Этапы ультрамафит-мафитового и габбро-анортозитового магматизма юго-восточного обрамления Северо-Азиатского кратона

Получение данных о возраcте исследуемых массивов Джугджуро-Станового и Селенгино-Станового супертеррейнов. Виявление основных петрографических, минералогических и геохимических особенностей пород. Геодинамическая обстановка формирования этих массивов.

Рубрика Геология, гидрология и геодезия
Вид автореферат
Язык русский
Дата добавления 27.12.2017
Размер файла 626,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Позднетриасовому - раннеюрскому периоду магматической активности юго-восточного обрамления Северо-Азиатского кратона соответствуют возраста формирования габброидов массивов Ульдегит и Чек-Чикан, установленные U-Pb методом по циркону и составляющие соответственно 228±1 млн. лет (рис.15) и 203±1 млн. лет (рис.16), расположенных в пределах Джугджуро-Станового супертеррейна.

Массив Ульдегит, расположен в Джугджуро-Становом супертеррейне. Его контакты с вмещающими породами дамбукинской серии и гранитами древнестанового комплекса тектонические (Геологическая…, 1999). В составе интрузива преобладают габбро, претерпевшие метаморфизм амфиболитовой фации.

Анализируя петрохимические особенности габброидов, следует отметить их очевидную двойственность. Определенная обогащенность пород K2O, TiO2, Р2O5, при относительном дефиците Al2O3 и феннеровский тренд дифференциации сближает их с базитами рифтовых зон или магматическими породами, сформировавшимися под воздействием плюмов (о-ва Гавайи, Исландия, Реюньон и др.) (Грачев, 1987). В то же время, низкие содержания в них MgO свойственны наиболее распространенному типу базальтов в островных дугах.

Распределение редкоземельных элементов в габброидах массива Ульдегит носит умеренно фракционированный характер (La/Yb)n=5.8-7.4, при отсутствии европиевой аномалии Eu/Eu*=0.96-1.12, что сближает их с базальтами океанических островов. В тоже время в них отмечаются повышенные концентрации Rb (до 17 ppm), Ba (до 778 ppm), Sr (774 ppm) и относительное деплетирование Th (0.29-0.79 ppm), U (до 0.46 ppm), Ta (0.14-0.26 ppm), Nb (2-4 ppm) и Hf (до 0.88ppm), (рис.17).

Геохимические особенности габброидов, в частности соотношение в них Y, Nb, Zr и Ti свидетельствует о двойственности их характеристик. Так соотношения Y-Nb*2-Zr/4 свидетельствуют об участии внутриплитного источника, а Nb/Y-Ti/Y близки к таковым в базальтах вулканических дуг.

Массив Чек-Чикан расположен в западной части Ларбинского блока. Вмещающими для массива являются метаморфические комплексы курультинской серии.

Преобладающими породами в составе массива Чек-Чикан являются габбронориты, амфиболовые габбро, габбро-анортозиты и анортозиты, в подчиненном количестве отмечены ортопироксениты и роговообманковые пироксениты. Следует отметить, что между вышеперечисленными разновидностями отмечаются плавные переходы, что позволяет объединить их в единую серию. Породы интрузива в незначительной степени подверглись метаморфическим преобразованиям, максимальная степень которых проявлена в габброидах.

Габброидам массива Чек-Чикан свойственен достаточно высокий уровень содержаний TiO2 = 1.83-4.51%, K2O = 0.35-1.05%, P2O5 = 0.30-1.36%, что отличает их островодужных ультрамафит-мафитовых интрузивов Центрально-Азиатского складчатого пояса и сближает с базитами, связанных с пермотриасовым суперплюмом. При этом общее увеличение TiO2 и FeO* при снижении Mg# в процессе кристаллизации характеризует феннеровский тип дифференциации. Соотношение TiO2, MnO, P2O5 и K2O в базитах с одной стороны близко к толеитам островных дуг, с другой - к обогащенным базальтам.

Распределение REE в пироксенитах характеризуется близхондритовыми нормированными отношениями ((La/Yb)n=0.54-1.13), при незначительном дефиците европия Eu/Eu*=0.77-1.00, что сближает данные образования с базальтами N-MORB. В то же время концентрации редкоземельных элементов в габброноритах находятся на уровне таковых в базальтах E-MORB, при незначительном преобладании LREE над HREE (La/Yb)n=3.3-4.6 и некотором избытке европия - Eu/Eu*=1.42-1.75. В амфиболовых габбро и габбро-анортозитах содержания LREE увеличиваются практически до уровня базальтов океанических островов (La/Yb)n до 12.9, при этом, европиевая аномалия практически нивелируется Eu/Eu*=0.90-1.18. В целом, для амфиболовых габбро, габбро-анортозитов массива Чек-Чикан характерно обогащение такими элементами, как Rb (11-16 ppm), Ba (250-754 ppm), Sr (420-726 ppm, в наиболее глиноземистых разностях - до 1290), HREE, при относительном дефиците Th (0.08-1.14 ppm), U (0.05-0.36 ppm), Hf (0.6-1.1 ppm), Nb (6-17 ppm), Ta (0.18-0.88 ppm) и умеренных Zr (28-145 ppm), (рис.18). Приведенные выше результаты геохимических и петрохимических особенностей пород массива Чек-Чикан позволяют предполагать генетическое родство пироксенитов, габброноритов, амфиболовых габбро и габбро-анортозитов.

Основываясь на геохимических особенностях мафитов позднетриасово-раннеюрского этапа, а именно повышенных концентрациях LREE, Rb, Ba, Sr и низких - Th, Nb, Ta можно предположить, что их формирование связано с прекращением субдукции и последующем разрывом субдуцируемой пластины. В этом случае в образовавшуюся брешь поступило астеносферное вещество, что и привело к возникновению магм, по своим геохимическим характеристикам, несущим признаки как субдукционного происхождения, так и участия внутриплитных источников. Об участии обогащенного источника могут свидетельствовать отношения Y-Nb*2-Zr/4 и Ta/Yb-Th/Yb. В то же время соотношения Sr/Y-Y и Ybn - La/Ybn, аналогичные таковым в адакитах.

Образование последних, по мнению исследователей (Calmus at all., 2003; Polat, Kerrich, 2001) обусловлено: 1 - открытием астеносферного окна, связанного либо с субдукцией либо с разрывом субдуцируемой пластины в условиях аномально высокого температурного градиента; 2 - плавлением океанической коры в астеносферном окне; 3 - взаимодействием продуктов частичного плавления мантийных перидотитов с метасоматизированными амфиболсодержащими растворами.

Вышеперечисленные особенности, а именно смешение субдукционных и внутриплитных характеристик, позволяют предполагать, что формирование позднетриасово-раннеюрских массивов Ульдегит и Чек-Чикан происходило в обстановке трансформной континентальной окраины.

Полученные геохронологические данные позволяют рассмотреть вопрос соотношения возраста формирования рассматриваемых масивов и иных магматических образований юго-восточного обрамления Северо-Азиатского кратона. В частности, полученные данные, в первом приближении соответствуют раннемезозойскому этапу гранитоидного магматизма, проявленному в пределах этой структуры. Однако, рассматриваемые мафитовые массивы существенно моложе пермь - раннетриасовых мафитовых интрузий, описанных выше, и они также моложе диоритов токско-алгоминского комплекса (238+2 млн. лет) (Сальникова и др., 2006), для которых предполагается надсубдукционное происхождение. Кроме того, они обрадают весьма специфическими геохимическими особенностями, что может свидетельствовать о смене характера взаимодействия плит.

Следующий позднеюрский этап ультрамафит-мафитового магматизма проявлен в пределах Селенгино-Станового супертеррейна и представлен перидотит-вебстерит-габбровой и перидотит-габбро-монцодиоритовой ассоциациями, слагающими соответственно Веселкинский и Петропавловский массивы.

Возраста массивов, установленные U-Pb методом по циркону, составляют для кварцевого монцодиорита Петропавловского массива - 159±1 млн. лет (рис.19), а для роговообманкового габбро верхней расслоенной серии Веселкинского массива - 154±1 млн. лет (рис.20).

Позднеюрский Петропавловский массив расположен в Могочинском блоке (рис.1) и сложен верлитами, пироксенитами и их плагиоклазовыми разностями, габбро, щелочными габбро, габбро-диоритами и монцодиоритами. Вмещающими для интрузива являются позднемезозойские гранитоиды тукурингрского комплекса (Ларин и др., 2005).

Характерными петрохимическими особенностями верлитов, пироксенитов и габброидов являются их низкая магнезиальность и умеренная глиноземистость при относительно высоких содержаниях SiO2 (до 52.72%) и TiO2 (до 2.01%). Анализ поведения петрогенных компонентов в габброидах Петропавловского массива показывает двойственность их характеристик. С одной стороны они близки к базальтам срединно-океанических хребтов, с другой - к обогащенному источнику.

Распределение REE в ультрабазитах и пироксенитах носит слабо дифференцированный характер ((La/Yb)n =1.2-4.3)) при слабой положительной аномалии Eu (Eu/Eu* до 1.22). Следует отметить, что верлиты характеризуются минимальными содержаниями REE (?REE=12.28), тогда как в габбро и монцодиоритах уровень концентраций лантаноидов значительно возрастает (?REE=104-133).

Общими геохимическими особенностями пород массива являются обогащение LIL элементами: Rb (10-38 ppm), Ba (309-765 ppm), Sr (571-1341 ppm) и LREE, при умеренных содержаниях HFSE: Zr (до 205 ppm), Nb (3.48-7.48 ppm), Hf (0.78-1.76 ppm) и Ta (0.19-0.54 ppm) (рис. 21), что сближает их с базальтами вулканических дуг. В то же время высокие содержания в габброидах Sr, а также отношения Sr/Y и Ybn - La/Ybn позволяют предполагать участие обогащенного источника.

Близость распределения REE и малых элементов и повышение их общего количества от верлитов до кварцевых диоритов позволяет рассматривать породы, слагающие Петропавловский массив, как дифференциаты единого магматического расплава.

Основными петрохимическими особенностями пород Петропавловского массива является «совмещение» пород нормальной и субщелочной серий, при этом определяющими их геохимическими свойствами является существенное обогащение LREE, по сравнению с HREE, что приближает их к составам OIB и может быть обусловлено мантийным литосферным обогащенным источником. В целом породам рассматриваемого массива свойственны высокие содержания Rb, Ba, Sr, LREE, при существенном деплетировании Nb, Ta, Hf, Zr.

Позднеюрский Веселкинский массив расположен в Урканском (Амазаро-Гилюйском) блоке Селенгино-Станового супертеррейна, вблизи с Джелтулакской шовной зоной (рис.1). Он представляет собой вытянутое в субширотном направлении тело и слагает обособленный блок среди условно неоархейских (?) образований гилюйского и гранитоидов тукурингрского (?) комплексов. Ведущая роль в строении массива принадлежит перидотит-вебстерит-габброноритовой ассоциации пород.

Анализ разрезов массива позволяет выделить нижнюю и верхнюю расслоенные серии, разделенные сендвичевым горизонтом амфиболовых габбро. Большое количество петрографических разновидностей пород обусловлено различными соотношениями породообразующих минералов - оливина, орто- и клинопироксена, плагиоклаза.

Нижняя расслоенная серия сложена дунитами, лерцолитами, роговообманковыми перидотитами и их плагиоклазовыми разностями, пироксенитами (ортопироксенитами, оливиновыми клинопироксенитами, клинопироксенитами, вебстеритами), габброноритами, оливиновыми габбро, габбро. В основании ритмов наблюдаются ультрабазиты, иногда с хромититовыми горизонтами, сменяющиеся вверх по разрезу амфиболовыми габбро, оливиновыми габбро и габброноритами.

Верхняя расслоенная серия представлена оливинитами, верлитами, габброноритами и плагиоклазовыми горнблендитами. В основании ритмов наблюдаются ультрабазиты или меланогаббро, сменяющиеся вверх по разрезу лейкократовыми монцогаббро, монцодиоритами и кварцевыми монцодиоритами.

Отличительной минералогической особенностью интрузива является присутствие трех пироксенов - ортопироксена, диопсид-авгита и пижонита. Подобные трехпироксеновые образования описаны в различных районах Алтае-Саянской складчатой области: массивах Демир-Тайга, Заоблачный в Восточном Саяне, (Изох, 1999) др. Присутствие трехпироксеновых парагенезисов характерно для высокожелезистых кумулятов расслоенной серии, формирование которых происходило при высокой fо2. Необходимо отметить, что для монцодиоритов также характерно присутствие трех пироксенов, что позволяет увязывать породы расслоенной серии с монцодиоритами в единую ассоциацию.

Петрохимическими особенностями пород изучаемого интрузива является их низкая магнезиальность и глиноземистость при относительно высоких содержаниях TiO2 (до 3.58%) и CaO (до 18.42%). По соотношению Mg#-Al2O3 они формируют оливин-плагиоклазовый тренд, обусловленный фракционированием оливина. В то же время по соотношению Mg#-CaO для образований массива установлено два тренда кристаллизации - первый свойственен для дунитов и пироксенитов нижней расслоенной серии и выражается в закономерном увеличении содержаний CaO при снижении MgO. Второй образуют габброиды верхней расслоенной серии, для которых отмечается снижение содержаний CaO при уменьшении MgO.

Общими геохимическими особенностями пород нижней расслоенной серии являются относительно низкие содержания TiO2=0.5-0.8%, Sr (74-130 ppm) (за исключением разностей с кумулятивным плагиоклазом), Ba (обычно <50 ppm), Nb (<0.7 ppm), Zr (<30 ppm), обеднение Co и Ni относительно примитивной мантии, но обогащение этими элементами относительно базальтов MORB, с отношением Ni/Co от 10-12 в пироксенитах, до 8-9 в габброидах.

Распределение REE в пироксенитах, вебстеритах и габброноритах характеризуется умеренной дифференцированностью при величине отношения (La/Yb)n=3.9 - 4.7, которое достигает 7.4 в лейкократовых габброидах. В плагиоклазовых разновидностях отмечается слабая положительная европиевая аномалия Eu/Eu*=1.25, тогда как составы других пород характеризуются слабым его дефицитом Eu/Eu*=0.85-0.97.

Амфиболовым габбро верхней серии свойственна умеренная титанистость (TiO2 = 1.1-2.1%), повышенная щелочность (K2O+Na2O=4.4-5.0) вплоть до появления субщелочных габбро. Этим породам характерны высокие содержания Sr (780-1690 ppm), Ba (634-1170 ppm), LREE, умеренные концентрации Sc (30.17- 30.59 ppm), V (116-149 ppm), Cu (40-62 ppm), Nb (5.0-7.7 ppm), Zr (94-190 ppm), Hf (2.9-4.6 ppm). Для распределения REE установлена высокая степень дифференцированности ((La/Yb)n= 9.9-43.7), что может свидетельствовать о высокой степени фракционирования исходного расплава.

Спектры распределения малых элементов в породах Веселкинского массива характеризуются отчетливыми максимумами Ba, Sr, LREE, при минимумах Nb, Ta, Hf, Zr (рис.22). В целом их график распределения подобен таковым в островодужных базальтах, за исключением ярко выраженных минимумов P и Sr.

Состав исходного расплава Веселкинского массива, рассчитанный методами средневзвешенного и геохимической термометрии отвечает субщелочному пикритоиду.

Возвращаясь к геохимическим особенностям пород Веселкинского массива нельзя не отметить их существенное обогащение LREE, по сравнению с HREE, что приближает их к составам OIB. В тоже время относительная истощенность в отношении таких элементов, как Nb, Ta, Zr, Hf сближает их с породами зон субдукции.

Обобщая геохимические особенности Петропавловского и Веселкинского массива, следует отметить, что соотношения Y-Nb*2-Zr/4, Nb/Y-Ti/Y, Y-Sr/Y и Ybn-La/Ybn указывают на возможное участие обогащенного источника в формировании исследуемых пород.

Схожесть петрохимических и геохимических особенностей пород, слагающих Веселкинский и Петропавловский массивы, а также близкие значения возрастов этих массивов позволяет относить их к единому перидотит-габбро-монцодиоритовому комплексу, сформированному в обстановке трансформной континентальной окраины. При этом сходство петролого-геохимических характеристик ультрамафит-мафитовых массивов с субдукционными образованиями может быть обусловлено образованием их родоначальных расплавов частичным плавлением деплетированного надсубдукционного мантийного источника.

Касаясь полученных возрастов формирования Веселкинского и Петропавловского массивов, следует отметить, что данный этап ультрамафит-мафитового магматизма предшествовал внедрению гранитов позднестанового комплекса, для которого получены значения возраста 138+4.8 млн. лет (Ларин и др., 2001). Последние фиксируют завершающий этап регионального метаморфизма амфиболитовой фации (Ларин и др., 2006), природа которого еще не находит однозначной интерпретации.

Наиболее молодой этап ультрабазит-базитового магматизма реконструируется по формированию раннемеловых габброидов Верхнеларбинского массива, расположенного в Иликанском блоке Джугджуро-Станового супертеррейна. В его строении участвуют высококалиевые габброиды и кварцевые диориты, без признаков метаморфических преобразований, что позволяет сопоставлять их с породами габбро-монцодиоритовой формации. Вмещающими для массива являются образования джигдалинской свиты условно мезоархейского (?) возраста и гранитоиды тукурингрского комплекса. Для габброидов Верхнеларбинского массива, возраст габброидов которого, установлен U-Pb методом по циркону и составляет 134±4 млн. лет (рис.23).

Габброиды массива относятся к субщелочной калиевой серии (Na2O + K2O=5.91-7.47%; Na2O/K2O = 0.2-0.4) с низкими содержаниями титана (TiO2 =1.28-1.34%), магния (MgO=3.20-4.71%, #Mg=31.1-36.1) при высоких содержаниях P2O5 (до 1.51%). На диаграмме К2O-SiO2 их фигуративные точки попадают в поле пород шошонитовой серии. В процессе кристаллизации, в породах Верхнеларбинского массива с уменьшением магнезиальности увеличивались содержания TiO2, Al2O3, FeO и снижались SiO2, MgO, CaO, что соответствует «феннеровскому» или толеитовому тренду диффенциации, при низком парциальном давлении кислорода (Грачев, 1987). Это сближает их с породами рифтовых зон (о-ва Гавайи, Исландия, Реюньон и др.) (Roger at all, 2000). В то же время по содержаниям TiO2, MnO, P2O5 и K2O базиты соответствуют известково-щелочным базальтам задуговых бассейнов или щелочным базальтам островных дуг.

Распределению редкоземельных элементов свойственно значительное обогащение LREE, при отношении (La/Yb)n до 110-123 в габброидах, с отчетливо проявленной отрицательной европиевой аномалией Eu/Eu*=0.65-0.80. Это сближает изучаемые породы с базальтами океанических островов (OIB) и базальтами континентальных рифтов, хотя уровень концентраций REE несколько ниже в кварцевых диоритах и значительно выше в габброидах. Кроме описанного выше обогащения LREE типичным для этих пород является сильное обогащение рядом некогерентных элементов: Rb (до 101 ppm), Ba (до 6519 ppm), Sr (1428 ppm), Zr (до 510 ppm). На спайдерграмме, нормированной к примитивной мантии, фиксируются положительные аномалии Ba, K, LREE, P, Zr и отрицательные аномалии Nb, Ta, Ti, Sr. По своим геохимическим характеристикам породы массива обнаруживают сходство с базитами шошонитовой серии.

Следует отметить, что в габброидах наблюдается отчетливый минимум Sr, в то время как в кварцевых диоритах отмечается его максимум. Это может быть обусловлено комплементарностью пород массива и участием плагиоклаза в процессе фракционирования родоначального расплава.

Проанализировав основные геохимические характеристики габброидов и кварцевых диоритов нельзя не отметить их двойственность. Так, обогащение LREE, Sr, Ba и деплетирование в отношении Y, соотношения La/Ybn - Ybn, Sr/Y - Y близкие к таковым в адакитах, свойственны для образований активных континентальных окраин. В то же время на фоне общего высокого содержания REE и малых элементов, отмечается их умеренное деплетирование в отношении HFSE (рис.24), что наблюдается в зонах субдукции.

Согласно полученным геохронологическим данным возраст массива существенно моложе, чем возраст заключительного этапа регионального матаморфизма, проявленного в пределах юго-восточного обрамления Северо-Азиатского кратона, о котором упоминалось выше. Он также моложе гранитоидов тукурингского комплекса (142-138 млн. лет (Ларин и др., 2000, 2001, 2006)). С другой стороны, становление Верхнеларбинского массива древнее, чем внедрение эпизональных гранитоидных батолитов удско-зейского (тындинско-бакаранского) комплекса (127 млн. лет (Ларин и др., 2003))

Закономерности формирования оруденения, связанного с ультрамафит-мафитовыми и габбро-анортозитовыми интрузиями

С ультрабазит-базитовыми и габбро-анортозитовыми массивами связаны крупнейшие месторождения медно-никелевых, железо-титан-апатитовых, платинометалльных и платиносодержащих хромитовых и титаномагнетитовых руд (Конников, 1978, Додин и др., 2003; Naldrett at all, 1990 и др.) Балтийского и Канадского щитов, Сибирской платформы, Австралии и др. (Медно-никелевые…, 1985; Кривенко и др., 1990; Маракушев, 2001). При этом определяющими факторами металлогенической специализации при образовании того или иного возможного типа магматического оруденения являются степень обогащения источника рудными элементами и процессы дифференциации, приводящие к их накоплению. В пределах Джугджуро-Станового и Селенгино-Станового супертеррейнов юго-восточного обрамления Северо-Азиатского кратона, на основании установленных выше этапов ультрамафит-мафитового магматизма и оруденения, связанного с изученными массивами ультрабазит-базитов, можно выделить четыре основных металлогенических этапа: неоархейский, палеопротерозойский, пермотриасовый и позднеюрский, изучение которых позволило сформулировать четвертое защищаемое положение:

Габбро-анортозиты неоархейских и палеопротерозойских ассоциаций юго-восточного обрамления Северо-Азиатского кратона перспективны в отношении выявления платинометалльной минерализации, связанной с апатит-Fe-Ti и Cu-Ni-Co оруденением. С пермо-триасовыми дунит-троктолит-габбровыми интрузиями прогнозируется обнаружение медно-никелевых руд с сопутствующими платиноидами. В позднеюрских перидотит-вебстерит-габбро-монцонитовых массивах, можно ожидать выявление платинометального оруденения, связанного с хромитами.

Неоархейский металлогенический этап связан со становлением габбро-анортозитов Каларской ассоциации. В их пределах известны месторождения и многочисленные проявления титано-магнетитовых руд и апатита в габбро-анортозитах, проявления медно-никелевых руд в ультрабазитах или пироксенитах.

В пределах Куранахского массива выявлено несколько месторождений Fe-Ti-апатитовых руд наиболее крупными из которых являются Куранах и Большой Сэйим. В пределах Имангакитского массива установлены проявления медно-никелевых руд, одним из которых является проявление Баякит.

В пределах развития как Fe-Ti так и Cu-Ni минерализации установлены участки благоприятные для выявления сопутствующего платинометалльного оруденения. При этом потенциально благоприятные обстановки формирования платинометалльных месторождений определены наличием значительных по размерам габбро-анортозитовых массивов (площадью не менее 50-70 км2), что является необходимым (Платиноносность…, 1995; Додин и др., 2003) условием для создания практически значимых концентраций при дифференциации вещества в магматической камере.

Платинометальная минерализация, связанная с Fe-Ti оруденением установлена в пределах участков Балтылах и Сайболах (Pt+Pd до 0.14 г/т). При этом для неё характерно преобладание Pt над Pd и высокий коэффициент корреляции между Pt и Ti (0.89). Следует отметить, что максимальные количества ЭПГ установлены в образцах с повышенными содержаниями S, Cu и Ni. Это может свидетельствовать о платиноносности сульфидсодержащей титано-магнетитовой минерализации. При этом по содержанию Pt и Cu изучаемое титано-магнетитовое оруденение сопоставимо с аналогичной минерализацией Пудожгорского массива, от которого отличается отчетливым минимумом Pd, нормированным по хондриту С1 (Donough, Sun, 1995) при величине Pt/Pt*=7-18 (рис.25).

Платинометалльная минерализация, приуроченная к Cu-Ni оруденению участка Баякит, связана с перидотитами и пироксенитами, в которых установлена сингенетическая неравномерно вкрапленная, шлировая и гнездовая (до 20%) сульфидная минерализация с содержанием (Pt+Pd до 0.2 г/т). В большинстве образцов отмечается преобладание палладия над платиной (Pt/Pt*=0.24-0.42). Характер распределения ЭПГ сходен с установленным в известных платинометалльных месторождениях, таких как риф Меренского (Бушвельд) (Maier, Barnes, 1999) и др. от которых он существенно отличается по абсолютным значениям (рис.25).

Кроме вышеперечисленных типов платинометалльной минерализации в пределах Каларской группы массивов возможно выявление малосульфидных горизонтов в габбро-анортозитах и хромитсодержащих в ультрамафитах.

Наиболее интересным в отношении малосульфидного платинометалльного оруденения является участок Арбагасс, в габбро-анортозитах которого установлены образцы с содержаниями Pt+Pd до 0.23 г/т. Для данной минерализации характерно отчетливое преобладание Pd над Pt, Ir и Ru, что отражено «возрастающим» графиком нормированных по хондриту С1 содержаний этих элементов при величине Pt/Pt*=0.07-0.89, где Pt* =(Rhn+Pdn)/2.

Максимальные содержания палладия отмечаются в пробах с максимальными содержаниями меди при явном ее преобладании над никелем. Следует отметить, что спектр распределения Pt и Pd, нормированных по хондриту С1 (Donough, Sun, 1995) очень близок к спектрам массивов Стиллуотер (Додин и др., 2003) и Пудожгорский (Додин и др., 2003), от которых отличается более низкими значениями.

Для хромитсодержащих серпентинизированных дунитов участка Илин-Сала характерно преобладание Pt над Ru, Pd и Ir. В целом графики, нормированных содержаний ЭПГ (рис.25) имеют корытообразный облик и близки к офиолитам Омана. От типичных хромититов они существенно отличаются численными значениями и «восстающим» трендом в области Rh-Cu. Обращают на себя внимание отчетливо проявленные максимумы Pt (Pt/Pt*=3.43-9.62) и Cu (Cu/Cu*=8.01-13.90, где Cu*=(Aun+Ren)/2).

По теории экстремальных состояний химических элементов ближайшими аналогами платины являются палладий и никель, которым характерны минимумы ионных радиусов и максимумы электросродства. Это отражает сильную индефферентность металлов к кислороду и максимальное сродство к сере (Маракушев, Безмен, 1992). Следует отметить, что особенности распределения ЭПГ в ультрамафит-мафитах, определяются сродством к сульфидной сере нарастающим в последовательностях Сr-Mn-Fe-Co-Ni, Mo-Te-Ru-Rh-Pd и W-Re-Os-In-Pt (Маракушев, 1979). В связи с этими свойствами элементов в расслоенных хромит или железо(титан) содержащих прослоях концентрируется преимущественно Pt (Os, Re), а Pd (Rh-Ru) свойственен более поздним никельсодержащим сульфидам. Эти выводы наглядно подтверждены на примере образований Каларского массива с различной металлогенической специализацией.

Таким образом, в пределах Каларской габбро-анортозитовой ассоциации массивов установлено два типа оруденения Ti-Fe-апатитовое в габбро-анортозитах и Cu-Ni в перидотитах и пироксенитах. С вышеперечисленным оруденением возможно обнаружение платинометальной минерализации соответственно платиносодержащего титаномагнетитового и малосульфидного типов. При этом для Ti-Fe-апатитового оруденения установлен платиновый тип распределения ЭПГ, а для Cu-Ni - палладиевый. Не исключено выявление в пределах изучаемых массивов и малосульфидного платинометалльного оруденения.

Палеопротерозойский металлогенический этап представлен многочисленными Fe-Ti рудопроявлениями в габбро-анортозитах Джугджурской ассоциации и Cu-Ni-Pt рудопроявлениями Няндоми, Авланджинское и Одоринское, приуроченные к породам краевой перидотит-пироксенит-габбро-норитовой ассоциации (Соляник, 1999) лантарских анортозитов.

Рудопроявление Cu-Ni-Pt руд Няндоми представлено рудными телами массивной и брекчиевидной форм, в которых обнаружены минеральные фазы платиноидов (мончеитов, сперрилитов, платино-палладиевого теллурида) и золота. Отчетливое преобладание палладия над платиной в рудах рудопроявления Няндоми свойственно палладиевому типу распределения ЭПГ, что свойственно для сульфидного типа платинометалльного оруденения. Рудопроявление медно-никелевых платинометальных руд Маймакан (Кэндэкэ) представлено пирротин-халькопирит-пиритсодержащими апатит-ильменит-титаномагнетитовыми оливиновыми габброидами с повышенным содержанием платиноидов (до 149 мг/т) (Лазаренков, 2001), Ni до 0.97%, Cu до 1.57%, Сo до 0.24% (Приходько и др., 2009).

Рудопроявление Сu-Ni руд Богидэ представлено массивными и брекчиевыми пирротин-халькопирит-пирит-пентландитовыми рудами, с содержаниями Ni - 0.58-0.77%, Cu - 0.29-0.68% и Co - 0.095-0.14% (Приходько и др., 2009).

Массивные платиносодержащие сульфидные руды выявлены и в массиве Кун-Манье. Анализ закономерностей распределения содержаний Ni, Cu, Co, Pt+Pd указывает на повышение их содержаний с глубиной эрозионного среза интрузий ультрамафитов.

В пределах палеопротерозойской Кенгурак-Сергачинской ассоциации габбро-анортозитовых массивов установлено несколько рудопроявлений титано-магнетитовых руд (Скарновое и др). Кроме этого, по аналогии с Джугджурскими и Каларскими габбро-анортозитами здесь прогнозируется платиносодержащее титано-магнетитовое оруденение, учитывая повышенные содержание ЭПГ в пироксенитах, габброидах и анортозитах участков Виденовский, Колоктикан и Орогжан.

Повышенные содержания ЭПГ в пределах участка Виденовский свойственны для титано-магнетитовых габбро (Pd до 0.29 г/т и Pt до 0.68 г/т при сумме Pd+Pt до 0.858 г/т) и сульфидных прожилков (Pt до 1.512 г/т, Pd до 0.24 г/т, Au до 0.1 г/т). Аналогичные Ti-Mt габбро с сульфидной вкрапленностью и повышенными содержаниями платиноидов (Pt+Pd=до 0.48 г/т), высокими фосфора, кобальта и никеля установлены на участках Колоктикан и Орогжан (Pt+Pd=0.53 г/т).

Обобщая вышеприведенные данные по платиносодержащему оруденению Кенгурак-Сергачинской габбро-анортозитовой ассоциации можно сделать вывод об его приуроченности к сульфидсодержащим титано-магнетитовым габброидам и пироксенитам, для которых характерны также повышенные содержания Cu и Ni.

Как видно из рис. 26 пироксенитам и габброидам свойственны однотипные спектры распределения нормированных содержаний ЭПГ с хорошо проявленным минимумом Au (Au/Au*=0.01-0.60, где Au*=((Pd+Cu)/2), за исключением сульфидного прожилка) и максимумом Pt (Pt/Pt*=1.3-4.0), что свойственно платиновому типу распределения ЭПГ. Отчетливый «восходящий» характер распределения ЭПГ в области Ni-Pt отличает оруденение Кенгурак-Сергачинской ассоциации от аналогов Каларской ассоциации и других известных массивов. Следует отметить, что содержания Pt и Pd в породах изучаемых массивов сопоставимы с таковыми в хромититах Австралии и рудных образованиях Пудожгорского массива.

Таким образом, обобщая вышеприведенные данные о рудоносности Каларской, Джугджурской и Кенгурак-Сергачинской габбро-анортозитовых ассоциаций можно выделить два основных типа минерализации - железо-титан-апатитовое и медно-никелевое. Выявленные типы оруденения по механизмам своего образования резко отличаются друг от друга, но чаще всего связаны с единым мантийным источником.

В пределах развития как Fe-Ti-апатитовой так и Cu-Ni минерализации Каларской, Джугджурской и Кенгурак-Сергачинской ассоциаций установлены участки с повышенными содержаниями ЭПГ. При этом поведение платиноидов на различных геохимических уровнях различно. Так для апатит-Fe-Ti оруденения характерно преобладание Pt над Pd, что свойственно платиновому типу распределения ЭПГ. В то же время для сульфидных Cu-Ni-Co руд установлено преобладание Pd над Pt, что свойственно палладиевому типу распределения ЭПГ.

Учитывая огромные масштабы проявления габбро-анортозитовых ассоциаций в пределах как Джугджуро-Станового, так и Селенгино-Станового супертеррейнов, здесь возможно выявление месторождений металлов платиновой группы связанных с апатит-Fe-Ti и Cu-Ni-Co оруденением.

Пермско-раннетриасовый металлогенический этап ультрамафит-мафитового магматизма в пределах юго-восточного обрамления Северо-Азиатского кратона по времени совпадает с магматизмом, обусловленным субдукционными процессами и влиянием Сибирского суперплюма. Следует отметить, что при участии плюмов происходят сложные процессы, обусловленные взаимодействием глубинного мантийного магматизма с корой и литосферной мантией, что приводит к образованию значимых скоплений медно-никелевых руд и платиноидов. К триасовому металлогеническому этапу, обусловленному влиянием Сибирского суперплюма относятся образование платиноносных базальтов Норильского района (Додин и др., 1999), Cu-Ni - руд с ЭПГ в Южном Китае (Song at all, 2003), Монголии (Изох и др., 2006) и Вьетнаме (Glotov at all., 2004).

В пределах Джугджуро-Станового супертеррейна к этому этапу относится становление Лучинского, Ульдегит, Чек-Чикан, Ильдеусского, Утанакского и др. более мелких массивов, а в пределах Селенгино-Станового - Лукиндинского массива.

Следует отметить, что в пределах Лучинского и Ильдеусского массивов установлена Cu-Ni минерализация, формирование которой, вероятнее всего происходило одновременно или несколько позднее, чем становление вмещающих её ультрамафит-мафитов.

Анализ распределения сульфидной минерализации в породах Лучинского интрузива позволил разделить её три типа: 1) сингенетическую в дунитах, пироксенитах, оливиновых габбро и меланогаббро; 2) гнездово-прожилковую и шлировую в вебстеритах и габброноритах; 3) прожилковую в габброидах и вмещающих породах.

Исследование изотопного составы серы показало его обогащение легкими изотопами (32S). Из этого можно сделать вывод, что образование данного типа минерализации происходило при низких значениях фугитивности кислорода (fO2) и температуры, на завершающих стадиях дифференциации интрузива. В то же время по особенностям химического состава сульфидных минералов Лучинского массива, а именно: пирротинам, высокосернистым с относительно высокими содержаниями Ni до 1.64%; пентландитам с низкими значениями Fe, высокими Ni, Cu и S и очень высокими Co (до 8.48%) и халькопиритам с большими концентрациями железа и меди и относительно низкими серы, описываемые минералы наиболее близки к аналогам из верхних метагаббро и габбро-норитов Мончетундровского интрузива и верхних горизонтов дифференцированных интрузий.

В сульфидизированных вебстеритах Ильдеусского интрузива изотопный состав серы показывает её обогащение 34S. Этот факт свидетельствует либо о возможной сульфуризации пород, либо об образовании данной минерализации при высокой фугитивности кислорода (fO2). В любом случае это положительный фактор для возможной локализации сульфидных руд. Особенности распространения и химического состава сульфидных минералов в породах Ильдеусского массива, в том числе высокие содержания Ni (до 6.73%) в пирротинах, относительно высокие концентрации Fe и низкие - Ni - в пентландитах, низкие значения Fe и Cu, но более высокие - Ni в халькопиритах позволяет предполагать более высокие температуры их образования относительно их аналогов из образований Лучинского массива, а следовательно принадлежность их к более глубоким горизонтам дифференцированной интрузии.

На основании геолого-геофизического и минералого-геохимического моделирования рудоносности Ильдеусского массива, установлены положительные критерии локализации в его пределах сульфидного Cu-Ni оруденения: залегание интрузива среди серу содержащих неоархейских (?) образований; геофизические аномалии минимальных значений электрического сопротивления; приуроченность массива к крупным региональным разломам - возможным концентраторам оруденения; выявление никельсодержащей сульфидной фазы в ультрабазитах с содержаниями Ni до 0.5%; обогащение изотопного состава сульфидной серы тяжелым изотопом 34S.

Проблема платиноносности сульфидной минерализации Лучинского и Ильдеусского массивов практически не изучена. Обобщение результатов анализов изученных образцов с повышенными содержаниями ЭПГ свидетельствует о преобладании Pd над Pt, при максимальных содержаниях Pd (0.101 г/т) в габброидах жильной серии Лучинского массива.

Анализ вышеприведенного материала позволяет предполагать, что перспективы платиноносности Лучинского и Ильдеусского массивов могут определяться возможным выявлением медно-никелевых руд с сопутствующими платиноидами.

Одним из наиболее ярких массивов, традиционно считающимся перспективным в отношении не только медно-никелевого, но большей частью платинометалльного оруденения малосульфидного и медно-никелевого типов является Лукиндинский, расположенный в пределах Селенгино-Станового супертеррейна.

Проведенными в разные годы исследованиями в массиве установлены многочисленные проявления сульфидной медно-никелевой, хромитовой, титано-магнетитовой и др. минерализаций, а также геохимические аномалии Au и Pt.

Обращают на себя внимание низкие содержания никеля - 0.1-0.3%, кобальта и меди в сульфидном оруденении. Наибольшее среднее содержание Ni (до 1%) и Co (до 0.08%) установлено в зоне вкрапленных сульфидных руд - Сульфидной.

Изучение изотопного состава серы из разных сульфидных рудопроявлений Лукиндинского массива показало близость его к метеоритному стандарту (S34 - 0.9-0.7o/oo), поэтому образование значительного по масштабам сульфидной минерализации маловероятно, тем не менее в ассоциации с ней возможно выявление платинометалльного оруденения.

Так, повышенные содержания ?ЭПГ установлены в сульфидизированных ультрамафитах и габброидах соответственно до 1.015 г/т и 0.858 г/т. Следует отметить, что в хромитсодержащих дунитах с сульфидной вкрапленностью преобладающим элементом платиновой группы является родий. При этом содержания Rh превышают количества Pt и Pd, с отношением Rh/Rh*=3.7-28.9 (Rh*=(Ru+Pt)/2). В то же время в габброидах количества Pt преобладают над остальными ЭПГ (Pt/ Pt*=2.6-5.6).

Спектр распределения платиноидов, нормированных по хондриту С1 (рис.27), практически идентичен таковым в офиолитах Омана, от которых отличается значительно более высокими значениями.

Один из наиболее интересных участков, перспективных в отношении платинометального оруденения, связанного с Cu-Ni минерализацией, расположен в верхней части разреза интрузива, вскрытого в скважине С3. Здесь установлены оливиновые габбро с повышенными содержаниями платиноидов (ЭПГ=0.708-0.858 г/т). Проанализировав данные по залеганию пород с отмеченными аномальными содержаниями ЭПГ автором был составлен вариант предполагаемого разреза интрузива с выделением участков благоприятных для локализации платинометального оруденения. Следует отметить, что его перспективы массива могут быть связаны и с выявлением малосульфидного типа, аналогичного платиноносному «рифу» Йоко-Довыренского массива. При этом основными ЭПГ могут быть родий и платина.

Интерес в отношении платинометалльной минерализации в настоящее время представляет позднеюрский Веселкинский массив. В его пределах установлены и подтверждены последующими исследованиями аномальные содержания платиновых металлов. Причем речь идет о двух типах платинометального оруденения: первый связан с хромититами с преобладанием платины над палладием, второй - сопутствующий медно-никелевой минерализации с преобладанием палладия над платиной.

Сингенетическая сульфидная минерализация характерна для пород нижней части разреза интрузива (дуниты, пироксениты, оливиновые клинопироксениты), где она представлена пирротином, пентландитом, халькопиритом, миллеритом и кубанитом. По составу сульфидные минералы резко обеднены никелем, и обогащены медью относительно сульфидной минерализации Талнахского и Норильского интрузивов и наиболее близки по минеральному и химическому составу эпигенетическому оруденению Йоко-Довыренского массива. Отсутствие в составе пирротинов никеля и присутствие в них меди позволяют предполагать, что в пределах обнаженной части Веселкинского интрузива, мы наблюдаем верхние горизонты сульфидного оруденения.

В пределах изучаемого массива, кроме медно-никелевой установлена и хромитовая минерализация, приуроченная к нижней части разреза. По составу хромшпинелидов ультрабазиты мало перспективны на обнаружение промышленного хромитового оруденения, но возможно нахождение, связанного с ними, платинометального оруденения. Именно в хромитсодержащих дунитах установлены наибольшие содержания ЭПГ (до 5.73 г/т). Совместное нахождение хромитового и медно-никелевого оруденения наблюдается и в других известных расслоенных массивах и связывается с глубокой дифференциацией расплавов (Naldrett, 1989).

Анализ распределения содержаний ЭПГ, нормированных по хондриту С1, позволил выделить два типа: палладиевый (А) и платиновый (Б) (рис.28). При этом график нормированных по хондриту содержаний ЭПГ, свойственный палладиевому типу распределения, характеризуется отчетливым обогащением тяжелыми платиноидами, по сравнению с легкими. Этот тип является преобладающим для клинопироксенитов, дунитов-оливинитов и габброидов Веселкинского массива.

Платиновый тип распределения характеризуется преобладанием Pt в отношении Pd и Rh, что выражено отчетливым максимумом на диаграмме. Он характерен для ортопироксен-хромитовых кумулатов изучаемого массива.

Таким образом в пределах Веселкинского массива можно ожидать выявление платинометального оруденения, связанного с хромитами в орто- и клинопироксенитах.

Анализ приведенного выше материала по металлогенической специализации пермотриасовых и позднеюрских ультрамафит-мафитов позволяет связать приуроченные к ним типы оруденения с обстановками континентальных окраины Северо-Азиатского кратона либо активной либо трансформной.

Обобщая вышеприведенные данные по рудоносности пермо-триасовых дунит-троктолит-габбровых и позднеюрских перидотит-вебстерит-габбро-монцонитовых интрузий можно прогнозировать связанные с ними соответственно медно-никелевые руды с сопутствующими платиноидами и платинометальное оруденение, связанное с хромитами.

Заключение

Проведенные исследования геологического строения, минералогических, петрохимических и изотопно-геохимических особенностей ультрамафит-мафитовых массивов Джугджуро-Станового и Селенгино-Станового супертеррейнов позволили выделить в пределах указанных геологических структур несколько этапов ультрамафит-мафитового и габбро-анортозитового магматизма.

В рамках данного исследования существенно расширен перечень объектов, характеризующих неоархейский этап габбро-анортозитового магматизма. В частности получены данные о возрасте и геохимических особенностях пород, слагающих Хорогочинский и Маристый массивы.

Получены надежные геохронологические данные, позволившие обоснованно выделить в пределах восточной части Селенгино-Станового супертеррейна палеопротерозойский габбро-анортозитовый комплекс, представленный Кенгурак-Сергачинской группой массивов.

В результате целенаправленных геологических, геохронологических, минералого-геохимических исследований показано, что многие "реперные" ультрамафит-мафитовые и габбро-анортозитовые массивы, традиционно считавшиеся докембрийскими, имеют палеозойский и мезозойский возраст. Эти данные позволили выделить несколько фанерозойских этапов ультрамафит-мафитового и габбро-анортозитового магматизма Джугджуро-Станового и Селенгино-Станового супертеррейнов, обусловленных различными процессами, происходившими вдоль континентальной окраины. В этой связи, полученные в результате данного исследования материалы, существенно уточняют существующие представления о геодинамической эволюции юго-восточного обрамления Северо-Азиатского кратона.

Наконец, использованный в данной работе металлогенический анализ рассматриваемых магматических образований по "временным срезам" в сочетании с геодинамическим анализом может быть применен для разработки критериев прогнозирования и оценки возможных типов оруденения. Кроме того, полученные даные о возрасте магматических комплексов в совокупности с результатами исследования их потенциальной рудоносности, могут быть использованы при современных металлогенических построениях.

Участие в монографии

1. Платиноносность ультрабазит-базитовых комплексов Юга Сибири. Богнибов В.И.. Кривенко А.П., Изох А.Э. и др. - Новосибирск, 1995. - 151 с.

Список основных работ, опубликованных по теме диссертации

2. Ахметов Р.Н., Бучко И.В. Геологическое строение и платиноносность массива базитов кл.Веселого (Верхнее Приамурье) // Тихоокеанская геология.- 1995.- Т.14.- №3.- С.-53-59.

3. Бучко И.В. Распределение элементов платиновой группы в расслоенных ультрабазит-базитовых интрузиях Становой складчатой системы (на примере Веселкинского массива) // Тихоокеанская геология.- 2000.- Т. 19.-№2.-С.94-100.

4. Бучко И.В., Зимин С.С., Октябрьский Р.А. Эволюция состава рудных минералов в процессе становления Веселкинского ультрабазит-базитового массива Среднего Приамурья // Записки Всесоюзного минералогического общества.-2000.-Ч.CXXIX.-№4.-С.29-36.

5. Бучко И.В. Медно-никелевое оруденение в ультрабазит-базитах Станового мегаблока южного обрамления Северо-Азиатского кратона. В кн. Поиски и разведка месторождений полезных ископаемых Сибири. Томск, 2000. С.25-35.

6. Бучко И.В., Изох А.Э., Носырев М.Ю. Сульфидная минерализация ультрабазит-базитов Станового мегаблока // Тихоокеанская геология. 2002.-Т. 21.- №4.- С. 56-68.

7. Бучко И.В. Состав исходного расплава и магматического субстрата Веселкинского перидотит-вебстерит-габбрового массива (Приамурье) // Тихоокеанская геология. 2005.- Т.1.- С. 85-92.

8. Бучко И.В., Сорокин А.А. Позднепалеозойская магматическая дуга северной окраины Аргунского террейна и связанное с ней золотое оруденение (Верхнее Приамурье) // Геология и геофизика. 2005. -Т. 46.- №6.-С.617-624.

9. Бучко И.В., Кудряшов Н.М. Геохимические особенности расслоенных массивов восточной части Западно-Станового террейна (южное обрамление Северо-Азиатского кратона) // Тихоокеанская геология. 2005. -Т.24.- №2.- С.95-109.

10. Бучко И.В., Сальникова Е.Б., Сорокин А.А., Сорокин А.П., Котов А.Б., Яковлева С.З. Первые свидетельства проявления мезозойского ультрамафит-мафитового магматизма в пределах Селенгино-Станового террейна юго-восточного обрамления Сибирского кратона // Доклады Академии Наук. 2005.- Т.- 405.- №4. - С. 514-518.

11. Бучко И.В., Сальникова Е.Б., Ларин А.М., Котов А.Б., Сорокин А.А., Великославинский С.Д. Возрастные рубежи формирования мафитовых и ультрамафит-мафитовых комплексов Селенгино-Станового и Джугджуро-Станового супертеррейнов юго-восточного обрамления Сибирского кратона // «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)». Материалы научного совещания. Иркутск: ИЗК СО РАН, 2005. -Т.1.-С. 38-40.

12. Бучко И.В., Сальникова Е.Б., Котов А.Б., Ларин А.М., Великославинский С.Д., Сорокин А.А., Сорокин А.П., Яковлева С.З. Палеопротерозойские габбро-анортозиты Селенгино-Станового супертеррейна южного обрамления Сибирского кратона // Доклады Академии Наук. 2006. -Т. 407.- № 4. -С.502-505.

13. Бучко И.В. Платиноносность Каларского габбро-анортозитового массива // «Актуальные проблемы рудообразования и металлогении». Новосибирск, 2006. С.42-43.

14. Бучко И. В., Сальникова Е. Б. Геохимические особенности ультрабазит-базитовых комплексов позднеюрского возраста Селенгино-Станового супертеррейна // Известия ВУЗов Сибири. Серия наук о Земле, 2006. -В. 9-10. -С. 50-52.

15. Бучко И.В., Изох А.Э. Петролого-геохимические особенности Лучинского плагиодунит-троктолит-габбрового массива Джугджуро-Станового супертеррейна // Известия ВУЗов Сибири. Серия наук о Земле, 2006.- В. 9-10. -С. 52-55.

16. Бучко И.В., Сальникова Е.Б., Сорокин А.А., Котов А.Б., Ларин А.М., Яковлева С.З. Первые данные о возрасте и геохимии пород Кенгурак-Сергачинского габбро-анортозитового массива (юго-восточное обрамление Сибирского кратона) // Тихоокеанская геология. 2006.- Т. 25. -№ 2. -С.15-23.

17. Бучко И.В., Изох А.Э., Сальникова Е.Б., Сорокин А.А., Котов А.Б., Яковлева С.З. Петрология позднеюрского ультрамафит-мафитового Веселкинского массива, юго-восточное обрамление Сибирского кратона // Петрология. 2007. -Т.15.- №3.- С.283-294.

18. Бучко И.В., Сальникова Е.Б., Сорокин А.А., Котов А.Б., Ларин А.М., Изох А.Э., Яковлева С.З. Возраст и геохимические особенности позднеюрских ультрамафит-мафитовых массивов Селенгино-Станового террейна южного обрамления Северо-Азиатского кратона // Геология и геофизика. 2007. -№12.- C.1321-1333.

19. Бучко И.В., Сальникова Е.Б., Ларин А.М., Сорокин А.А., Сорокин А.П., Котов А.Б., Великославинский С.Д., Яковлева С.З., Плоткина Ю.В. Возраст и геохимические особенности ультрамафит-мафитового Лучинского массива (юго-восточное обрамление Сибирского кратона) // Доклады Академии Наук. 2007. -Т.413. -№ 5.- C.651-654.

20. Бучко И.В., Сорокин А.А., Сальникова Е.Б., Котов А.Б., Ларин А.М., Великославинский С.Д., Плоткина Ю.В. Высокотитанистые габброиды западной части Джугджуро-Станового супертеррейна: возраст и тектоническая позиция // «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)». Иркутск: ИЗК СО РАН, 2008. -Т.1. -В.6.- С. 49-50.

21. Бучко И.В., Сальникова Е.Б., Сорокин А.А., Котов А.Б., Ларин А.М., Великославинский С.Д., Яковлева С.З. Возраст и тектоническая позиция Кенгурак-Сергачинского габбро-анортозитового массива (Селенгино-Становой супертеррейна южного обрамления Сибирского кратона) // Стратиграфия. Геологическая корреляция. 2008.- Т.16.- №4.-С.3-13.

22. Бучко И.В., Сорокин А.А., Изох А.Э., Ларин А.М., Котов А.Б., Сальникова Е.Б., Ковач В.П. Возраст и происхождение раннемезозойского ультрамафит-мафитового Лучинского массива (юго-восточное обрамление Сибирского кратона) // Геология и геофизика. 2008. -№8.- С.754-768.

23. Бучко И.В. Минералогические и петрологические особенности ультрабазит-базитовых массивов Брянтинского блока (юго-восточное обрамление Северо-Азиатского кратона) // Записки Российского Минералогического общества. 2008. -№4. -С.1-19.

24. Бучко И.В., Сальникова Е.Б., Котов А.Б., Сорокин А.П., Ларин А.М., Великославинский С.Д., Яковлева С.З., Плоткина Ю.В. Возраст и тектоническое положение Хорогочинского габбро-анортозитового массива (Джугджуро-Становой супертеррейн) // Доклады Академии Наук. 2008. -Т.423. -№ 2. -C.238-242.

25. Бучко И.В., Сорокин А.А. Петрохимические, геохимические особенности и вопросы генезиса габброноритового массива Чек-Чикан, юго-восточное обрамление Северо-Азиатского кратона // Тихоокеанская геология. 2009.-Т 28.- №6. -С.55-64.

26. Бучко И.В., Сорокин А.А., Сальникова Е.Б., Котов А.Б., Ларин А.М., Великославинский С.Д., Яковлева С.З. Триасовый этап ультрамафит-мафитового магматизма Джугджуро-Станового супертеррейна (южное обрамление Северо-Азиатского кратона) // Тектоника и глубинное строение Востока Азии. VI Косыгинские чтения. Доклады всероссийской конференции 20-23 января 2009 г. Хабаровск. Хабаровск: Институт тектоники и геофизики ДВО РАН, 2009. С. 160-163.

27. Buchko I.V., Sal'nikova E.B., Larin A.M., Kotov A.B., Sorokin A.A.,Velikoslavinsky S.D. Timing of Pre-cambrian gabbro-anorthosites in theStanovoy mobile belt (Eastern Siberia) // Geochim. et Cosmochim. Acta. 2009. -V.73. -Iss.13. -Suppl.1.-P.A170.

28. Бучко И.В., Сальникова Е.Б., Ларин А.М., Сорокин А.А., Котов А.Б., Великославинский С.Д. Этапы проявления ультрабазит-базитового магматизма юго-восточного обрамления Северо-Азиатского кратона // Изотопные системы и время геологических процессов. Материалы IV Российской конференции по изотопной геохронологии, 2-4 июня, 2009 г., Санкт-Петербург. Т. 1. СПб: ЧП Каталкина, 2009. С. 90-92.

29. Buchko I.V., Sorokin A.A., Palessky S.V. Distribution of the platinum group elements in the Mesozoic ultramafic-mafic massifs of the Dzhugdzhur-Stanovoy superterrane ((southern rim of the North Asian craton) // International Symposium «Large Igneous Provinces of Asia, mantle plums and metallogeny». Novosibirsk, Russia, 6-9 august 2009. Novosibirsk, 2009. - Р. 54-57.

...

Подобные документы

  • Проблемы геодинамики раннедокембрийской континентальной земной коры. Геология докембрия центральной части Алдано-Станового щита. Геолого-структурное положение и изотопный возраст золотоносных метабазитов. Критерии поисков золоторудной минерализации.

    книга [4,8 M], добавлен 03.02.2013

  • Сущность интрузивного магматизма. Формы залегания магматических и близких к ним метасоматических пород. Классификация хемогенных осадочных пород. Понятие о текстуре горных пород, примеры текстур метаморфических пород. Геологическая деятельность рек.

    реферат [210,6 K], добавлен 09.04.2012

  • Минералогическое изучение магматических пород. Величина отношения - палагиоклаз. Кристаллизационная дифференциация базальтовой магмы. Суть палингенеза. Обстановка гранитообразования. Особенности коллизионных гранитов, обусловленные условием их генезиса.

    реферат [130,4 K], добавлен 21.06.2016

  • Происхождение, минеральный состав, структура, текстура и практическое значение серпентинитов, габбро и супеси. Относительный возраст горных пород. Указание по построению карты гидроизогипс для выполнения изыскательских работ на строительной площадке.

    контрольная работа [956,1 K], добавлен 10.01.2014

  • Типы каменных осыпей и обвалов, которые образуются в горах в результате разрушения скальных массивов. Выветривание коренных горных пород. Эоловая деятельность на Камчатке. Минеральные источники и геологическая деятельность поверхностных текучих вод.

    курсовая работа [45,6 K], добавлен 12.01.2012

  • Палеоцен-раннеолигоценовый этап геологического развития Северо-Восточного Кавказа. История геологического развития Дагестана в раннеэоценовое время. Особенности хадумского горизонта Южно-Дагестанской складчатой зоны. Развитие биоты в белоглинский век.

    курсовая работа [55,5 K], добавлен 23.10.2011

  • История геологического изучения территории. Структурно-тектоническое и геологическое строение Алдано-Станового щита. Олёкминская гранит-зеленокаменная область. Месторождения железных руд, меди, слюды, урана, полиметаллов, золота. Магматизм и метаморфизм.

    курсовая работа [2,8 M], добавлен 09.06.2015

  • Геологическая съемка в районах развития вулканогенных образований. Предполевое дешифрирование аэрофотоматероалов и составление предварительной геологической карты. Методика опробования вулканогенных пород для выявления их минералогических особенностей.

    реферат [24,5 K], добавлен 12.12.2010

  • Исследование особенностей осадочных и метафорических горных пород. Характеристика роли газов в образовании магмы. Изучение химического и минералогического состава магматических горных пород. Описания основных видов и текстур магматических горных пород.

    лекция [15,3 K], добавлен 13.10.2013

  • Краткая характеристика вмещающих структур и корундсодержащих пород Хитоострова. Изучение данных о генезисе корундовых пород и содержания изотопно-легкого кислорода в них. Минералогия и петрология данных пород. Геохимия изотопов благородных газов.

    дипломная работа [10,9 M], добавлен 27.11.2017

  • Природные экологические системы. Свойства почв и разные аспекты взаимоотношений почв с окружающей средой на примере Тебердинского государственного биосферного заповедника. Высотно-экологический профиль. Местные геохимические особенности горных пород.

    реферат [25,5 K], добавлен 27.06.2008

  • Определение степени загрязнения донных осадков и вод Керченского пролива, а также геохимических особенностей поведения тяжелых металлов в системе "донные отложения - вода". Расчет коэффициентов водной миграции, построение геохимических карт осадков.

    дипломная работа [4,2 M], добавлен 01.05.2015

  • Геологическое строение Понийского месторождения. Условия залегания полезного ископаемого. Описание комплекса пород, слагающих месторождение. Производственная мощность карьера. Выбор места заложения капитальной и разрезной траншеи. Углы откосов бортов.

    дипломная работа [3,7 M], добавлен 14.02.2015

  • Глубинные разломы с геосинклинальными прогибами, чередование геосинклинального и платформенного режимов. Виды магматических пород, сравнительное изучение геологических структур с разной историей. Химический состав магматических и осадочных пород.

    контрольная работа [1,2 M], добавлен 29.07.2009

  • Физическое свойства горных пород и флюидов. Геофизические измерения в скважинах. Процедуры интерпретации данных. Методы определения литологии, пористости. Электрические методы и определение насыщения пород флюидами. Комплексная интерпретация данных.

    презентация [6,4 M], добавлен 26.02.2015

  • Внутреннее строение интрузивных массивов. Типы эффузивных тел. Силлы, лополиты, факолиты и ариал-плутоны. Осадочные, магматические, гидротермальные, контактово-метасоматические скарновые месторождения. Методы относительной и абсолютной геохронологии.

    лекция [6,6 M], добавлен 21.02.2015

  • Методы и технологии обеспечения эффективности и безопасности разработки Комаровского месторождения золотосодержащих руд на основе систематического инструментального контроля за состоянием устойчивости прибортовых массивов карьера и деформациями отвала.

    курсовая работа [220,0 K], добавлен 25.04.2017

  • Процесс формирования осадочной горной породы. Образование нефтяной залежи. Стадии метаморфизма угля. Распространение органогенных горных пород в Краснодарском крае. Углеводородное и энергетическое сырье. Добыча основных органогенных горных пород.

    курсовая работа [1,8 M], добавлен 09.07.2013

  • Виды фаций по названию основных пород. Исследования геохимии редкоземельных и редких элементов в кальциевых амфиболах нюрундуканского мафического комплекса и клинопироксенах. Геологическая обстановка и условия метаморфизма. Особенности состава амфиболов.

    курсовая работа [1,5 M], добавлен 08.12.2013

  • Девонские терригенные отложения и их значение для нефтегазовой промышленности на территории Волго-Уральского нефтегазоносного провинции. Состав нижнефранских пород. Изменение режима бассейна, обновление фауны и накопление глинсто-карбонатных осадков.

    курсовая работа [1,1 M], добавлен 19.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.