Введение в дистанционное зондирование
Физические основы дистанционного зондирования и аэрокосмических съемок. Наблюдение поверхности Земли авиационными и космическими средствами, оснащенными различными видами съемочной аппаратуры. Практические основы передачи и цифровой обработки изображений.
Рубрика | Геология, гидрология и геодезия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 12.11.2018 |
Размер файла | 6,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение в дистанционное зондирование
Введение
Дистанционное зондирование Земли -- наблюдение поверхности Земли авиационными и космическими средствами, оснащенными различными видами съемочной аппаратуры. Рабочий диапазон излучения, регистрируемый съёмочной аппаратурой, составляет от долей микрометра (видимое оптическое излучение) до метров (радиоволны).
Методы зондирования могут быть пассивные, то есть использовать естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной активностью, и активные -- использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия. Данные ДЗЗ, полученные с космических аппаратов (КА), характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на КА используется многоканальное оборудование пассивного и активного типов, регистрирующие электромагнитное излучение в различных диапазонах.
Космические аппараты дистанционного зондирования Земли используются для изучения природных ресурсов Земли и решения задач метеорологии. КА для исследования природных ресурсов оснащаются в основном оптической или радиолокационной аппаратурой. Преимущества последней заключаются в том, что она позволяет наблюдать поверхность Земли в любое время суток независимо от состояния атмосферы.
1. Предмет «Дистанционное зондирование» (ДЗ)
Дистанционное зондирование - получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние. Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта и его биогеофизическими характеристиками и пространственным положением.
В современном облике дистанционного зондирования выделяются два взаимосвязанных направления - естественно-научное (дистанционные исследования) и инженерно-техническое (дистанционные методы), что нашло отражение в широко распространенных англоязычных терминах remote sensing и remote sensing techniques. Понимание сущности дистанционного зондирования неоднозначно. Аэрокосмическая школа Московского университета им. М.В.Ломоносова в качестве предмета дистанционного зондирования как научной дисциплины рассматривает пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном или отраженном излучении, дистанционно регистрируемом из космоса или с воздуха в виде двумерного изображения - снимка. Эта существенная часть дистанционного зондирования названа аэрокосмическим зондированием (АКЗ), что подчеркивает его преемственность от традиционных аэрометодов. Метод аэрокосмического зондирования основан на использовании информации со снимков, которые, как свидетельствует практика, предоставляют большие возможности для комплексного изучения земной поверхности.
Во всех странах основным стимулом развития аэрокосмического зондирования служат запросы военных ведомств. С внедрением космических методов и современных цифровых технологий аэрокосмическое зондирование приобретает все более важное экономическое значение и становится обязательным элементом высшего образования в природоведческих вузах, превращается в мощное средство изучения Земли от локальных исследований отдельных компонентов до глобального изучения планеты в целом. Поэтому при изложении различных аспектов аэрокосмического зондирования целесообразно рассматривать его как метод исследований, результативно применяемый во всех науках о Земле, в том числе в экологии и природопользовании и аэроэкологическом мониторинге.
Аэрокосмические снимки применяются во всех направлениях изучения Земли. Они важны в исследованиях литосферы, показывая раздробленность геологического фундамента линейными разломами и кольцевыми структурами, облегчают поиски месторождений полезных ископаемых; в исследованиях атмосферы, где снимки дали основу метеорологических прогнозов; благодаря снимкам из космоса открыта вихревая структура океана, зафиксировано состояние растительного покрова Земли на рубеже веков и его изменения в последние десятилетия. Космические снимки применяются при социально-экономических исследованиях. Различаются и типы задач, решаемых по снимкам в разных предметных областях. Так, решение инвентаризационных задач реализуется при изучении природных ресурсов, например при картографировании почв, растительности, поскольку снимки наиболее полно отображают сложную пространственную структуру почвенно-растительного покрова. Оценочные задачи, оперативная оценка состояния экосистем выполняются в рамках исследований биопродуктивности океанов, ледового покрова морей, контроля за пожароопасной ситуацией в лесах. Прогностические задачи, использование снимков для моделирования и прогнозирования наиболее развито в метеорологии, где их анализ является основой прогнозов погоды, в гидрологии -- для прогноза талого стока рек, паводков и наводнений. Начинаются исследования по прогнозированию сейсмической активности, землетрясений на основе анализа состояния литосферы и верхней атмосферы.
При работе со снимками используются все виды их обработки, но наиболее широко развито дешифрирование снимков, прежде всего визуальное, которое теперь подкрепляется возможностями компьютерных улучшающих преобразований и классификации изучаемых объектов по снимкам. Большое развитие получило создание по снимкам различных производных изображений на основе спектральных индексов.
Переход к цифровым методам съемки, развитие цифровой стереоскопической съемки и создание цифровых фотограмметрических систем расширили возможности фотограмметрической обработки космических снимков, используемой при оперативной оценке состояния экосистем, исследований биопродуктивности океанов, ледового покрова морей, контроля за пожароопасной ситуацией в лесах и для создания и обновления топографических карт.
Хотя одно из основных достоинств космических снимков заключается в совместном отображении всех компонентов земной оболочки, обеспечивающем комплексность исследований, тем не менее применение снимков в различных областях изучения Земли шло пока разрозненно, так как везде требовалась углубленная разработка собственных методик. Идея комплексных исследований наиболее полно реализована при выполнении в нашей стране программы комплексной картографической инвентаризации природных ресурсов, когда по снимкам создавались серии взаимоувязанных и взаимосогласованных карт. Осознание на рубеже веков экологических проблем, нависших над человечеством, и парадигма изучения Земли как системы вновь активизировали комплексные межотраслевые исследования.
Анализ применения снимков в разных направлениях исследований четко показывает, что при всем многообразии решаемых задач магистральный путь практического использования аэрокосмических снимков лежит через карту, которая имеет самостоятельное значение и, кроме того, несомненно будет служит базовой основой геоинформационных систем.
1.1 История развития методов дистанционного зондирования и современное состояние аэрокосмического зондирования
Дистанционные методы применяются в исследованиях Земли очень давно. В начале использовались рисованные снимки, которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науку о Земле мощным средством исследований - аэрометодами.
Понятие дистанционного зондирования появилось в XIX веке вслед за изобретением фотографии, а одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, дистанционное зондирование начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Во время Гражданской войны в США фотоснимки, полученные с помощью неуправляемых летательных аппаратов, служили для наблюдения за перемещением войск, подвозом припасов, ходом фортификационных работ и для оценки эффекта артиллерийских обстрелов. В результате исследований, которые финансировались различными государствами, были разработаны технологии, позволившие создать сенсоры сначала для военных целей, а затем и для гражданского применения этого метода.
Советские спутники ДЗЗ
Первый советский спутник наблюдения "Зенит-2" был создан в ОКБ-1. С 1965 по 1982 год на базе спутника "Зенит-2" в ЦСКБ - Прогресс было создано семь модификаций спутников наблюдения. В 1969 году на базе спутника "Зенит" в интересах народного хозяйства в ЦСКБ - Прогресс был создан спутник "Зенит-2НХ", в 1975 году - "Фрам". В 1977 году на базе спутников "Зенит-2НХ" и "Фрам" началась разработка космической подсистемы дистанционного зондирования Земли "Ресурс-Ф".
Фонд космических съемок в настоящее время обширный и включает материалы, полученные съемочными системами разных типов - сканерными (многозональными, панхроматическими), радиолокационными (на разных длинах воли, при разной поляризации сигнала) и фотографическими (черно-белыми, цветными, спектрозональными и многозональными) в разных участках электромагнитного спектра (табл. 1.1), с разным пространственным (от 0,4 м до нескольких километров) и радиометрическим разрешением (8,11,12,16 бит/пиксел).
Таблица 1.1 Участки спектра электромагнитных колебаний, в которых ведется съемка
Участок спектра |
Интервал длин волн |
Регистрируемое излучение |
|
Видимый |
0,40-0,69 мкм |
Отраженное солнечное излучение |
|
Ближний инфракрасный |
0,70-1,3 мкм |
||
Средний инфракрасный |
1,4-3,0 мкм |
||
Тепловой инфракрасный |
3,0-1000 мкм |
Тепловое излучение земной поверхности |
|
Радио |
1мм десятки метров |
Излучение земной поверхности Искусственное излучение (радиолокация) |
В настоящее время съемку Земли из космоса ведут более 50 оптико-электронных и радарных космических аппаратов, принадлежащих двум десяткам стран, в том числе спутники новейшего поколения. По сравнению с архивными материалами параметры съемочных данных существенно изменились.
Во-первых, достижения в области волоконной оптики сделали возможным значительное улучшение пространственного разрешения оптико-электронных съемочных систем, что повлекло за собой широкое распространение материалов метрового и субметрового разрешения в видимом и ближнем ИК участках спектра. Сейчас на рынке широко распространены снимки с пространственным разрешением 0,4-2,5 м в панхроматическом варианте и l,5_4 м -- в многозональном, а в ближайшие годы появятся съемочные системы с разрешением 0,25 м. При этом неизбежно малый угол захвата компенсируется наклоном камеры.
Во-вторых, изменилось спектральное разрешение: вместо 3-4 каналов современные многозональные системы ведут съемку в 8, 14, 36 каналах, а современные спектрометры выполняют гиперспектральную съемку в 200 и более каналах.
В-третьих, произошло увеличение радиометрического разрешения: весь интервал яркостей при съемке разбивается не на 256 ступеней (8 бит/пиксел), а, например, на 2048 (11бит/пиксел), что существенно повышает качество снимков, особенно панхроматических, т.е. черно-белых. Тенденция последних лет - обеспечение съемки в стереорежиме, которую реализуют разными способами: с разных витков, с одного витка двумя съемочными системами или изменением наклона одной, с двух спутников в тандеме, снимающих почти синхронно. Наиболее полный список, позволяющий получить сравнительную характеристику основных параметров действующих в настоящее время систем получения данных о земной поверхности из космоса, приведен на сайте http://www.scanex.ru/ ru/da ta/comparsion.asp.
Снимки с пространственным разрешением 10 и менее метров распространяются по достаточно высоким ценам, по данным 2010 г. в среднем примерно 15-30 у.е. за1 км2, при минимальной площади заказа 25 км2. Геопорталы (Google Earth, Yandex, Космоснимки и другие) не так давно появившиеся, но получившие исключительно широкую известность, обеспечивают пользователей космической информацией с разрешением 0,6-30 м, обновляемой не реже, чем через 2-3 года. Технологии геопорталов получают распространение при отображении оперативной информации, особенно мониторинга пожароопасности: например, портал Минприроды и экологии РФ по оперативному выявлению возгораний на ООПТ федерального значения России (http://fires.rfimnr.ru/api/index.html), пожарный сервис, организованный фирмой СканЭкс (SFMS http://www.scanex.ru/ru/news/ News-Preview.asp?id=n23810191), пожарный сервис Иркутского центра приема оперативной информации (FIRMS http://msk.eostation.ru/ index.html и http://eostation.irk.ru/) и др. Геопорталы используются и поставщиками данных дистанционного зондирования в качестве пространственной основы для поиска и заказа космической информации, например Космоснимки (htt://kosmosnimki.ru), портал СканЭкс, (http://geoportal.ntsomz.ru/), геопортал Роскосмоса.
В последние годы оригинальные снимки (включающие все съемочные каналы) высокого (15-30м) Landsat, ASTER и др., а также низкого разрешения с пространственной привязкой по орбитальным данным стали доступны через Интернет - http://earthexplorer.usgs.gov (или более новый портал обращения к той же базе, использующий технологию Java - http://glovis.usgs.gov, откуда доступны также снимки радиометра ASTER). Если после Второй мировой войны метод дистанционного зондирования использовался для наблюдения за окружающей средой и оценки развития территорий, то в 60-х годах XX века, с появлением космических ракет и спутников, дистанционное зондирование вышло в космос. Новая эра дистанционного зондирования связана с пилотируемыми космическими полетами, разведывательными, метеорологическими и ресурсными спутниками. Возможности ДЗ в военной области значительно возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON и LANYARD, целью которых было получение фотоснимков с низких орбит. Вскоре были получены стереопары снимков с разрешением 2 метра. Первые спутники работали на орбите от семи до восьми дней, но уже следующие поколения этих аппаратов были способны поставлять данные в течение нескольких месяцев. В результате осуществления программ пилотируемых полетов, которые были начаты в США в 1961 году, человек впервые высадился на поверхность Луны (1969 г.). Следует отметить программу Mercury, в рамках которой были получены снимки Земли, систематический сбор данных дистанционного зондирования во время проекта Gemini (1965-1966 гг.), программу Apollo (1968-1975 гг.), в ходе которой велось дистанционное зондирование земной поверхности (ДЗЗ) и состоялась высадка человека на Луну, запуск космической станции Skylab (1973-1974 гг.), на которой проводились исследования земных ресурсов, полеты космических кораблей многоразового использования, которые начались в 1981 году, а также получение многозональных снимков с разрешением 100 метров в видимом и близком инфракрасном диапазоне с использованием девяти спектральных каналов. Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач.
В Советском Союзе, а затем в России космические программы развивались параллельно космическим программам США. Полет Юрия Гагарина 12 апреля 1961 года, ставший первым полетом человека в космос, запуски космических кораблей «Восток» (1961-1963 гг.), «Восход» (1964-1965 гг.) и «Союз», работа на орбите космических станций «Салют» (впервые 19 апреля 1971 года). Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 {Television and Infrared Observation Satellite). Первый специализированный спутник был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat. Они предназначены для регулярной многозональной съемки территорий со средним разрешением. Позже, в 1978 году, был запущен первый спутник со сканирующей системой SEASAT, но он передавал данные всего три месяца.
Первый французский спутник серии SPOT, с помощью которого можно было получать стереопары снимков, был выведен на орбиту в 1985 году.
Запуск первого индийского спутника дистанционного зондирования, названного IRS (Indian Remote Sensing), состоялся в 1988 году. Япония также вывела на орбиту свои спутники JERS и MOS. Начиная с 1975 года, Китай периодически запускал собственные спутники, но полученные ими данные до сих пор находятся в закрытом доступе. Европейский космический консорциум вывел на орбиту свои радарные спутники ERS в 1991 и 1995 годах, а Канада - спутник RADARSAT в 1995 году.
История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней. В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования. Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения. Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками. Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования. Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).
1.2 Физические основы аэрокосмических съемок
В обобщенном виде принципиальная схема выполнения аэрокосмических исследований включает основные технологические этапы: получение снимка объекта исследования и дальнейшую работу со снимками - их дешифрирование и фотограмметрическую обработку, а также конечную цель исследований - составленную по снимкам карту, геоинформационную систему, разработанный прогноз. Поскольку получить необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно, необходимо их эталонирование. Важным элементом исследований по снимкам является также оценка достоверности и точности полученных результатов. Для этого приходится привлекать другую информацию и обрабатывать ее иными методами, что требует дополнительных трат.
Рис. 1.1 Принципиальная схема аэрокосмических исследований
Дистанционное зондирование можно рассматривать как составную часть информационной системы. Во многих областях данные ДЗ являются ключевым компонентом в процессе принятия решений. Основные этапы дистанционного зондирования на примере простой замкнутой схемы без обратных связей представлена на Рис. 1.2.
Рис. 1.2 Основные этапы дистанционного зондирования
Начальная точка, которая одновременно является и конечной точкой всего процесса, - информационные запросы групп специалистов. По существу, потребитель, а точнее, его нужды -- это самое главное звено любой системы управления информацией. На схеме представлены различные дисциплины, связанные с Землей и ее ресурсами. Глобус на заднем плане символизирует глобальный масштаб такой системы. Информационные запросы логически связаны с требованиями заказчиков и потребителей продукции к материалам ДЗ. Оптимальный способ использования данных наблюдения поверхности Земли со спутников заключается в том, чтобы анализировать их совместно с информацией из других источников, -- в этом случае они становятся необходимой составляющей процесса принятия решений и моделирования в любой предметной области. Еще один важный принцип дистанционного зондирования -- многокомпонентность -- реализуется в виде различных методов съемки и анализа данных.
В настоящее время абсолютное большинство снимков, используемых для картографирования и изучения природных ресурсов, составляют изображения в видимом и ближнем инфракрасном диапазонах спектра электромагнитных колебаний. На них зафиксирована отраженная земной поверхностью солнечная радиация. Аэро- и космические съемки Земли разделяют на пассивные и активные. При пассивной съемке информацию получают двумя способами:
- путем регистрации отраженного от объекта солнечного светового потока; - измерением радиационного потока, излучаемого самим объектом (собственное излучение), обусловленное солнечной радиацией. При активной съемке поверхность исследуемого объекта облучается с борта аэро- или космического летательного аппарата с помощью искусственного облучателя (лазера -- оптического генератора, радиогенератора), а отраженное излучение регистрируют соответствующие бортовые приемные устройства.
Солнечное излучение, достигая Земли, частично отражается ее поверхностью, а частично поглощается, превращается в тепловую энергию и составляет собственное излучение Земли. Отраженная и излучаемая Землей радиация имеет волновую и корпускулярную природу и представляет спектр электромагнитных колебаний. Часть спектра от 0,4 до 0,7 мкм воспринимается человеческим зрением и называется видимой областью спектра.
Рис.1.3 Прозрачность атмосферы (для спектра электромагнитного излучения)
Но среди света, отражаемого поверхностью Земли, присутствуют лучи с длинами волн короче 0,4 мкм, названные ультрафиолетовыми, и от 0,7 мкм до 3 мкм -- ближними инфракрасными (ИК).
Более длинноволновая часть спектра, где преобладает собственное излучение Земли, делится на инфракрасный тепловой- и радиодиапазоны. Инфракрасный тепловой диапазон с длинами волн от 3 до 1000 мкм -- это излучение земной поверхности в виде тепла, накопленного в результате превращения световой энергии в тепловую. Большая часть этого излучения поглощается атмосферой. Радиодиапазон включает длины волн больше 1 мм. В этом диапазоне можно регистрировать не только собственное излучение Земли, но и излучение, создаваемое искусственным источником.
Стереосъемка. Получение снимков с перекрытием из нескольких последовательных точек орбиты позволяет получить более точное представление о трехмерных объектах и повысить отношение сигнал/шум. Многозональная съемка. Использование многозональных снимков основано на уникальности тоновых характеристик различных объектов. Объединение яркостных данных из снимков в различных спектральных диапазонах позволяет безошибочно выделять определенные пространственные структуры. Съемку с использованием большого числа (более 10) узких съемочных зон называют гиперспектральной.
Многозональный снимок представлен серией зональных изображений, которые различаются в соответствии с особенностями спектральной яркости объектов съемки. При использовании большого числа (до нескольких сотен) узких спектральных зон такую съемку называют гиперспектральной, а снимок - гиперспектральным. При гиперспектральной съемке увеличивается возможность выделения объектов, характеризующихся наличием полос поглощения, что характерно, например, для загрязнений. Многозональная и гиперпектральная съемки позволяют более эффективно использовать различия в спектральной яркости объектов съемки для их дешифрирования. К этому виду снимков можно отнести также радиолокационные снимки, получаемые как при регистрации отраженных радиоволн разной длины, так и при разной их поляризации. При работе с многозональными снимками применяется ряд приемов. Наиболее универсальный - синтезирование цветного изображения при целенаправленном выборе набора зон и их окрашивании для выделения интересующих исследователя объектов. Работа с серией зональных снимков основывается на учете различий в спектральной яркости исследуемых объектов в используемых спектральных зонах, например, яркости растительности в красной и ближней инфракрасной зонах. Это реализуется сопоставлением зональных изображений при визуальном дешифрировании (приемы сопоставительного дешифрирования) и классификацией объектов по спектральным признакам при компьютерном дешифрировании. Работа с очень большим числом съемочных зон гиперспектральных снимков, затруднена, поэтому по ним создаются так называемые индексные изображения на основе расчета специально выбранных спектральных индексов, способствующих выделению определенного типа объектов (вегетационные индексы для дешифрирования свойств растительности, индекс влажности почв, заснеженности территории, концентрации фитопланктона и др.).
Многовременная съемка. Плановая съемка в заранее определенные даты позволяет выполнять сравнительный анализ снимков тех объектов, характеристики которых изменяются во времени.
Многоуровневая съемка. Съемку с различными уровнями дискретизации используют для получения все более подробной информации об изучаемой территории. Как правило, весь процесс сбора данных подразделяют на три уровня: космическая съемка, аэросъемка и наземные исследования.
Многополяризационная съемка. Снимки, полученные этим методом, используют для проведения границ между объектами на основе различий в поляризационных свойствах отраженного излучения. Так, например, отраженное излучение от водной поверхности обычно более сильно поляризовано, чем отраженное излучение от растительного покрова.
Комбинированный метод. Заключается в использовании многовременной, многозональной и многополяризационной съемки.
Междисциплинарный анализ. Обработку и дешифрирование данных выполняют несколько человек, специализирующихся в разных предметных областях. Это позволяет получить более полную и достоверную информацию о состоянии природных ресурсов. Результаты такого анализа обычно представляют в виде набора тематических карт. Подавляющее большинство данных дистанционного зондирования имеет географическую привязку. Поскольку такие данные изучают, как правило, во взаимосвязи друг с другом, для каждодневной работы и принятия решений необходимо иметь эффективное средство манипулирования данными. Таким автоматизированным средством является географическая информационная система -- инструмент единого подхода к управлению и обработке пространственной информации, включая и материалы дистанционного зондирования. Аэрокосмическую съемку ведут в окнах прозрачности атмосферы (Рис.1.4), используя излучение в разных спектральных диапазонах - световом (видимом, ближнем и среднем инфракрасном), тепловом инфракрасном и радиодиапазоне.
Рис.1.4 Окна прозрачности атмосферы
В каждом из диапазонов применяют разные технологии получения изображения и в зависимости от этого выделяются несколько типов снимков (Рис.1.5).
Рис.1.5 Классификация космических снимков по спектральным диапазонам и технологиям получения изображения
Снимки в световом диапазоне делятся на фотографические и сканерные, которые в свою очередь подразделяются на полученные оптико-механическим сканированием (ОМ-сканерные) и оптико-электронным с использованием линейных приемников излучения на основе приборов с зарядовой связью (ПЗС-сканерные). На таких снимках отображаются оптические характеристики объектов - их яркость, спектральная яркость. Применяя многозональный принцип съемки, получают в этом диапазоне многозональные снимки, а при большом числе съемочных зон - гиперспектральные, использование которых основано на спектральной отражательной способности объектов съемки, их спектральной яркости. Проводя съемку с использованием приемников теплового излучения (тепловую съемку), получают тепловые инфракрасные снимки. Съемку в радиодиапазоне ведут, применяя как пассивные, так и активные методы, и в зависимости от этого снимки делятся на микроволновые радиометрические, получаемые при регистрации собственного излучения исследуемых объектов, и радиолокационные снимки, получаемые при регистрации отраженного радиоизлучения, посылаемого с носителя - радиолокационной съемке. Фотосъемка Отличительной чертой космической съемки (КС) является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне. Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности. В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм). Для съемки земной поверхности с ПКК используются фотографирующие системы следующих марок: КАТЭ-140, МКФ-6, ФМС и др. Фотографическая камера МКФ-6М имеет шесть спектральных каналов, работающих в следующих зонах спектра (мкм): 0,45- 0,50; 0,52-0,56; 0,58-0,62; 0,64-0,68; 0,70-0,74; 0,78-0,86. Изображение отличается высоким разрешением и может быть увеличено в несколько раз без потери информативности. Масштаб снимков, снятых с высоты 265 км, немногим мельче 1:2 000 000. Зональные снимки 1-4 каналов выдерживают увеличение до 60 раз и в таком увеличенном виде вполне пригодны для целей геологического дешифрирования. Снимки, полученные по пятому и шестому каналам, выдерживают увеличение только 10Х. Отметим, что фотографическая съемка - в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18Х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно. Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС. Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат. Сканерная съемка В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного, назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин "сканирование" обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение - упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму. Технические характеристики сканирующих устройств. Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы. Хорошо зарекомендовал себя сканер нового поколения, названный "тематическим картографом", которым были оснащены американские ИСЗ "Лэндсат-4 и -5". Сканер типа "тематический картограф" работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения, число пикселей на снимках достигает более 36 млн. на каждом из каналов. Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации - сканирующие радиометры - и излучения - сканирующие спектрометры. Радиолокационная съемка Радиолокационная съемка обеспечивает получение изображений земной поверхности и объектов, расположенных на ней, независимо от погодных условий, в дневное и ночное время благодаря принципу активной радиолокации: отправление зондирующих сигналов излучающей антенной и прием отраженных сигналов с последующим преобразованием их в изображения или извлечением информации о разности фаз посланного и отраженного сигнала.
Технология радиолокации была разработана еще в 30-х гг. прошлого века для военных целей. Основной задачей радиолокации тогда было обнаружение цели, определение ее местоположения, скорости и направления перемещения. Эта задача многократно успешно решалась в ходе второй мировой войны. Однако сразу после войны, в январе 1946 г. был получен отраженный радиосигнал от Луны, показавший не только военную, но и научную ценность радиолокации. Применение радиолокаторов для изучения поверхности Земли началось еще в 1960-е гг., при размещении их на самолетах для зондирования территорий, находящихся сбоку от направления полета. Они известны под названием радиолокаторов бокового обзора. С их помощью впервые было выполнено картографирование территорий бассейна Амазонки, постоянно скрытых облачностью. Радиолокационная съемка Земли ведется в нескольких участках диапазона длин волн (1 см - 1 м) или частот (40 ГГц - 300 МГц). Характер изображения местности на радиолокационном снимке зависит от соотношения между длиной волны и размерами неровностей местности: поверхность может быть в разной степени шероховатой или гладкой, что проявляется в интенсивности обратного сигнала и, соответственно, яркости соответствующего участка на снимке. На протяжении нескольких десятилетий исследования Земли по радиолокационным снимкам велись преимущественно на основе учета амплитуды отраженного сигнала, несущего информацию о свойствах поверхности. Наибольшее распространение получило применение радиолокационной информации для целей картографирования, особенно территорий, преимущественно закрытых облачностью. В этой области снимки в радиодиапазоне, как правило, уступают снимкам в видимом диапазоне по качеству изображения, зато существенно превосходят их по возможностям получения данных при любых погодных условиях и периодичности повторения при необходимости.
В последнее время все более широкое распространение получает радиолокационная интерферометрия - метод обработки данных радиолокации, основанный на выделении разности фаз сигналов, отраженных разными участками местности. Он позволяет вычислить путь, пройденный радиоволнами до поверхности Земли и, соответственно, получить высокоточную информацию как об абсолютных высотах местности, так и о смещениях поверхности, обусловленных разными факторами. Интерферометрия предполагает совместную обработку не менее двух результатов съемки одного и того же участка земной поверхности, зафиксированных антенной при повторных наблюдениях (двухпроходная интерферометрия), или двумя антеннами, одновременно принимающими сигнал от одной точки под разными углами (однопроходная интерферометрия). Интерферометрические данные наиболее современных спутников Cosmo - Skymed и TerraSAR - X при режимах съемки с пространственным разрешением 1 м пригодны для создания и обновления топографических карт.
Тепловые съемки Инфракрасная (ИК), или тепловая съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм): ближний (0,74-1,35), средний (1,35-3,50), дальний (3,50-1000). Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. В первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой. В других окнах прозрачности работают измерительные приборы - тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными - с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т. п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические - как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности. В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т. п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.
Космическая съемка. Понятие космической фотосъемки и ее особенности
На рубеже XX века в нашей стране, наряду с государственными программами выполнения космических съемок, появились коммерческие космические программы. Первый коммерческий спутник был запущен российской ракетой-носителем с космодрома на Дальнем Востоке в январе 1997 г. Образовался рынок фотографических и цифровых изображений. Потребитель в соответствии с решаемой задачей, из публикаций или по Интернету выбирает из предлагаемых каталогов наиболее приемлемые для него материалы съемок. На околоземных орбитах находятся несколько десятков космических летательных аппаратов с различными съемочными системами на борту. Получаемая при этом разноплановая информация -- изображения или результаты измерений определенных характеристик объектов на поверхности Земли или атмосферы -- передается на пункты приема тех стран или коммерческих структур, по заказу которых осуществляют данную съемку. Космические летательные аппараты отличаются параметрами полета, а съемочные системы имеют различные характеристики. Наземные комплексы приема и первичной обработки космической информации находятся в различных городах страны.
Основные отличительные особенности получения космических снимков:
· большая скорость и сложность траектории движения КЛА относительно земной поверхности;
· значительная высота съемки (высота полета КЛА), исчисляемая сотнями и тысячами километров над земной поверхностью;
· влияние всего слоя атмосферы на геометрическое и энергетическое искажение отраженного или собственного излучения объектами земной поверхности, поступающего на вход съемочных систем.
· изображение на одном снимке территории площадью в несколько тысяч квадратных километров. При этом на геометрии построения плоского изображения сказывается кривизна Земли. Точки земной сферической поверхности проецируются по законам центральной проекции на плоскость, в которой находится фотопленка. За счет этого на краях снимка масштаб изображения мельче по сравнению с его центральной частью.
Условия получения космических снимков
Условия получения космических снимков существенно влияют на их геометрические и изобразительные свойства. Это, в свою очередь, определяет методологию и технологию фотограмметрической обработки снимков и интерпретацию изображений.
Космическую съемку поверхности Земли проводят с пилотируемых космических аппаратов, орбитальных станций и беспилотных искусственных спутников Земли. Съемку могут выполнять космонавты в так называемом ручном режиме или автоматически по заданной программе.
Движется КЛА по сложной траектории, называемой орбитой. При съемке поверхности Земли используют:
- эллиптические,
- параболические
- гиперболические орбиты
- круговые.
При движении КЛА по эллиптической орбите Земля находится в одном из фокусов эллипса. Точка орбиты, расположенная ближе к центру Земли, называется перицентром (перигеем), а наиболее удаленная -- апоцентром (апогеем).
Параболические или гиперболические орбиты соответствуют траектории движения КЛА по параболе или гиперболе.
Наиболее приемлемыми являются круговые орбиты КЛА. Круговые орбиты представляют собой окружности с центром, совпадающим с центром Земли (рис.1.8.). Радиус таких орбит r определяют как сумму радиуса Земли и высоты полета Н летательного аппарата. Средний масштаб снимков при съемке с круговых орбит практически одинаков. Полосы снимаемой поверхности (полосы обзора), захватываемые с каждого витка летательного аппарата, также примерно одинаковы.
При съемке Земли или иных планет возможны варианты получения изображения:
- при подлете;
- при отлете;
- при прохождении мимо планеты КЛА.
Существенный недостаток съемок с КЛА, находящихся на перечисленных орбитах, -- изменение удаленности съемочной системы от снимаемой поверхности. Пропорционально изменению высоты съемки изменяется масштаб получаемых снимков.
Съемку можно выполнять со спутников Земли, находящихся на геостационарных орбитах. При этом варианте съемки положение спутника относительно поверхности не изменяется, так как его угловая скорость движения равна угловой скорости движения земной поверхности. При съемке с геостационарных спутников получают информацию об одной территории практически в любое время. Результаты съемки можно использовать для мониторинга этой территории с различным временным интервалом.
Плоскость орбиты КЛА пересекает плоскость экватора под некоторым углом i, который называют наклонением орбиты (см. рис.1.6).
Если наклонение орбиты равно 90°, то ее плоскость проходит через полюсы Земли. Такая орбита носит название полярной.
При наклонении равном 0°, плоскость орбиты КЛА совпадает с экватором, поэтому ее называют экваториальной.
Рис.1.6 Круговые орбиты КЛА
Использование полярной и близполярной орбиты обеспечивает выполнение съемки всей поверхности за счет вращения Земли вокруг своей оси. При уменьшении наклонения орбиты сокращается территория, захватываемая съемочной аппаратурой. Периодичность (частота) съемки одной и той же территории в зависимости от параметров полета КЛА может быть от 4 раз в сутки до 5...6 раз в месяц и реже. Регулярная повторяемость съемки позволяет применять получаемые материалы для обновления мелкомасштабных топографических и специальных карт, а также осуществлять мониторинг больших территорий.
От параметров полета зависит время возвращения летательного аппарата в заданную точку. Это связано с тем, что при наклонении орбиты, не равном нулю (i > 0), а также из-за вращения Земли точка пересечения орбиты КЛА с экватором смещается. Если на данном витке КЛА прошел над точкой i экватора, то после оборота вокруг Земли он пройдет уже над точкой 2 экватора, затем над точкой 3 и так далее. Время возврата КЛА в исходную (или заданную) точку над поверхностью Земли в зависимости от параметров полета составляет 1...30сут и более. Положение КЛА, а значит и положение съемочной аппаратуры в пространстве, определяют в географических координатах.
Высота полета КЛА при круговых орбитах находится в пределах от 200 до 1000 км.
В зависимости от фокусного расстояния используемой съемочной системы и высоты полета КЛА снимки получают в масштабе от 100 000 до 10 000 000.
Один из главных факторов, влияющих на качество изображений - огромная скорость движения КЛА, приводящая к фотографическому смазу.
Технические показатели космической съемки
Технические средства получения космических снимков аналогичны фотографическим системам, применяемым при аэрофотосъемке. Существуют топографические фотокамеры и дешифровочные.
Формат космических снимков различен -- от размера 70 х 90 мм до 30 х 30 см и более. Например, снимок, полученный панорамной камерой высокого разрешения КВР-1000, имеет формат 190 х 700 мм. При одинаковых параметрах съемки (f, H, рх, ру) использование снимков с большим форматом имеет преимущества: во-первых, позволяет увеличить площадь захвата на поверхности Земли, во-вторых, при фотограмметрической обработке повышается точность определения высот точек местности.
При съемке с КЛА, движущихся по эллиптическим орбитам, изменяется высота фотографирования. Вследствие этого средние масштабы смежных снимков имеют значительные различия.
В связи с изменением высот фотографирования при постоянной скорости движения КЛА возникает необходимость изменять интервал времени между моментами съемки. Это необходимо для обеспечения постоянного заданного значения продольного перекрытия снимков. Интервал фотографирования меняют с помощью специального автоматического устройства, входящего в комплект космического фотоаппарата (интервалометр).
При космическом фотографировании поперечное перекрытие снимков обеспечивается тремя приемами:
1) за счет вращения Земли: при этом снимки, получаемые с последующего витка, перекрываются со снимками предыдущего витка (виток аналогичен маршруту при аэрофотосъемке). Если съемка выполняется при движении КЛА по полярной или близполярной орбите, поперечное перекрытие снимков будет непостоянным. Вблизи экватора перекрытие будет минимальным, в районе полюсов -- максимальным. Чтобы поперечное перекрытие находилось в заданных пределах, необходимо согласование скорости обращения КЛА со скоростью вращения Земли.
2) перекрытие снимаемой полосы осуществляется поперечным наклоном (креном) летательного аппарата. Угол крена должен обеспечить заданное поперечное перекрытие снимков.
3) системы «вперед» по направлению полета -- предыдущий снимок и «назад» -- последующий снимок. Продольное перекрытие снимков обеспечивается разворотом КЛА, при котором выполняется наклон главной оптической оси съемочной системы (Рис1.7).
Рис.1.7 Схема съемки с разворотом КЛА
При съемке с круговых орбит фотосъемку выполняют таким образом, чтобы оптическая ось фотокамеры была направлена по направлению нормали к поверхности Земли. Это частный случай конвергентной съемки. При этом взаимный угол, образованный оптическими осями двух смежных снимков стереопары, не превышает нескольких градусов.
Космические съемочные системы
Наиболее известные и используемые в мире данные получают с зарубежных космических аппаратов NOAA, LANDSAT, SPOT, IRS, RADARSAT, ERS (табл.1).
Высокие изобразительные и метрические качества имеют фотографические снимки, полученные с отечественного спутника «Комета» камерами специального назначения КВР-1000 и топографической ТК-350. Среди российских пользователей для изучения природных ресурсов используют снимки со спутников типа «Метеор», «Ресурс-Ф», «Ресурс-О, «Океан», съемочные системы «Фрагмент», МСУ-Э, МСУ-СК (табл.2). Съемка с периодически запускаемых на орбиты спутников позволила создать архивы изображений на различные районы земной поверхности, что дает возможность осуществлять мониторинг территорий и отдельных объектов и явлений.
Серия спутников LANDSAT (США) функционирует с начала семидесятых годов XX века. Съемку проводят с высоты орбиты 900 км. На спутниках используются многозональные съемочные системы типа MSS с линейным разрешением на местности 55 х 80 м.
...Подобные документы
Проведение исследований гидрографических объектов. Требования к аппаратуре дистанционного зондирования Земли при проведении геоэкологических исследований нефтегазового комплекса. Характеристика съемочной аппаратуры, установленной на космических аппаратах.
курсовая работа [760,1 K], добавлен 15.03.2016Мониторинг объектов населенных пунктов: сущность и задачи, информационное обеспечение. Современные системы дистанционного зондирования: авиационные, космические, наземные. Применение аэро- и космических съемок при мониторинге объектов населенного пункта.
дипломная работа [5,1 M], добавлен 15.02.2017Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.
презентация [1,3 M], добавлен 19.02.2011Особенности дешифрования данных дистанционного зондирования для целей структурно-геоморфологического анализа. Генетические типы зон нефтегазонакопления и их дешифрирование. Схема структурно-геоморфологического дешифрирования Иловлинского месторождения.
реферат [19,0 K], добавлен 24.04.2012Преимущества методов дистанционного зондирования Земли из космоса. Виды съемок, методы обработки снимков. Виды эрозионных процессов и их проявление на космических изображениях. Мониторинг процессов фильтрации и подтопления от промышленных отстойников.
курсовая работа [8,4 M], добавлен 07.05.2015Основные цели и задачи аэрокосмических съемок в геодезии и исследовании природных ресурсов Земли. Фотопленки и объективы, применяемые в аэрофотосъёмке. Технология обработки результатов съемки камерой. Космическая фотосъемка, спутниковые изображения.
реферат [4,4 M], добавлен 15.12.2014Прикладные задачи, решаемые с помощью методов и средств дистанционного зондирования. Расчет параметров съемки в целях землеустройства и земельного кадастра. Основные требования к точности результатов дешифрирования при создании базовых карт земель.
контрольная работа [433,7 K], добавлен 21.08.2015Задачи, решаемые с помощью аэрокосмических снимков в целях городского кадастра. Состояние и перспективы развития аэрокосмических съемочных систем. Создание с помощью глобальных спутниковых навигационных систем позиционирования координатной основы.
дипломная работа [936,9 K], добавлен 15.02.2017Методы изучения океанов и морей из космоса. Необходимость дистанционного зондирования: спутники и датчики. Характеристики океана, исследуемые из космоса: температура и соленость; морские течения; рельеф дна; биопродуктивность. Архивы спутниковых данных.
курсовая работа [2,6 M], добавлен 06.06.2014Дешифровочные признаки основных геологических и геоморфологических элементов. Прямые дешифровочные признаки. Контрастно-аналоговый метод по сопоставлению с эталонными снимками и показателями и сопоставлению и сравнению объектов в пределах одного снимка.
реферат [279,9 K], добавлен 23.12.2013Виды топографических съемок: мензульная, теодолитная, нивелирование. Математическая обработка данных нивелирования поверхности по квадратам. Решение инженерных задач по топографическому плану. Построение графика заложения и линии с заданным уклоном.
курсовая работа [4,7 M], добавлен 24.10.2013Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.
презентация [2,2 M], добавлен 19.02.2011Методы топографических съемок. Теодолит Т-30 и работа с ним. Горизонтирование теодолита. Мензуальная съемка. Нивелирование поверхности. Тахеометрическая съемка. Решение инженерных задач на плане. Сравнительный анализ методов топографической съемки.
курсовая работа [45,8 K], добавлен 26.11.2008Характеристика универсальной аппаратуры серии ЭРА и аппаратуры аудиомагнитотеллурического зондирования АКФ для проведения электроразведочных работ. Электроразведка методом переходных процессов. Геофизические исследования методами ГМТЗ, МТЗ и АМТЗ.
реферат [303,6 K], добавлен 29.05.2012Параметры теплового поля и поля силы тяжести. Ведомости о происхождении магнитного поля Земли; его главные элементы. Особенности применения магниторазведки для картирования, поисков и разведки полезных ископаемых. Сущность электромагнитных зондирований.
курсовая работа [657,4 K], добавлен 14.04.2013Использование метода линейной фильтрации для расчета кривых электрических зондирований. Таблицы с параметрами линейных фильтров. Листинг программы: расчет кажущегося сопротивления от разноса, считывание параметров мощности слоев, присвоение значений.
курсовая работа [417,1 K], добавлен 11.12.2012Принципы изопараметричности зондов ВИКИЗ. Основные геолого-геофизические задачи, решаемые методом. Общие ограничения электромагнитных методов каротажа. Пространственная компоновка элементов зондового устройства. Структурная схема скважинного прибора.
курсовая работа [2,4 M], добавлен 29.01.2014Виды дальномеров, применяемых в тахеометрах. Лазерный дальномер: физические основы измерений и принцип действия, особенности конструкции и применение. Физические основы измерений и принцип действия оптического дальномера, измерение нитяным дальномером.
доклад [431,1 K], добавлен 02.04.2012Предмет физики Земли. Геофизические поля. Методы исследований, предназначенные для наблюдений в атмосфере, на земной поверхности, в скважинах и шахтах. Потенциал и напряжённость поля. Магнитная восприимчивость. Скорость распространения упругих волн.
презентация [4,6 M], добавлен 30.10.2013Измерение параметров гравитационного поля в воздухе, на земной поверхности, акваториях морей и океанов. Планетарные особенности Земли. Выделение аномальных составляющих гравитационного поля и их геологическая интерпретация. Проведение полевых наблюдений.
презентация [514,7 K], добавлен 30.10.2013