходят сложные процессы перераспределения и концентрации напряжений в недрах, прогноз которых с достаточной степенью достоверности известными методами пока невозможен. Недостаточная полнота изучения и контроля, в первую очередь геодинамических условий региона, может привести к проявлению техногенных землетрясений, последствия которых могут быть катастрофическими как для населения городов, так и для сохранения природных ресурсов. Поэтому без постоянного комплексного изучения, анализа, оценки и прогнозирования изменений состояния геологической среды успешная хозяйственная деятельность в регионе становится практически невозможной.

Выделяют федеральный, территориальный (муниципальный) и объектный уровень решаемых мониторинговых задач по оценке состояния геологической и сопредельных сред:

- естественное (фоновое) состояние (в том числе сейсмологический контроль природных землетрясений) - федеральный уровень;

- состояние геологической и сопредельных сред после комплексного техногенного воздействия на краевом, городском и районном уровнях - территориальный (муниципальный) уровень;

- состояние геологической и сопредельных сред на конкретном объекте - объектный уровень.

Реализация названных задач осуществляется:

путем оценки устойчивости геологической и сопредельной сред в Верхнекамском соленосном бассейне, в первую очередь на участках его многоуровневой эксплуатации (добыча калийных солей, нефти, воды);

составления кратко-, средне- и долгосрочных прогнозов изменения устойчивости геологической среды в Верхнекамском соленосном бассейне;

разработки мероприятий по повышению устойчивости геологической среды совершенствованием способов одновременной добычи солей, нефти и подземных вод.

Методология выявления потенциально опасных участков на калийных рудниках заключается в сборе и последующем анализе любой горно-геологической информации, касающейся отклонений в строении водозащитной толщи. В первую очередь должна анализироваться оперативная информация, источниками которой должны быть работники рудников (в первую очередь участковые геологи, машинисты ГВМ), заметившие какие-либо аномалии (капеж, участки трещиноватости, газопроявления и т.д.). Кроме того, аномалии могут проявляться зонами ускоренных оседаний по данным маркшейдерско-геодезического мониторинга земной поверхности. Они могут быть выделены в процессе бурения разведочных скважин с поверхности - зоны неполного разреза ВЗТ, динамические разновидности каменной соли, открытые секущие трещины в ВЗТ и др. Часто они обнаруживаются при проведении геофизических исследований, например сейсморазведочных, а также при определении механических свойств пород.

Аномалии, выявленные, вскрытые и незаложенные, а также зоны ускоренных оседаний и провалы земной поверхности должны обследоваться в мониторинговом режиме с привлечением маркшейдерских, геофизических и геомеханических методов 1 раз в 1-2 года.

Уникальность Верхнекамского соленосного бассейна заключается в наличии в нем на разных уровнях разрабатываемых нефтяных и калийного месторождений (см. рис.1), а также подземных вод. Разработка месторождений оказывает наиболее значительное влияние на устойчивость геологической среды, что предопределяет необходимость ведения мониторинга геологической среды, в первую очередь, на соответствующих уровнях геологического разреза. Воздействие на геологическую среду одновременно добычи нефти и калия привело в последние годы к повышению сейсмической активности недр и осложнению других геоэкологических проблем.

Мониторинг самого сложного класса III, к которому относится мониторинг геологической среды Верхнекамского соленосного бассейна, осуществляется на месторождениях, где сочетание осложняющих факторов несет угрозу крупных аварий (затопление, взрывы и пр.) на горнодобывающем предприятии или ведет к тяжелым экологическим последствиям на прилегающей к нему территории.

При мониторинговых исследованиях особая роль отводится спутниковой информации в геоинформационных системах (ГИС), где результаты дистанционного зондирования Земли (ДЗЗ) являются регулярно обновляемым источником информации, необходимой для формирования природно-ресурсных кадастров и других данных в широком спектре масштабов (от1:10000 до 1:10000000). При этом информация ДЗЗ позволяет оперативно оценивать достоверность и, в случае необходимости, проводить обновление использующихся графических слоев (различных карт), а также может быть использована в качестве основы в целом ряде ГИС-приложений, без которых уже невозможна современная хозяйственная деятельность. Дистанционные методы зондирования обеспечивают всю площадь работ одинаково достоверной информацией, которая совместно с наземными заверочными измерениями характеристик объекта может служить основой для оценки изменения изучаемой территории.

Один из основных способов контроля геологической среды - проведение топогеодезических инструментальных наблюдений за сдвижением земной поверхности по профильным линиям грунтовых реперов. В настоящее время на наблюдательных станциях на шахтных полях калийных рудников заложено несколько тысяч реперов. Инструментальными наблюдениями охвачены все участки с большими величинами ожидаемых оседаний. Цель наблюдений - выявление закономерностей процесса сдвижения земной поверхности в различных горно-геологических условиях.

Другой важнейший комплекс методов при ведении мониторинга геологической среды - геофизические методы исследования. Результаты данных исследований используются для выявления потенциально опасных зон, при прогнозе возникновения и развития негативных процессов. В комплекс геофизических методов, используемых, в первую очередь, на участках с аномальным строением водозащитной толщи, кроме сейсмологического контроля, входит, сейсмо-, электро-, гравиразведка.

Мониторинг подземной гидросферы - составная часть мониторинга геологической среды. Его цель - изучение состояния и динамики изменения подземных и поверхностных вод под влиянием как техногенных, так и естественных факторов для обоснования мероприятий по предотвращению негативных последствий влияния горного предприятия. Необходимо отметить, что в соответствии с действующим законодательством о недрах, объектный мониторинг гидросферы осуществляется в пределах горного отвода и зоны существенного влияния горного предприятия.

Основные задачи при ведении мониторинга природных вод следующие:

- выявление гидрогеодинамических изменений в режиме надсолевых вод как индикаторов процессов, представляющих потенциальную опасность затопления для калийных рудников;

- определение масштабов техногенного загрязнения природных вод и разработка способов его снижения.

Объектом исследования является верхняя геодинамическая зона - зона активного водообмена. Мониторинг природных вод проводится на участках складирования солеотходов по сети наблюдательных скважин и гидропостов. Наблюдения включают в себя замеры уровня и гидрохимическое опробование подземных вод в скважинах, измерения уровней, расходов воды и гидрохимическое опробование поверхностных водотоков на гидропостах и водопунктах. Режимная сеть калийных предприятий состоит из десятков гидрогеологических скважин, гидрологических постов и водопунктов. В результате наблюдений вокруг участков складирования солеотходов выявлены и контролируются ореолы засоления природных вод.

При существующей техногенной нагрузке на недра Верхнекамский регион отнесен в настоящее время к районам, где возможны землетрясения силой 6-7 баллов (по сейсмической шкале МSК-64 для средних грунтовых условий). Исходя из этого, создание надежной системы оперативного прогноза землетрясений представляется неотложной задачей. Разработанные к данному моменту разнообразные методы прогноза сейсмособытий пока не обеспечивают достаточного уровня достоверности. Наиболее перспективно в этом отношении применение технологии REPS, базирующейся на слежении за эволюциями открытой Г.С. Вартаняном в 1982 г. новой разновидности естественного поля - гидрогеодеформационным полем Земли (ГГД - поле).

Деформационные процессы, тектонодинамические эффекты, волновые явления, как медленно, так и пульсационно развивающиеся, мгновенно отражаются на поведении гидросферы. Контролируя ее, можно видеть текущее состояние тектонических нарушений, возникновение критических напряжений на их границах, формирование очаговых зон будущих землетрясений.

Изучение ГГД-поля основано на наблюдениях за колебаниями уровней подземных вод в скважинах, обусловленных изменениями напряженно-деформированного состояния горного массива. Кроме того, различные пликативные нарушения, зоны приразломной трещиноватости, газовые полости и другие «жесткие» и «мягкие» неоднородности в таком массиве, нарушенном горными работами, вызывают изменения в поле напряжений, растрескивание соляных пород и их дегазацию. В результате концентрация газов в вышезалегающем горизонте повышается, что также фиксируется в процессе наблюдений.

В настоящее время наблюдения за вариациями ГГД-поля на территории Верхнекамского соленосного бассейна ведутся на трех пунктах (скважины № 5мг, 5мг/1, 8 мг), концентрации газов - на одном пункте (скважина № 5мг). Скважины № 5мг и 5мг/1 расположены в эпицентре землетрясения, произошедшего 09.10.97 г.

Изменения уровня 1 раз в час фиксируются автономным уровнемером, работающим в скважинах в автоматическом режиме. Датчик абсолютного давления в приборе поочередно измеряет величину данного показателя в измерительной трубке, а также атмосферное давление для коррекции получаемых значений. Полученные величины уровней сохраняются в запоминающем устройстве. Через инфракрасный интерфейс накопленные данные переписываются еженедельно бесконтактно в привозимый на скважину ноутбук.

В скважине № 5мг наблюдения ведутся с 31.03.99 г. Минимальная абсолютная отметка уровня подземных вод, равная 112,2 м, была зафиксирована 20 апреля 1999 г. Зарегистрированное сейсмостанцией «Березники» 9 апреля 1999 г. сейсмическое событие с выделением энергии в количестве около 1 кДж совпало с повышением уровня на 8 см.

Начиная с 2000 г. измерения уровня подземных вод уровнемерами типа “ORPHIMEDES” сопровождались непрерывным контролем атмосферного давления с помощью барометра БРС-1М со стандартным интерфейсом, позволяющим подключать его к компьютеру для накопления и последующего считывания данных. Один раз в неделю из скважины № 5мг отбирались газовые пробы. Анализ газовых проб показал, что содержание метана, газа-индикатора разрушения сильвинитовых и карналлитовых пластов, относительно высокое весной, летом, осенью (0,4-0,9 %) и низкое зимой - менее 0,4 % (рис.11).

В данном случае представляется приемлемой связь содержания метана с изменением гидростатического давления на метаносодержащие породы (с усилением питания подземных вод, например в весеннее половодье, повышенное

Рис. 11 Вариации уровня подземных вод и концентрации метана в скважине № 5мг

Рис. 12 Графики изменения уровня подземных вод и энергии сейсмособытий в скважине № 5 мг

гидростатическое давление вызывает увеличение выделения метана). Рис. 11 и 12 иллюстрируют характер изменения уровня подземных в скважине № 5мг.

На рис.12 четко выделяется начало затопления рудника БКПРУ-1 резким снижением уровня подземных вод в скважине, начиная с 19 октября 2006 г. и двумя сейсмособытиями с выделением энергии в количестве 5 и 10 кДж.

4. Рациональное использование георесурсов соленосных бассейнов обеспечивается соблюдением мер охраны подрабатываемых объектов и защиты калийных рудников от затопления, комплексным использованием добываемого сырья с получением, кроме удобрений, экологически чистой пищевой соли, смеси компонентов искусственной морской воды, приближенной по составу к воде Мертвого моря, золота, извлеченного из глинистых отходов калийного производства (глава 5).

Одним из важнейших разделов современной геоэкологии является повышение уровня безотходности технологических процессов, максимальное использование всех видов природного сырья при минимальном ущербе окружающей среде. «Комплексная идея, - подчеркивал еще в 1932 г. академик А. Е. Ферсман, - есть идея в корне экономическая, создающая максимальные ценности с наименьшей затратой средств и энергии, но это идея не только сегодняшнего дня. Это идея охраны наших природных богатств от их хищнического расточения, идея использования сырья до конца, идея возможного сохранения наших запасов на будущее». Рациональное использование георесурсов соленосных бассейнов, осуществляемое на основе безусловного соблюдения мер по обеспечению безопасности подработки водозащитной толщи, охране подрабатываемых объектов и защите рудников от затопления, производится путем тщательного изучения вещественного состава и геоэкологических характеристик соляной толщи. При этом кроме калийных удобрений на рудниках ВКСБ получают экологически чистую пищевую соль, смесь природных минералов галита и карналлита, перемешанных в определенном соотношении для приготовления искусственной морской воды в плавательных бассейнах, отрабатывают технологию получения золота из глинистых отходов и др.

Пищевая каменная соль. Месторождение пищевой соли в пределах ВКСБ нами открыто в результате поисково-оценочных работ 1991-1993 гг. на 4-м блоке 1 северо-восточной панели шахтного поля БКРУ-4. Идея попытаться найти залежи пищевой соли в пределах подстилающей каменной соли ВКСБ возникла в 1991 году в условиях ее острого дефицита и распределения пищевой поваренной соли среди населения по талонам.

На основе исследования и обобщения результатов химических анализов подстилающей каменной соли, полученных в ходе предварительной и детальной разведки калийных руд, было установлено, что продуктивный по пищевой каменной соли пласт залегает между пластом Красный III и «маркирующей» глиной. Поисково-оценочными работами на 4-м блоке 1-й северо-восточной панели рудника БКРУ-4 выявлен продуктивный горизонт мощностью 8 м. Его нижняя часть мощностью около 1,5 м сложена пищевой поваренной солью I сорта ( в соответствии с ГОСТ 13830-91 - массовая доля хлористого натрия не менее 97,70 %, кальций-иона - 0,50 %, нерастворимого остатка - 0,45 %), а верхняя - мощностью 6,5 м - солью II сорта (массовая доля хлористого натрия не менее 97,00 %, кальций-иона - 0,65 %, нерастворимого остатка - 0,85 %). Нами разработан и внедрен способ селективной выемки пищевой соли I cорта методом подрубки. В процессе разведочных на пищевую соль работ в подстилающей и нижней каменной соли выделено 45 слоев (нумерация от 1 до 45 сверху - вниз) (Кудряшов, 2001). Ритмичность строения соляной толщи, заключающаяся в чередовании глинистых, глинисто-ангидритовых прослойков с прослоями перистого, шпатового и зернистого галитов, позволила выделять маркирующие прослои, которые принимались за границы слоев. Как правило, это наиболее контрастные по цвету и текстуре литологические разновидности соли и (или) прослойки галопелитов.

Пласт, объединяющий слои 9-16, имеет наиболее высокие качественные показатели по сравнению с другими горизонтами. При этом содержания регламентируемых кондициями и ГОСТ 13830-91 компонентов удовлетворяют требованиям, предъявляемым к пищевой поваренной соли II сорта не только в среднем по всему пласту, но и по каждому разведочному пересечению. Что касается закономерностей изменения содержаний основных породообразующих компонентов в пласте 9-16, то, прежде всего, нужно отметить высокую стабильность качества пищевой соли. Содержание в солях токсичных элементов и других регламентируемых примесей, по данным химико-аналитической лаборатории ПГО «Уралгеология» (г. Екатеринбург) и лаборатории ОАО «Уралкалий», не превышает допустимых уровней.

Геологоразведочные работы, выполненные на 10-й юго-восточной панели рудника БКРУ-4, характеризовались высокой детальностью и полнотой, отвечающей требованиям нормативных документов. В результате выполненных работ подсчитаны балансовые запасы пищевой поваренной соли на 1 января 1995 года в количестве 54462,4 тыс. т (Квиткин, 1996). На изобретение «Способ получения пищевой поваренной соли», включающий селективную добычу соли различных сортов, нами получен патент РФ № 2083835 (авторы Папулов Л.М., Белоусов А.Н., Березин Б.К., Белкин В.В. и др.). Заявка о выявлении признаков месторождения пищевой поваренной соли в пределах ВКСБ отправлена нами в Пермгеолком в 1997 г. (исх. № 05/ 59-5-7 от 05.09.97 г., соавторы Кузнецов Н.В., Николаев А.С., Березин Б.К.).

Лечебные природные соли. Известно применение природных морских солей в лечебных целях. На курортах Мертвого моря хорошо лечатся псориаз (кожная и суставная формы), склеродермия, нейродермиты, экземы, эхтиоз, витилиго, артрит ревматоидный, болезнь Бехтерева, деформирующий остеохондроз и др. Cоль Мертвого моря имеет следующий химический состав: NaCI 14-16 %, КС1 18-22 %, MgCI2 25-31 %, CaCI2 0,5-1 %, бромиды 0,2-0,3 %, кристаллизационная вода 26--32 %, нерастворимые компоненты (железо, фтор) 0,2 %.

Примерно 250-270 миллионов лет назад в центре материка Лавразия находилось Пермское море. Оно располагалось в зоне засушливого (аридного) климата, что привело к осолонению моря вплоть до садки солей - сильвина (химическая формула КСl), карналлита (MgCl2ЧKClЧ6Н2О) и каменной соли (NaCl) с примесью ангидрита (CaSO4) и образованию здесь в конечном итоге Верхнекамского соленосного бассейна. Природные соли отличаются своей экологической чистотой. Добывая раздельно природные минералы, а затем смешивая галит и карналлит, можно получить лечебную смесь, приближенную по своему составу к соли Мертвого моря (патент РФ № 2207136, авторы Белкин В.В. и др.). Это изобретение позволяет использовать природные соли для получения искусственной морской воды путем растворения их в пресной воде. Для получения морской воды используется сухая смесь природных соляных минералов, добытых с разных горизонтов ВКСБ. Природные соли смешиваются в соответствующей пропорции: галит и карналлит в соотношении 1:2,5-5,0. При растворении данной смеси солей в нужном количестве воды получим воду, близкую по своему составу к воде Мертвого моря.

Золото в глинистых отходах калийного производства. Повышенные концентрации золота в рудах Верхнекамского соленосного бассейна впервые установлены при аттестации технологических продуктов ПО «Уралкалий» в МХТИ (1984 г.). В 1993 г. институту «Гиредмет» геологическим руководством ОАО «Уралкалий» было поручено провести исследования шламов и галопелитовых составляющих калийных руд под электронным микроскопом. Представленные институтом фотографии золотин явно свидетельствовали о том, что золото имеется в руде и шламах в гравитационной форме. Был сделан вывод о промышленной значимости концентраций золота в минеральных солях Верхнекамского соленосного бассейна.

Пространственное распределение благородных металлов в продуктивных пластах нами изучалось по дубликатам девяти неравномерно расположенных разведочных скважин, покрывающих площадь около 40 км2. Опробованная часть разреза мощностью около 16 м включает пласты В, АБ, Красный II, Красный I и Красный III. Длина интервала опробования соответствовала мощности пересекаемого слоя и колебалась от 0,08 до 2,5 м. Всего было проанализировано 205 проб руды. Содержание благородных металлов определялось также в руде, поступающей на фабрики, в глинистых отходах калийного производства, технологических и оборотных рассолах, что позволило существенно уточнить представления об уровнях содержания и формах нахождения благородных металлов. Пробирные анализы установили золото во всех без исключения пробах от следов до 0,66 г/т. В подавляющем большинстве проб (79,5 %) оно находится в количестве от 0,02 до 0,1 г/т, а в 36 пробах (17,6 %) содержание его было свыше 0,1 г/т, т. е. сопоставимо с содержанием этого металла в промышленных россыпях. Чаще всего повышенные содержания золота отмечаются в маркирующей глине (подстилающая каменная соль). В 1997 г. нами была направлена заявка в Пермгеолком на открытие в пределах ВКСБ месторождения золота (исх. № 05/59-5-2 от 12.02.97 г., соавторы Кузнецов Н.В., Николаев А.С.).

Установлено, что золото входит в состав нерастворимого в воде остатка (Н.О.) соляных пород, а при переработке руд - в Н.О. глинисто-солевых отходов (шламов), из которого и предполагается его извлечение в промышленных масштабах. Нами получен патент РФ № 2132397 ( Папулов Л.М., Николаев А.С., Белкин В.В. и др., 1998) на изобретение «Способ переработки шламов калийного производства», включающий его промывку, выщелачивание золота раствором, содержащим активный хлор и извлечение золота из продуктивного раствора контактированием последнего с анионитом АМ-2Б.

ЗАКЛЮЧЕНИЕ

1. Длительное техногенное воздействие на геологическую среду соленосных бассейнов, оказываемое в процессе добычи и переработки калийных руд, приводит к нарушению ее устойчивости, сопровождаемому возрастающей сейсмичностью калийдобывающих регионов, проявлением оседаний земной поверхности, прорывами подземных вод в горные выработки, затоплением калийных рудников и образованием провалов на месте их затопления. При этом добыча нефти из подсолевых отложений усиливает проявление негативных процессов.

2. Зоны аномального строения и состояния массивов горных пород регистрируются в процессе доизучения геологической среды. Они проявляются зонами влияния тектонических дислокаций и природных мульд оседания, в аномальных геофизических полях, контактами различных литологических толщ, зонами ускоренных оседаний и разрушения горных выработок. Для данных зон предусматриваются соответствующие параметры ведения горных работ, обеспечивающие сохранность водозащитной толщи.

3. До начала эксплуатации участков соленосного бассейна определяются фоновые характеристики геологической и сопредельных сред: состояние горного массива, подземных вод, атмосферного воздуха, качество поверхностных вод, загрязнение снежного и почвенного покровов, радиационный фон, состояние растительности и животного мира.

4. Мониторинг геологической среды эксплуатируемых соляных месторождений осуществляется комплексом исследований, включающим дистанционное зондирование, инструментальные наблюдения за сдвижением земной поверхности, выявление связи ее деформаций с объемами добытой руды, ведение сейсмологического контроля, проведение других геофизических работ (сейсмо-, электро-, гравиразведки ) на участках с аномальным строением водозащитной толщи, регистрацию гидродинамического, гидрогеохимического и газового режима подземных вод.

5. Рациональное использование георесурсов соленосных бассейнов обеспечивается соблюдением мер охраны подрабатываемых объектов и защиты калийных рудников от затопления, комплексным использованием добываемого сырья с получением, кроме удобрений, экологически чистой пищевой соли, смеси компонентов искусственной морской воды, приближенной по составу к воде Мертвого моря, золота, извлеченного из глинистых отходов калийного производства.

Список основных опубликованных работ по теме диссертации

Монографии

1. Белкин В.В. Мониторинг геологической среды Верхнекамского соленосного бассейна / Пермск. гос. техн. ун-т, ОАО «Уралкалий». Пермь-Березники, 2004, 252 с.

2. Белкин В.В. Мониторинг геологической среды Верхнекамского соленосно...


Подобные документы

  • История создания системы наблюдений, оценки и прогноза антропогенных изменений состояния биосферы. Содержание мониторинга геологической среды, определение допустимых техногенных нагрузок и оценка целесообразности применения различных форм строительства.

    презентация [132,1 K], добавлен 17.08.2015

  • Геологическая характеристика и анализ состава минералов Верхнекамского месторождения калийных солей. Определение соотношения чисел минералов разных химических элементов. Описание минералов-микропримесей нерастворимого остатка соляных пород месторождения.

    курсовая работа [5,2 M], добавлен 27.06.2015

  • Геология топливно-энергетических ресурсов - нефти, природного газа, угля, горючих сланцев, урановых руд. Современные проблемы освоения месторождений. Геофизические исследования при подземной разработке; воздействие на окружающую геологическую среду.

    реферат [31,8 K], добавлен 24.05.2014

  • Задачи анализа геологической карты. Выделение поверхностей несогласия в стратиграфическом разрезе и анализ их значения в геологической истории района. Характеристика складчатых и разрывных нарушений. Определение возраста магматических образований.

    курсовая работа [25,6 K], добавлен 14.01.2016

  • Суть комплексного анализа геологической карты, основы орогидрографии, стратиграфия и тектоники. Прогнозирование площадей, перспективных для поисков полезных ископаемых, оценка их нефтегазоносности, реконструкция истории геологического развития района.

    контрольная работа [25,6 K], добавлен 11.04.2012

  • Подготовка данных для математического моделирования. Представление данных в виде трехмерных объемных (ЗД) сеток. Основные этапы построения геологической модели месторождения. Накопление, систематизация, обработка и передача геологической информации.

    презентация [1,6 M], добавлен 17.07.2014

  • Проявление техногенных воздействий человека на геологическую среду и их структура. Вибрационное или динамическое воздействие на геологическую среду. Основные черты техногенных воздействий. Воздействие вибрационного поля на человеческий организм.

    реферат [27,9 K], добавлен 19.02.2011

  • Анализ горно-геологических условий калийных месторождений и горнотехнических условий добычи калийных руд. Проект поддержания мощности и увеличения объёмов добычи минерального сырья на месторождении. Проектирование панели и очистных работ в лаве.

    дипломная работа [240,5 K], добавлен 06.04.2012

  • Закон напластования горных пород, который стал первым инструментом палеонтологов в процессе изучения истории жизни на нашей планете. Интерпретация геологической колонки креационистами. Десять неверных представлений о геологической колонке (эпохах).

    реферат [628,1 K], добавлен 14.06.2015

  • Геолого-гидрогеологические характеристики калийных месторождений. Типовые задачи управления сдвижением горных пород при подземной разработке. Расчет параметров, характеризующих изменение напряженно-деформированного состояния подрабатываемого массива.

    курсовая работа [642,8 K], добавлен 22.08.2012

  • Геологическая характеристика Верхнекамского месторождения. Стратиграфия и литология соленосных и надсолевых отложений. Структурно-тектонические особенности Быгельско-Троицкого участка. Способ и система разработки, потери и разубоживание руды при добыче.

    курсовая работа [1,0 M], добавлен 09.06.2011

  • Загрязнение поверхностных вод. Подземные резервуары. Подземные воды как часть геологической среды. Практическое значение подземных вод. Характеристика техногенного воздействия на подземные воды (загрязнение подземных вод). Охрана подземных вод.

    реферат [28,2 K], добавлен 04.12.2008

  • Создание физической модели анизотропии геологической среды на основе анализа амплитудно-частотных характеристик сейсмических волн, распространяющихся в слоистой среде. Техника безопасности при работе с сейсмостанцией и условия безотказной работы прибора.

    диссертация [4,1 M], добавлен 24.06.2015

  • Краткое описание точек геологических наблюдений, полученных при геологической съемке территории рек Сомня и Амгунь. Составление рабочей геологической карты, геологических разрезов, сводной стратиграфической колонки, карты фактического материала.

    контрольная работа [19,7 K], добавлен 07.01.2013

  • Общие сведения о месторождении Узень, история его разработок и оценка имеющихся запасов нефти. Уточнение начальных пластовых характеристик в среднем по объектам эксплуатации, система их разработок, подбор и обоснование необходимого оборудования.

    дипломная работа [1,3 M], добавлен 16.04.2015

  • Классификация полезных ископаемых. Запасы минерального сырья в мире и России. Использование недр человеком. Обзор добычи нефти и газа за 2005 год. Направления по рациональному использованию и охране недр. Государственный мониторинг геологической среды.

    курсовая работа [40,1 K], добавлен 15.04.2009

  • Исследование технологических свойств минералов, влияющих на способы обогащения руд. Характеристика особенностей железных руд. Геолого-технологическое картирование калийных солей. Оценка качества кварцевого сырья. Картирование техногенных месторождений.

    презентация [847,5 K], добавлен 30.10.2013

  • Изучение и оценка ресурсов углеводородного сырья в статическом и динамическом состоянии; геологическое обеспечение эффективной разработки месторождений; методы геолого-промыслового контроля. Охрана недр и природы в процессе бурения и эксплуатации скважин.

    курс лекций [4,4 M], добавлен 22.09.2012

  • Необратимая эволюция земной коры. Катастрофические космические факторы в геологической истории. Земная кора и верхняя мантия как особая система. Повторение в геологической истории складчатости, горообразования, влажного и сухого климата, его последствия.

    реферат [709,4 K], добавлен 14.05.2015

  • Инженерное освоение и преобразование геологической среды. Физико-географический очерк Алтае-Саянского региона. Стратиграфия и тектоника. История геологического развития. Докайнозойские и кайнозойские этапы развития. Гидрогеологические условия.

    курсовая работа [32,1 K], добавлен 26.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.