Полезные ископаемые
Рассмотрение этапов и стадий формирования руд. Определение источников рудного вещества. Характеристика ликвационных, раннемагматических, позднемагматических и колчеданных месторождений. Оценка модели строения альбитит-грейзенового месторождения.
Рубрика | Геология, гидрология и геодезия |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 21.03.2018 |
Размер файла | 150,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Однако такая теория (биметасоматическая) не объясняла привнос в зону скарнов SiO2. Его не хватало при подсчете баланса вещества. Впоследствии Д.С.Коржинский развил свою теорию и дополнил её инфильтрационной. При инфильтрационном процессе постмагматические растворы могут привносить с собой компоненты, особенно рудные - Cu, Pb, Zn, W, Mo. Они могут циркулировать по трещинам в экзоконтактах интрузий там откладывать минералы скарнов. Температуры таких растворов могут снижаться от 400 до 200С и даже ниже.
Гипотеза стадийная (П.Пилипенко). Главная масса минералов скарнов образуется за счет привноса специфическими скарнообразующими растворами и метасоматоза на контакте интрузий и вмещающих карбонатных пород. Выделяется 6 главных стадий метасоматоза, при снижении температуры.
26) Общая характеристика. Гидротермальные месторождения - это месторождения, созданные горячими минерализованными растворами, циркулирующими в земной коре. Полезные ископаемые возникают как вследствие отложения минеральных масс в пустотах горных пород, так и при замещении пород, по которым циркулируют гидротермальные растворы. Наиболее типичной формой рудных тел являются жилы. Часто встречаются штокверки, линзы, гнезда, пластообразные залежи и сложные по форме комбинированные тела. Образование таких месторождений часто связывается с производными магматических очагов (преимущественно кислых). Однако существуют и другие источники горячих минерализованных растворов (подземные воды глубокой циркуляции, собственные флюиды осадочно-породных бассейнов и др.). Гидротермальные месторождения обычно сопровождаются ореолами гидротермально измененных пород, а также ореолами рассеяния рудообразующих металлов, что используется при поисках данных месторождений.
Размеры тел полезных ископаемых гидротермального происхождений изменяются в широких пределах. На Березовском месторождении золота - это жилы, длиной 2-3 м, встречаются жильные тела, протяженностью несколько километров и даже сотни километров (Материнская жила, Калифорния).
27) Гидротермальные месторождения имеют важное промышленное значение для цветных, благородных, редких, радиоактивных металлов, многих нерудных полезных ископаемых (хризотил-асбеста, барита, флюорита, магнезита, гоного хрусталя, исландского шпата и др.).
28) Зональность гидротермальных месторождений. Первичная зональность рудных районов, полей, месторождений и отдельных рудных тел определяется закономерным изменением минерального и связанного с ним химического состава руд в пространстве.
Эволюционная гипотеза В.Эммонса, объясняющая причины зональности гидротермальных месторождений по отношению к магматическим очагам. Согласно этой гипотезе восходящие растворы, отделяющиеся от остывающих массивов магматических пород и насыщенные минеральными соединениями, откладывают минералы в порядке, обратном их растворимости, входя во все более холодные области. Опираясь на этот принцип, В.Эммонс реконструировал постмагматическую рудоносную систему, разделив её на 16 зон (снизу вверх по мере падения температуры): пустая кварцевая, оловянная, вольфрамовая, мышьяковая (арсенопиритовая), висмутовая, золотая, медная, цинковая, свинцовая, серебряная, безрудная, серебряная, золотая, сурьмяная, ртутная, пустая. В дальнейшем было установлено, что такая собирательная зональность нигде в полном виде не проявляется, хотя отдельнрые её звенья наблюдаются в природе.
Пульсационная гипотеза С.Смирнова была разработана в противовес одноактной схеме зонального размещения постмагматических рудных месторождений. модель о пульсационном поступлении гидротермальный растворов, которые импульсами отделяются от магматического очага по мере его остывания в результате неоднократного раскрытия трещин. Согласно теории С.Смирнова состав металлов в каждой новой порции гидротермального раствора изменяется во времени, что приводит к последовательному формированию месторождений различного состава.
В.И.Смирновым выделяются два рода первичной зональности гидротермальных рудных тел - зональность первого рода (стадиальная) и зональность второго рода (фациальная). Зональность стадиальная разделяется на зональность повторных тектонических разрывов, зональность тектонического раскрывания трещин, зональность внутрирудного метасоматоза. Зональность фациальная включает зональность состава пород, фильтрационную зональность, зональность отложения.
29) Физико-химические условия рудообразования, источники воды и минерального вещества гидротермальных систем, формы переноса минеральных соединений гидротермальными растворами.
Растворы, в которых переносятся минеральные вещества и из которых образуются полезные ископаемые, являются большей частью водными. По физическому состоянию они могут относиться к взвесям, коллоидам и молярным растворам. Для их проникновения сквозь массу горных пород необходимо, чтобы эти породы обладали проницаемостью, пористостью, пустотами. Полезные минералы выпадают из горячих минерализованных растворов при различных физико-химических условиях, которые определяются, прежде всего, температурой и давлением.
Температура образования гидротермальных месторождений. Завершение раскристаллизации магмы на глубине происходит при температурах 1000-800С. Начальная температура гранитного пегматитового расплава оценивается в 800-700С. Непосредственное измерение газовых струй современных вулканов показывает, что хотя в отдельных редких случаях она достигает 1020С, обычно же лежит ниже 700С. Определения температур кристаллизации гидротермальных минералов по газо-жидким включениям показывают значения от 560-540С до 50-25С. Наиболее характерны температуры гидротермального процесса в интервале 400-100С.
Давление при образовании гидротермальных месторождений в некоторой степени соответствует их глубине формирования. Так, согласно И.Кушнареву, все эндогенные месторождения Кураминских гор (включая гидротермальные) образовались в пределах глубин 500-4500 м . Это соответствует гидростатическому давлению 5-45 МПа и литостатическому давлению 13-115 МПа. Фактически оно может быть и больше и меньше. Меньше при образовании открытых полостей при тектонических деформациях, а больше в связи с превращением воды в пар, который сжатый в порах может повышать давление, таких причин может быть множество. Все существующие в настоящее время попытки измерить давление на основании различных экспериментов позволяют лишь выявить широкий диапазон. Гидротермальное рудообразование может начинаться при высоких давлениях - от первых десятков до 400-500 МПа, но наиболее продуктивной рудообразующей стадии обычно соответствует давление 150-200 МПа.
Источники воды гидротермальных систем также могут быть различны. К ним относят следующие источники: магматическая вода, вода метаморфического происхождения, захороненная вода древних осадков, атмосферная, или вадозная вода глубокой циркуляции, вода морей и океанов, вовлекаемая в гидротермальные системы.
Магматическая вода (или ювенильная) отделяется от магматических расплавов в процессе их остывания и преобразования в изверженную породу.
Метаморфическая вода формируется в результате прогрессивного метаморфизма горных пород под действием возрастающих температур и давлений. В свежих слабометаморфизованных породах может находиться около 30% (от массы пород) воды различных форм: поровой, пленочной, капиллярной, интерминеральной, конституционной. При различных ступенях метаморфизма происходит высвобождение различных форм этой воды. Эта вода может быть реализована при образовании гидротермальных месторождений.
Захороненная вода находится в пористом пространстве древних осадков, погруженных вместе с осадками на глубину и слагающих различные формации осадочных пород. Первоначально количество такой воды может достигать первых десятков процентов от массы породы. Под воздействием тектонических, магматических процессов(стресс, внедрение магматических масс) захороненная вода может высвобождаться , нагреваться, приходить в движение, участвовать в формировании гидротермальных систем.
Атмосферная вода при соответствующих гидрогеологических условиях может проникать в глубинные части земной коры, нагреваться, минерализоваться и приобретать свойства гидротермальных растворов.
Морская вода также может быть вовлечена в гидротермальный процесс в тех случаях, когда в придонные части моря или океана внедряются магматические массы, создающие местные очаги разогрева. Происходит засасывание морских вод на глубину и вовлечение их в систему гидротермальной циркуляции.
Источники минерального вещества при формировании гидротермальных систем можно разделить на три главных группы:
ювенильный магматический или базальтоидный подкоровый,
ассимиляционный магматический, или гранитоидный коровый,
фильтрационный внемагматический.
Формы переноса минеральных соединений в гидротермальных растворах:
в истинных растворах,
в коллоидных растворах,
в легкорастворимых соединениях ионных растворов,
в легкорастворимых соединениях комплексных растворов.
30) Генетические типы гидротермальных месторождений. Плутоногенные и вулканогенные гидротермальные месторождения формируются в интервале температур от 400 до 50С . Амагматогенные относятся к низкотемпературным образованиям, пространственно не связанным с магматическими проявлениями.
Плутоногенно-гидротермальные месторождения пространственно и генетически связаны с интрузиями кислых, умеренно кислых и умеренно щелочных изверженных горных пород. Оруденение распространено по вертикали на 1-2 км и отличается хорошей выдержанностью. Рудные тела формируются путем выполнения пустот или метасоматически и характеризуются большим разнообразием форм, зависящих от состава вмещающих пород и тектонической структуры. Типичны месторождения с большим количеством маломощных рудных тел. Рудообразование сопровождается интенсивным изменением вмещающих пород (серицитизацией, хлоритизацией, окварцеванием, доломитизацией, лиственитизацией, серпентинизацией, флюоритизацией, пиритизацией, гематитизацией). Текстуры руд - вкрапленные, прожилковые массивные, структуры - зернистые, порфировидные, эмульсионные, пластинчатые, сетчатые. Примерами являются:
золото-кварцевые, золото-сульфидно-кварцевые месторождения, обычно связанные с массивами гранитоидов, сопровождающихся сериями даек (Бендиго в Австралии, Березовское на Урале);
вольфрамит-молибденит-кварцевые месторождения, представленные крутопадающими жилами, трубообразными телами, штокверками, которые локализуются в куполах гранитоидов и зонах их контактов (Джида, Шахтама в Забайкалье, Вехнее Кайракты в Казахстане);
касситерит-кварцевые месторождения, залегающие среди песчаников и сланцев в экзоконтактах гранитных интрузивов; вкрапленные, прожилковые и массивные руды образуют жиды заполнения, штокверки (Онон в Забайкалье, Иультин на Чукотке);
молибденит-халькопиритовые (медно-порфировые) месторождения, формирующие штокверки и прожилково-вкрапленные зоны рассеянного оруденения близ выступов магматических гранитоидных пород порфирового строения (Коунрад в Казахстане, Каджаран в Армении, Кляймакс в США, Чукикамата в Чили);
касситерит-силикатно-сульфидные месторождения, ассоциирующие с дайками среднего состава и приуроченные к разломам и зонам трещиноватости в них; вмещающими породами являются песчаники, глинистые сланцы, эффузивы; формы рудных тел - жилы, ; текстуры руд - вкрапленные, прожилковые массивные (Депутатское в Якутии);
галенит-сфалеритовые (полиметаллические) жильные месторождения (Садон, Згид на Кавказе);
хризотил-асбестовые связаны с серпентизированными ультраосновными породами; текстуры - прожилковые, поперечно- и продольно-волокнистые (Баженовское, Алапаевское на Урале).
Вулканогенно-гидротермальные месторождения связаны преимущественно с наземным андезит-дацитовым вулканизмом в складчатых областях, а также трапповым магматизмом активизированных платформ. Наиболее характерны месторождения, приуроченные к жерлам вулканов и их периферии. Месторождениям свойственны конические, кольцевые, трубчатые, внутри жерловые и радиально-трещинные структуры, а также зоны напластования эффузивных пород. Рудные тела - жилы, трубы и штокверки, которые быстро выклиниваются на глубине 300-500м. Характерен сложный минеральный состав, неравномерное распределение рудных компонентов (столбы, бонанцы). Текстуры - метаколлоидные. Обычны гидротермальные изменения: окварцевание, пропилитизация, алунитизация, каолинизация. Примеры месторождений:
магнетитовые месторождения, связанные с траппами и приуроченные к штокам габброидов и вулканическим трубкам взрыва; они залегают среди карбонатных и песчано-сланцевых пород, скарнированных траппов, образуют жилы, штоки, штокверковые зоны (Коршуновское, Нерюндинское в Восточной Сибири);
золото-серебряные месторождения, ассоциирующие с субвулканическими интрузивами кварцевых порфиров, размещающиеся среди андезит-дацитовых пород и представляющих собой пучки жил, прорезающих вулканические жерла (Балей в Забайкалье, Агинское на Камчатке, Крипл-Крик, Комсток в США);
Киноварные (ртутные) месторождения, пространственно и генетически связанные с четвертичным вулканизмом кислого и среднего состава; их размещение контролируется сопряжением разломов, экструзивов, зон брекчирования; руды вкрапленные, выполняют трещины в зонах дробления (Пламенное на Чукотке, Боркут в Закарпатье);
Месторождения самородной серы, обычно приуроченные к склонам, подножьям, кальдерам стратовулканов или межвулканическим впадинам; рудоносными являются вулканические породы, првращенные под действием сернокислых растворов во вторичные кварциты, содержащие вкрапленность серы (месторождения Камчатки -Новое, Заозерное, а также Японии, Чили, Перу, Филлипин).
Амагматогенные гидротермальные месторождения располагаются в осадочных толщах, где отсутствуют массивы изверженных пород, которые могли бы служить источником гидротермальных минерализованных растворов. Генезис таких месторождений всегда проблематичен. Некоторые геологи рассматривают эти месторождения как первично-осадочные сингенетические, претерпевшие некоторые изменения на последующих стадиях. Существует также представление и об их связи с залегающими на глубине и не вскрытыми эрозией массивами изверженных горных пород. Таким образом, источником растворов таких месторождений могут быть удаленные магматические очаги, с которыми потеряна связь, а также собственные флюиды осадочно-породных бассейнов, мобилизирующиеся из осадочных толщ при катагенезе, метаморфизме. Источник рудного вещества также чаще ассимилированный из вмещающих толщ, но может быть и глубинным (например, для ртути, сурьмы). Наиболее часто рассматривается полигенное происхождение таких месторождений в течение длительного периода.
Среди аматогенных гидротермальных месторождений особо выделяется группа стратиформных месторождений, имеющих гидротермально-осадочное происхождение (они будут рассматриваться в лекции 17): месторождения медистых песчаников (Джезказган в Казахстане), стратиформные полиметаллические в карбонатных формациях (Миргалимсай в Казахстане, Миссисипи - Миссури в США).
Примером амагматогенных гидротермальных месторождений являются киноварь-антимонитовые (сурьмяно-ртутные) месторождения. Они залегают среди терригенных и карбонатных комплексов, осложненных куполовидными, сундучными складками, рудоподводящими разрывными нарушениями. Для них не выявлена связь с магматизмом, но имеются все характерные признаки низкотемпературных гидротермальных жильных образований. Такие месторождения распространены в Средней Азии (Хайдаркан, Кадамджай), на Украине (Никитовское в Донбассе), в Испании (Альмаден).
31) Общая характеристика. К колчеданным относятся месторождения, в рудах которых преобладают сульфиды железа - пирит (около 90% руд), пирротин, в меньших количествах присутствуют марказит, халькопирит, борнит, сфалерит, галенит, блеклые руды. Нерудные минералы, количество которых невелико, представлены баритом, кварцем, карбонатами и хлоритом. Характерной особенностью является приуроченность месторождений к поясам вулканогенно-осадочных пород. Типичные формы рудных тел - линзы, жило- и пластообразные залежи и штоки, вкрапленные и прожилковые зоны. По текстурным особенностям различают массивные, слоистые и прожилково-вкрапленные руды. Колчеданные залежи сопровождаются ореолами измененных вмещающих вулканогенных пород, превращенных в пиритизированные кварц-серицитовые, кварц-серицит-хлоритовые и другие метасоматиты.
Колчеданные месторождения образуются в океанических трогах с субмаринным базальтоидным вулканизмом, островодужных обстановках с дифференцированным риолит-базальтовым и риолит-андезит-базальтовым вулканизмом. Характерна их связь с малыми субвулканическими интрузиями основного и кислого состава. Месторождения контролируются локальными вулканическими структурами, которые являются элементами более крупных вулканических построек. Протяженность рудных залежей - до первых километров при мощности десятки метров, иногда до 100 м. Глубина распространения - многие сотни метров (до 2 км).
32) Генетические особенности колчеданных месторождений - обобщенная модель рудообразования. Колчеданные месторождения относятся к полигенным образованиям, которые формировались длительно - в два-три этапа, расчленяющихся на стадии минералообразования. Генезис этих месторождений - комплексный: вулканогенно-гидротермальный и вулканогенно-осадочный. Обобщенная модель колчеданообразования может быть рассмотрена на примере Гайского медно-колчеданного месторождения, приуроченного к стратовулкану, который сложен лавами, лавобрекчиями и вулканическими туфами базальтового и риолит-дацитового состава. Жерло вулкана выполнено несколькими поколениями некков, экструзивов и субвулканических тел кислого состава. Над жерловиной находится кратерно-кальдарная депрессия с базальтовыми лавами, туфами. В верхней части месторождения находится «Стержневая линза», представленная богатыми цинко-медно-колчеданными рудами и выполняющая вулканическую кальдеру. Ниже её распространены прожилково-вкрапленные халькопирит-пиритовые бедные руды.
Образование руд связано с деятельностью вулканогенных растворов, которые поднимались по ослабленным зонам вулканической постройки - жерлу вулкана, синвулканическим трещинам. По пути следования этих рудоносных растворов откладывались прожилковые и вкрапленные руды в виде крутопадающих зон. Если растворы просачивались в горизонты пород, хорошо проницаемых и легко поддающихся метасоматическим замещениям (например, туфы кислого состава), образовывались метасоматические пластообразные колчеданные залежи. Их генезис вулканогенно-гидротермальный - вулканогенно-метасоматический. Если горячие рудоносные растворы прорывались на дно океана, при их встрече с холодной морской водой происходило массовое осаждение минералов в виде вулканогенно-осадочных залежей пластовой, линзовидной формы. Это самые богатые массивные руды месторождения.
Вулканогенно-осадочные руды при высоте столба воды 200 м и температуре эксгаляций 215С отлагались при температуре не более 200С. Согласно В.Смирнову, вулканогенно-метасоматическое рудообразование в подстилающих породах для различных колчеданных месторождений характеризуется более высокими температурам и большим их диапазоном: высокотемпературные 450С и выше, среднетемпературные, наиболее распространенные, с начальной температурой 300С и низкотемпературные - менее 200С. рудный позднемагматический месторождение грейзеновый
33) Типы колчеданных месторождений. По составу руд, связям с различными вулканическими формациями, геодинамическим обстановкам колчеданные месторождения могут быть представлены следующими основными типами: серноколчеданным (кипрский тип), медно-колчеданным (уральский тип), колчеданно-полиметаллическим (алтайский тип или тип Куроко).
Серноколчеданные месторождения сложены пиритовыми рудами с небольшой примесью кварца. Пирит служит источником для получения серной кислоты. Образуются в спрединговых обстановках, пространственно и генетически связаны с недифференцированным базальтоидным вулканизмом. Месторождения этого типа известны на Кипре, Урале (Карабашское), в Испании, Японии.
Медно-колчеданные месторождения пространственно и генетически связаны с контрастными риолит-базальтовыми формациями и образуются в субдукционных обстановках. Руды представлены преобладающими сульфидами железа (пиритом, мельниковитом, марказитом) и халькопиритом; второстепенные рудные минералы - сфалерит, пирротин, блеклые руды, галенит и др. По химическому составу руды являются комплексными и могут содержать в промышленно извлекаемых количествах свинец, цинк, серу, селен, теллур, золото, серебро, кадмий, индий, таллий, галлий. Месторождения данного типа распространены на Урале (Сибай, Гай, Учалы, Блявинское), Кавказе (Уруп, Кафан).
Колчеданно-полиметаллические месторождения пространственно и генетически связаны непрерывными вулканогенными формациями - риолит-андезит-базальтовыми. Главными рудными минералами являются пирит, сфалерит, галенит, реже халькопирит, среди жильных минералов преобладают кварц, барит. Месторождения данного типа развиты на Рудном Алтае (Риддер-Сокольное, Зыряновское, Тишинское), в Прибайкалье (Холодненское), Забайкалье (Озерное), в Казахстане (Жайрем, Текели), в Грузии (Маднеули), в Японии (Куроко), в Испании (Рио-Тинто).
35) Общая характеристика. Кора выветривания - это самостоятельная континентальная геологическая формация, возникающая под воздействием атмосферных и биогенных агентов на коренные породы, выведенные на дневную поверхность, и представленная продуктами механического, химического и биохимического разрушения этих пород. Кора выветривания служит мощным источником минеральной массы для всех экзогенных месторождений.
Месторождения выветривания приурочены к корам выветривания (хемогенному элювию и представляют собой гипсометрически несмещенные продукты глубокого химического преобразования пород в зоне гипергенеза.
Формирование месторождений выветривания обусловлено перегруппировкой минеральной массы глубинных пород, химически неустойчивых в термодинамических условиях приповерхностной части земной коры. Кора выветривания распространяется вглубь Земли до уровня грунтовых вод (обычно 60 - 100 м от поверхности и редко до 200 м). Для образования месторождений, связанных с химическим выветриванием необходимо сочетание целого ряда факторов - климата, рельефа, состава пород субстрата и др., а также действия необходимых агентов выветривания.
36) . Агенты выветривания. К основным агентам выветривания относятся вода, кислород, углекислота, организмы, аминокислоты, колебания температуры.
При разложении коренных пород в коре выветривания важную роль играют реакции окисления, гидратации, гидролиза и частично, диализа. Химическое выветривание чаще всего начинается с окисления. Окисление происходит по-разному в различных геологических обстановках и климатических условиях. Обычно этому процессу подвержены соединения железа, магния, никеля, кобальта, т. е. металлов, сравнительно легко вступающих во взаимодействие с кислородом. В то же время алюмосиликаты и силикаты (наиболее развитые породообразующие минералы) при воздействии на них поверхностных растворов, богатых кислородом, разлагаются. При этом слагающие их компоненты - щелочные металлы и даже кремнезем переходят в раствор. При разложении легче удаляются неметаллические элементы, тогда как металлы часто накапливаются в коре. К энергично выносимым относятся хлор, бром и сера, к легко выносимым - кальций, натрий, калий и фтор, к подвижным кремнезем фосфор, марганец, кобальт, никель и медь, а к инертным - железо, алюминий и титан.
37) В зависимости от способа накопления вещества полезного ископаемого, месторождения выветривания делятся на остаточные и инфильтрационные.
Остаточные месторождения формируются вследствие растворения и выноса грунтовыми водами минеральной массы горных пород, не имеющей ценности, и накопления в остатке вещества полезного ископаемого. Форма тел - плащеобразная. Пример - месторождения каолина (Глуховецкое на Украине), бокситов (Боке в Гвинее), гарниерит-нантронитовые месторождения силикатных никелевых (с кобальтом) руд (Кимперсайское, Халиловское, Верхнеуфалейское на Южном Урале), на Кубе и др.
38) В зависимости от способа накопления вещества полезного ископаемого, месторождения выветривания делятся на остаточные и инфильтрационные.
Инфильтрационные месторождения возникают при растворении грунтовыми водами ценных компонентов, их фильтрации и переотложении вещества в нижней части коры выветривания. Так возникает ряд месторождений полезных ископаемых: железа, марганца, меди, урана, ванадия, радия, фосфоритов, гипса, боратов, магнезита, исландского шпата.
Наиболее важное промышленное значение имеют инфильтрационные месторождения урана. Они возникают в связи с деятельностью подземных вод глубокой циркуляции. Источником урана являются горные породы, содержащие повышенные концентрации этого элемента, входящего в состав акцессорных минералов. В результате их разложения при процессах выветривания уран переходит в растворы и переносится грунтовыми водами в виде соединений уранила. Выделение урана из растворов в вилле настурана и урановых черней обусловлено действием различных восстановителей - углистого вещества, битумоидов, сероводорода и др.
40) Важнейшие характеристики россыпных месторождений. Месторождения россыпей возникают благодаря концентрации ценных компонентов среди обломочных отложений в процессе разрушения и переотложения вещества горных пород и ранее существовавших месторождений полезных ископаемых, претерпевших физическое и химическое выветривание. По различным классификациям россыпные месторождения выделяют в виде самостоятельной группы или включают в осадочную группу как механический класс.
По условиям образования среди россыпных месторождений выделяют элювиальные, делювиальные, пролювиальные, аллювиальные (или речные), литоральные (или прибрежные), гляциальные и эоловые.
Механизм формирования россыпей заключается: в сортировке обломочного материала (по крупности, плотности и форме частиц), в истирании и окатывании обломков, в дифференциации материала (по степени механической прочности и химической устойчивости) и в процессе транспортировки.
По времени образования россыпи могут быть современными и древними (ископаемыми), по условиям залегания они делятся на открытые и погребенные, по форме среди них различают плащеобразные, пластовые, линзовидные, лентовидные и гнездовые. Размеры россыпей колеблются в широких пределах. Косовые и русловые россыпи верховьев рек имеют протяженность до 10-15 км. Долинные россыпи протягиваются на сотни километров.
Россыпи концентрируют только те минералы, для которых характерны высокая плотность, химическая устойчивость в зоне окисления, физическая прочность. Это золото, платина, киноварь, колумбит, танталит, вольфрамит, касситерит, шеелит, монацит, магнетит, магнетит, ильменит, циркон, корунд, рутил, гранат, топаз, алмаз.
41) Генетические типы россыпей. Элювиальные россыпи возникают на месте залегания коренных пород, контуры их примерно совпадают. Россыпи могут быть необогащенными, если представляют собой развалы вещества полезного ископаемого, и обогащенными, если «пустые» породы частично вымыты водами плоскостного стока.
Делювиальные россыпи формируются при сортировке обломочного материала в процессе его плоскостного смыва. Строение россыпи зависит от угла склона, мощности делювия, параметров обломков (формы, размеров, плотности), климатических, гидрогеологических и инженерно-геологических факторов. Длина россыпей достигает десятки - первые сотни метров. Максимальное содержание ценных минералов - в вершинах россыпей.
Пролювиальные россыпи редки. Они развиваются за счет смывания обломочного материала со склонов временными потоками. Обломки слабо окатаны и плохо сортированы с уменьшением их крупности на периферии конусов выноса.
Аллювиальные россыпи образуются за счет дифференциации и отложения перемещаемых донных осадков. Накопление материала происходит в них только в определенные моменты при оптимальном режиме перемещений аллювия по дну реки, которое зависит от соотношения скоростей течения реки в разных её частях и фракционного состава аллювия. Аллювиальные россыпи делятся по месту их расположения на косовые, русловые, долинные, террасовые и дельтовые. В поперечном разрезе россыпей различают плотик, пески (или пласт), торфа (песчано-глинистые осадки) и почвенный слой (отсутствует в русловых россыпях). Плотик бывает коренной, сложенный коренными породами дна речной долины, и ложный, подстилающий верхние залежи сложных россыпей, и представленный обычно глиной. Пески (пласт) состоят из валунно-галечных образований, содержащих в качестве связующего материала песчаную и глинистую фракции, и концентрирующих основную массу тяжелых минеральных частиц. Торфа представляют собой песчано-глинистые осадки, обедненные тяжелыми минералами. Граница между торфами и песками постепенная.
Аллювиальные россыпи могут размещаться в непосредственной близости от коренных источников. Они протягиваются вдоль реки на различное расстояние - в зависимости от гидрогеологического режима, богатства коренного источника, глубины его эрозионного среза и поведения сростков зерен ценного минерала в речном потоке. Распределение минералов в россыпи обычно неравномерное - линзами, струями и др.
Прибрежные россыпи формируются под влиянием приливов и отливов, волн и береговых течений. Абразионные и аккумулятивные берега неблагоприятны для образования прибрежных россыпей. Оптимальные условия - у стабильных по степени развития профиля равновесия берегов, вдоль которых происходит непрерывное возвратно-поступательное перемещение обломочных масс, их измельчение, сортировка и переотложение. Прибрежные россыпи локализуются в пляжной зоне, при этом тяжелые минералы накапливаются в верхней части отложений, подверженных постоянному перемыву морскими волнами. Прибрежные морские и океанические россыпи располагаются узкой полосой между линиями прилива и отлива или в зоне прибоя в закрытых бассейнах. Для них характерны хорошо отсортированные равномернозернистые скопления ценных минералов с высоким их содержанием. Протяженность россыпей значительна, а мощность не превышает 1 м. Обычно такие россыпи залегают в самой верхней части песчаных отложений или перекрыты маломощным (до 1 м) слоем песка.
Рудные формации россыпей. Россыпные месторождения являются важным источником ряда полезных ископаемых. Они дают около половины мировой добычи алмазов, титана, вольфрама и олова, 10-20% добычи золота и платины. Немалое значение имеют россыпи в добыче тантала, ниобия, монацита, магнетита, граната, горного хрусталя.
42) Золотоносные (аллювиальные) - в России это долины рек Алдана, Колыма, Бодайбо (Восточная Сибирь) а также Австралия (Калгурли), США (Аляска, Калифорния), Бразилия, Южная Африка.
Платиноносные (элювиальные и аллювиальные) - Россия (Урал, Кондерское месторождение на южном Алдане), Заир, Зимбабве, Эфиопия, США (Аляска), Колумбия.
Алмазоносные (все генетические типы россыпей) - Якутия, Урал, Индия, ЮАР, Намибия, Ангола, Танзания, Заир, Австралия, Венесуэла.
Касситерит-вольфрамитовые (делювиальные и аллювиальные) - Северо-восток России (Иультин, Пыркакай), Якутия (Депутатское), Забайкаль (Шерловогорское), Казахстан (Богуты), Китай, Индонезия, Бирма, Конго, Австралия, США (Атолия в Калифорнии), Бразилия.
Монацитовые и цирконовые (литоральные) - Индия, Шри-Ланка, Австралия, Бразилия.
Колумбит-танталовые - Россия, Конго, Заир, Бразилия.
Магнетит-ильменитовые (литоральные) - Западная и Восточная Сибирь, Средняя Азия, Индия, Австралия, США, Бразилия.
43) Общая характеристика осадочных месторождений, классификация. Осадочные месторождения возникают в процессе осадконакопления на дне водоёмов. По месту образования они различаются на речные, болотные, озерные и морские. Процесс формирования осадочных толщ и связанных с ними полезных ископаемых протекает в три стадии - седиментогенез, диагенез и катагенез.
Тела полезных ископаемых осадочных месторождений имеют сингенетичный характер, залегают согласно с вмещающими породами, так как сами первоначально представляют собой осадки. Они обычно занимают строго определенную стратиграфическую позицию и имеют форму пластов, плоских линз. Но вследствие последующих деформаций могут приобретать более сложные очертания.
Среди осадочных месторождений известны современные, но более распространены древние полезные ископаемые, которые формировались во все периоды геологической истории от докембрия до кайнозоя. Размеры осадочных образований, особенно морских, как правило, большие. Отдельные пласты могут протягиваться на десятки километров и более. Мощность различна - от 0, 5 м для угольных пластов Донбасса до 500 м (соли Соликамска).
Осадочные месторождения имеют огромное промышленное значение, так как к ним относятся крупнейшие месторождения строительных материалов, солей, фосфоритов, карбонатного сырья, руд железа, марганца алюминия, цветных, радиоактивных, редких и благородных металлов (меди, урана, ванадия, серебра и др.). К ним принадлежат все месторождения горючих ископаемых - угля, нефти, газа.
Группа осадочных месторождений разделяется на четыре класса: механических, химических, биохимических и вулканогенных образований. Вулканогенно-осадочные образования были рассмотрены ранее на примере колчеданных месторождений
44) Механогенные месторождения. Механогенные месторождения представлены месторождениями гравия, песка, глины.
Среди гравийных месторождений различаются образования временных горных потоков и конусов выноса, отложения рек, отложения ледников, прибрежные морские и озерные.
Месторождения песка подразделяются по условиям образования на элювиальные, делювиальные, пролювиальные, аллювиальные, флювиогляциальные, озерные, морские и океанические, эоловые. Наибольшее промышленное значение имеют аллювиальные, морские и озерные пески.
Месторождения глин по условиям образования различаются на месторождения кор выветривания, делювиальные, аллювиальные, озерные, морские, ледниковые, лессовые. Главные глинообразующие минералы: каолинит, галлуазит, монтмориллонит, пирофиллит, аллофан и гидрослюды. Наиболее распространены четвертичные и третичные глины, но известны мезозойские и палеозойские месторождения.
45) Хемогенные месторождения. Хемогенные месторождения включают месторождения солей и рассолов, образованные из истинных растворов, месторождения железа, марганца, алюминия, образованные из коллоидных растворов. Рудные формации хемогенных осадочных месторождений (гипс-ангидрит-галитовая, галит-карналлитовая с солями магния, содовая, рассолы с бором, йодом, бромом, щелочными и щелочноземельными металлами, бурых железняков, псиломелан-пиролюзитовая с родохрозитом, железомарганцевых конкреций, бокситовая, хемогенных известняков и доломитов).
Месторождения солей - галогенные или эвапоритовые состоят из хлоридов и сульфатов натрия, калия, магния и кальция с примесью бромидов, йодидов, боратов. По условиям образования выделяются:
Природные рассолы современных соляных бассейнов,
Соляные подземные воды,
Ископаемые или древние залежи солей.
Большинство геологов полагают, что ископаемые соляные месторождения формировались в обстановках аридного климата в процессе испарения относительно изолированных лагун и палеоморей. Примером являются крупные соляные месторождения в Предуралье, в Донбассе, Прикаспии.
Осадочные месторождения железа, марганца, алюминия формируются из суспензий и коллоидных растворов на дне рек, озер, морских водоемов в сходных геологических условиях. Источником материала для их формирования являются продукты континентальной коры выветривания или подводные эксгаляции вулканогенного происхождения. Отложение соединений всех трех металлов происходит в прибрежной зоне озер, морей, главным образом под воздействием электролитов, растворенных в водах этих водоемов, каогулирующих коллоиды металлических соединений и переводящих их в осадок. В ходе дифференциации соединений металлов с разной геохимической подвижностью вначале, ближе к берегу накапливаются бокситы, в верхней части шельфа - железные руды, а еще дальше, в нижней части шельфа - марганцевые руды. Дифференциация минеральной массы происходит в пределах области формирования отдельных месторождений. Это проявляется в изменении минерального состава руд по направлению от берега в глубь водоёма. Например, для железных руд в этом направлении намечается переход от оксидов (гематит, гётит, гидрогётит) к карбонатам (сидерит) и затем к силикатам железа (хлорит типа шамозита и тюрингита).
Примером являются Керченское месторождение железа (Украина), Никопольское (Украина) и Чиатурское (Грузия) месторождения марганца, месторождения бокситов Северо-Уральского бокситоносного района (СУБР), Тихвинского района, месторождения марганца и железа на дне современных океанов (железо-марганцевые конкреции).
46) Биохимические месторождения, общая характеристика. Образование биохимических осадков, включающих полезные ископаемые, обусловлено способностью некоторых животных и растительных организмов концентрировать при жизнедеятельности большие количества тех или иных химических элементов. В некоторых морских организмах содержания определенных элементов во много раз превышает кларковое. Например, фтора, бора, калия, серы в организмах может быть выше кларковой в десятки раз, брома, стронция, железа, мышьяка, серебра - в сотни раз, кремния, и фосфора - в тысячи раз, а цинка и марганца - в сотни тысяч раз. Кроме того организмы накапливают редкие и рассеянные элементы. Например, в золе углей, по сравнению с литосферой, содержание германия выше в 70-120 раз, бериллия в 30-150 раз, кобальта в 30 раз, скандия в 10-20 раз, молибдена в 13 раз.
Биохимическое осадочное происхождение имеют месторождения известняков, доломитов, мергелей, диатомитов, фосфоритов, урана, ванадия, серы, а также твердых, жидких и газообразных каустобиолитов.
Главными типами биохимических осадочных месторождений являются фосфоритовый, горючих полезных ископаемых, карбонатных и кремнистых пород.
47) Общая характеристика. Образуются при метаморфизме - т. е разнообразных эндогенных процессах, с которыми связаны изменения в структуре, минеральном и химическом составе горных пород, отличающиеся от их первоначального образования.
Месторождения делятся на метаморфизованные и метаморфические.
Метаморфизованные месторождения подверглись изменению одновременно с окружающими их породами в такой степени, что метаморфические признаки в форме, строении и составе тел полезных ископаемых оказываются доминирующими.
Метаморфические месторождения возникли вновь в процессе метаморфизма в связи с перегруппировкой минерального вещества метаморфизуемых пород.
Метаморфические процессы могут быть региональными и локальными. К локальным разновидностям относятся автометаморфизм, контактовый метаморфизм массивов изверженных пород, а также динамометаморфизм вдоль тектонических зон (сдвигов, надвигов). Региональный метаморфизм развивается вследствие совокупного воздействия статической и динамической нагрузок горных пород, в обстановке повышающегося давления, температуры и воздействия различных минерализаторов, особенно воды. В крайних формах он переходит в ультраметаморфизм, обуславливающий выборочное или полное переплавление изменяющихся пород.
Метаморфизм может быть прогрессивным и регрессивным. Региональный метаморфизм, вызванный повышением температуры и давления, называется прямым, или прогрессивным, способствующем реакциям с выделением воды, углекислоты из минералов. Метаморфизм, связанный со сменой высокотемпературных минеральных ассоциаций низкотемпературными, способствующий обратному поглощению воды и углекислоты, называется обратным или регрессивным.
Метаморфизм разделяется также на изохимический и аллохимический. Изохимический (без привноса новых минералообразующих веществ) характерен для прогрессивной стадии. Аллохимический (с привносом новых веществ и изменением химического состава метаморфизующихся пород) наиболее характерен для регрессивной стадии метаморфизма.
Вследствие метаморфизма меняется и форма тел полезных ископаемых, образуются метаморфические текстуры и структуры.
Форма тел полезных ископаемых - сплющенная, пластообразная, ленто-, линзо-, жилообразные залежи сплошных руд.
Текстура вещества метаморфизованных месторождений полосчатая, плойчатая, сланцеватая. Структура - гранобластовая, листоватая, пластинчатая.
Минеральный состав метаморфизованных месторождений отличается переходом гидрооксидов в оксиды (лимонит-гематит, магнетит; псиломелан- браунит, опал - кварц фосфорит-апатит, уголь - графит).
Для минеральных ассоциаций метаморфогенных месторождений характерны минеральные парагенезисы соответствующей фации метаморфизма.
Геологический возраст. Метаморфогенные месторождения локального метаморфизма могут иметь различный возраст. Среди месторождений, связанных с региональным метаморфизмом, резко преобладают древние образования - докембрийские (архейские, протерозойские), раннепалеозойские.
48) Региональный метаморфизм развивается вследствие совокупного воздействия статической и динамической нагрузок горных пород, в обстановке повышающегося давления, температуры и воздействия различных минерализаторов, особенно воды. В крайних формах он переходит в ультраметаморфизм, обуславливающий выборочное или полное переплавление изменяющихся пород. Примеры: Железорудные, марганцевые, золото-урановые, апатитовые, колчеданные
49) Метаморфические месторождения - месторождения флогопита на Алданском щите, кианитовые и силлиманитовые месторождения на Кольском полуострове, в Карелии, графита на Украине и др.
Примером динамометаморфических месторождений являются: Кокчетавское месторождение алмазов, месторождение золота Бакрчик (Казахстан).
К импактитовым месторождениям, возможно, относятся алмазы некоторых месторождений Архангельской провинции.
Размещено на Allbest.ru
...Подобные документы
Определение понятие "полезные ископаемые" и их генетическая классификация. Магматогенные, магматические, пегматитовые, постмагматические и гидротермальные месторождения. Экзогенные (выветривания) и осадочные месторождения. Горючие полезные ископаемые.
реферат [33,6 K], добавлен 03.12.2010Характеристика и типы россыпных месторождений. Формы магматической деятельности. История геологического развития района. Полезные ископаемые района реки Нижняя Борзя. Генезис россыпного Нижнеборзинского месторождения. Исследования флюидных включений.
дипломная работа [5,0 M], добавлен 07.04.2012Осадочные и вулканогенно-осадочные месторождения. Вулканогенные и осадочные компоненты полезных ископаемых. Размещение колчеданных месторождений на Урале. Волковское медно-титаномагнетитовое месторождение. Процесс формирования осадочных бентонитов.
контрольная работа [64,1 K], добавлен 06.05.2013Оценка месторождения. Горно-геологическая и экономическая характеристика рудного месторождения. Расчет себестоимости конечной продукции горного производства. Расчет экономического ущерба от потерь и разубоживания руды при разработке месторождения.
курсовая работа [59,4 K], добавлен 14.08.2008Особенности геологического строения Северного Кавказа, полезные ископаемые и крупные месторождения нефти и газа. Перспективы развития и увеличения добычи. Описание учебной геологической карты: стратиграфия и тектоника, виды разломов, магматические породы.
курсовая работа [2,7 M], добавлен 08.06.2013Проектируемые работы по поиску и оценке месторождений рудного золота на Албынской рудоперспективной площади. Физико-географический очерк, магматизм, стратиграфия, тектоника и полезные ископаемые. Характеристика основных видов работ на месторождении.
курсовая работа [56,4 K], добавлен 14.12.2010Полезные ископаемые как фактор экономического состояния территории. Классификация и сравнительная характеристика полезных ископаемых на территории Еврейской Автономной Области, их геологическое развитие, история освоения, разведка, использование и добыча.
курсовая работа [32,4 K], добавлен 11.05.2009Состав, условия залегания и размещение месторождений в Ленинградской обл. Промышленное значение бокситов (в районе города Бокситогорска). Горючие сланцы и фосфориты, их применение. Добыча тонкоплитчатого известняка: производство мерных и фасонных изделия.
творческая работа [1004,2 K], добавлен 12.04.2009Изучение закономерностей образования и геологических условий формирования и размещения полезных ископаемых. Характеристика генетических типов месторождений полезных ископаемых: магматические, карбонатитовые, пегматитовые, альбитит-грейзеновые, скарновые.
курс лекций [850,2 K], добавлен 01.06.2010Анализ состояния, геологическое строение и характеристика месторождений горючих полезных ископаемых Беларуси, их экономическое использование. Оценка особенностей месторождений, перспективы развития минерально-сырьевой базы энергетической промышленности.
курсовая работа [4,3 M], добавлен 20.05.2012Задачи геолого-экономической оценки месторождения. Факторы, определяющие эффективность инвестиций в освоении месторождения. Показатели, характеризующие природную ценность. Расчет внутренней нормы доходности предприятия. Кондиции на полезные ископаемые.
контрольная работа [136,9 K], добавлен 04.10.2013Месторождения природных ископаемых Республики Тува. Каменный уголь, железные руды, цветные, легирующие и драгоценные металлы. Неметаллические полезные ископаемые. Ресурсы сырья для производства строительных материалов. Традиционное искусство "Чонар-Даш".
отчет по практике [7,4 M], добавлен 03.10.2013Отложения каменноугольной системы и нефтяные месторождения на территории Республики Беларусь. Суммарные запасы калийных солей и нерудных полезных ископаемых страны. Мощность полезных пластов железных руд. Характеристика месторождений минеральных вод.
реферат [34,4 K], добавлен 24.03.2013Месторождения неметаллических полезных ископаемых в Приднестровье. Содержание, химический состав, глубина залегания сырья. Запасы подземных пресных и минеральных вод в республике. Разработка месторождений песчано-гравийных пород и пильного известняка.
реферат [27,9 K], добавлен 12.06.2011Теоретические основы проектирования и разработки газовых месторождений. Характеристика геологического строения месторождения "Шхунное", свойства и состав пластовых газа и воды. Применение численных методов в теории разработки газовых месторождений.
дипломная работа [4,8 M], добавлен 25.01.2014Географо-экономическая и геологическая характеристика Дербинской флюоритоносной зоны. Полезные ископаемые района. Геологическое строение проявления лиственное: структура и вещественный состав руды. Подсчет ожидаемых запасов флюорита по рудному телу.
курсовая работа [61,7 K], добавлен 28.11.2011Нефтегазодобывающий комплекс. Состояние сырьевой базы и развитие угледобывающего производства Красноярского края. Металлические полезные ископаемые: черные, цветные, редкие и редкоземельные металлы. Золото. Неметаллические полезные ископаемые.
реферат [31,4 K], добавлен 05.02.2008История геологического развития месторождения "Биркачан". Орография, гидрография, климат, тектоника и геоморфология. Твёрдые полезные ископаемые. Распределение рудных тел внутри рудоносной структуры. Описание полевых и камеральных геологических работ.
отчет по практике [1,8 M], добавлен 07.02.2015Выбор и характеристика системы разработки месторождения. Определение высоты этажа и эксплуатационных запасов рудной массы в блоке. Подготовка основного (откаточного) горизонта. Вскрытие шахтного поля. Экономическая оценка проектирования рудника.
курсовая работа [396,0 K], добавлен 11.04.2012Свойства асбеста. Области применения. Промышленно-генетические типы месторождений: молодежное месторождение хризотил-асбеста, месторождения амозита и крокидолита ЮАР, Бугетысайское месторождение антофиллит-асбеста в Казахстане. Мировой рынок.
реферат [355,8 K], добавлен 27.11.2007