Кристаллография и минералогия

Подкласс слоевых силикатов, их структурные особенности, кристалломорфология, физические свойства, генезис и экономическое значение. Группа минералов, представляющих собой водные алюмосиликаты. Свойства и особенности слоистых силикатов и алюмосиликатов.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 23.01.2019
Размер файла 362,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Индивидуальное домашнее задание на тему

«Кристаллография и минералогия»

М.Ж. Жумахан

Федеральное государственное автономное

образовательное учреждение высшего образования

«Национальный исследовательский

Томский политехнический университет»

1. Подкласс слоевых силикатов, их структурные особенности, кристалломорфология, физические свойства, генезис и экономическое значение. Группа талька

Подкласс слоистых силикатов охватывает большое число минералов, в том числе широко распространенные породообразующие минералы.

В кристаллической решетке минералов этого подкласса кремнекислородные тетраэдры образуют плоские сетки или слои, параллельные основанию кристаллов. Подобная слоистая структура обусловливает возникновение в кристаллической решетке ослабленных направлений и связанной с этим совершенной и весьма совершенной спайности минералов.

Большинство слоистых силикатов имеют уплощенную (таблитчатую, пластинчатую) форму кристаллов, прозрачны или полупрозрачны в тонких пластинках, обладают стеклянным, реже жирным, восковым, шелковистым или перламутровым блеском и невысокой твердостью. Все слоистые силикаты и алюмосиликаты богаты летучими компонентами -- водой, фтором и др.

Слоистые (листовые) силикаты. К подклассу слоистых (листовых) силикатов и алюмосиликатов относятся известные всем вещества - тальк, слюды, глинистые минералы и др. Многие из них являются породообразующими минералами или используются в промышленности.

Различают листовые силикаты (алюмосиликаты) с простыми и сложными сетками тетраэдров. Последние являются менее распространенными минералами.

Остовом структуры слоистых силикатов являются сетки кремнекислородных тетраэдров. Они располагаются параллельно друг другу и чередуются с плоскими сетками другого состава, образуя пакеты слоёв. Все слоистые силикаты и алюмосиликаты имеют свои структурные разновидности за счет разного смещения (сдвига) и разворота пакетов друг относительно друга, что легко осуществляется в природе из-за малых сил связей между пакетами. В итоге получаются минералы разных сингоний - моноклинной (чаще всего), гексагональной, ромбической, тригональной, триклинной. Такие структурные разновидности слоистых силикатов называют политипами. Некоторые из них устойчивые только при определённых давлениях и температурах и образуются только в определённой химической обстановке. Политипия, как видно, является частным случаем полиморфизма.

Главные группы слоистых силикатов и алюмосиликатов представлены в таблице.

силикат кристалломорфология минерал алюмосиликат

Таблица 1. Главные минералы - слоистые силикаты и алюмосиликаты.

Катионы в тетраэдрах

Межпакетный катион

Внутрипакетный (октаэдрический) катион

Mg2+

Al3+

Si

Нет

-

Серпентин

Тальк

Каолинит

Пирофиллит

Al + Si

(Комплекс)n+

K+

K+

Ca2+

(Комплекс)n+

(Комплекс)n+

Монтмориллонит

Флогопит Мусковит

Литиевые слюды

Хрупкие слюды

Гидрослюды

Хлориты

Требует пояснения монтмориллонит: некоторые минераллы группы монтмориллонита являются силикатами, другие - алюмосиликатами.

Морфология кристаллов и физические свойства слоистых силикатов (алюмосиликатов) с простыми сетками тетраэдров

Крупные хорошо ограненные кристаллы слоистых силикатов и алюмосиликатов очень редки, т. к. у них некомпактная кристаллическая структура и слабые связи между пакетами. Явно распознаваемые кристаллы встречаются у флогопита, биотита, мусковита, хрупких слюд, хлоритов, из них крупные (и даже гигантские) бывают только у мусковита и флогопита (биотита). Они имеют псевдогексагональную симметрию и пластинчатый облик. Реже встречаются бочонковидные кристаллы этих минералов. Истинная сингония в большинстве случаев моноклинная, а их реальные очертания далеки от совершенных.

Цвет зависит от наличия в минерале элементов-хромофоров (железа, хрома, марганца), без хромофоров цвет белый. Таковы химически чистые каолинит, серпентин, тальк, пирофиллит, монтмориллонит, флогопит. В присутствие двухвалентного железа минералы приобретают зеленую окраску разной интенсивности (тальк, серпентин, флогопит, хлорит), небольшая примесь трехвалентного железа придает мусковиту чуть коричневатую окраску. Наличие в минерале одновременно двух- и трехвалентного железа придает буро-коричневую, зелено-черную, черную (как у железистых флогопита, биотита, лепидомелана) окраску. Очень своеобразна роль трехвалентного железа как хромофора, когда он занимает в флогопите позицию алюминия в слоях тетраэдров: минерал становится ярким рыже-коричневым (тетраферрифлогопит, т. е. флогопит с железом в четверной координации)

Примесь хрома изменяет цвет в зависимости от структуры минерала. В мусковите появляется яркая зеленая окраска (фуксит). Хлориты приобретают яркий розово-фиолетовый цвет. Марганец, входя в состав литиевых слюд, вызывает их розово-лиловую окраску.

Блеск разный. На гранях кристаллов из-за их несовершенства он матовый или жирный, на плоскостях спайности - стеклянный, у слюд - с перламутровым отливом. В агрегатах блеск жирный, матовый.

Все слоистые силикаты и алюмосиликаты обладают весьма совершенной спайностью по пинакоиду (т. е. в одном направлении - параллельном пакетам). Спайные пластинки у слюд (мусковита, флогопита, биотита) упругие; отогнутые по спайности они притягиваются назад из-за связей, возбуждаемых в них межпакетными катионами калия. У талька, пирофиллита, в которых межпакетных ионов нет, спайные пластинки крошатся, ломаются, но назад не пригибаются.

Твердость минералов низкая и определяется непрочностью их кристаллических структур. У силикатов (т. е. у минералов без межпакетных ионов) твердость 1-2, из них наиболее мягкие магниевые силикаты, что легко находит объяснение в большом размере и меньшем заряде магния по сравнению с алюминием (так, тальк жирен на ощупь, а пирофиллит - нет). У слюд за счет межпакетного катиона К+твердость составляет 2-3, а у хрупких слюд за счет более сильного межпакетного катиона Са2+илиMg2+твердость повышается до 4.

Образование силикатов в природе. В зависимости от внешних (давление, т-ра) и физ.-хим. условий прир. минералообразо-вания индивидуальные силикаты и горные породы на их основе классифицируют по генезису на: магматич. (изверженные) породы-полевые шпаты, плагиоклазы, нефелин, кварц, темноцветные железомагнезиальные минералы - оливины, пироксены, амфиболы, слюды и др.; метаморфич. породы-гранаты, сланцы, группа силлиманит-андалузит-кианито-вых, берилл-кордиеритовых и др. минералов; осадочные породы-опалы, глинистые минералы, первичные сланцы и др.

Общая характеристика слоевых силикатов. Радикал Si4o10.

К ним относятся тальк, флагопит, биотит, мусковит, пеннин, серпентин, каолинит. Очень редко встречаются кристаллы в крупных и хорошо ограненных формах. Они имеют псевдогексагональный и пластинчатый облик. Реже встречаются бочонковидные и столбчатые кристаллы. В большинстве случаев сингония моноклинная. Цвет зависит от элементов хромофоров, без него цвет белый. Блеск разный. На гранях плоскостей он разный, жирный, матовый, на плоскостях спайности - стеклянный с перламутровым отливом. Весьма совершенная спайность. Мягкие, легкие, гибкие, легко расепляются на пластинки. Твердость низкая 1-3, удельный вес 2,7 - 3,4. образуется магматическим, метаморфическим, контактно - метасоматическим путями, гидротермальный, применяется как поделочный камень, медицина, электротехника.

Группа талька - пирофиллита

Эта группа представлена двумя весьма характерными по физическим свойствам минералами, являющимися, повидимому, крайними членами особого изоморфного ряда.

Как уже было указано во введении к слюдоподобным минералам, кристаллические структуры этих минералов чрезвычайно близки одна к другой. Различие заключается лишь в том, что в структуре талька катионы Mg2+ заполняют все шестикоординационные места между двумя гексагональносетчатыми слоями [Si4O10], а в структуре пирофиллита катионы Аl3+ занимают только две трети этих мест. В реже встречающихся промежуточных по составу разностях (например, в пирофиллите примерно с 30% молекул талька), повидимому, имеет место периодическое внедрение магнезиальных или глиноземистых пакетов в зависимости от общего состава.

В противоположность многим другим группам минералов данного подкласса, изоморфное замещение Mg2+ на Fe2+ и Ni2+, а также Аl3+ на Fe3+ - в ряду тальк-пирофиллит устанавливалось пока в узких пределах. Близость многих физических свойств этих минералов настолько велика, что по внешним признакам часто пирофиллит принимают за тальк и наоборот.

Тальк - Mg3[Si4O10][OH]2, или 3MgO*4SiO22O. Старинное арабское название минерала.

Химический состав. MgO 31,7%, SiO2 63,5%, Н2O 4,8%. Обычно часть MgO бывает замещена FeO (до 2-5%). Кроме того, довольно часто присутствует Аl2O3 (до 2%), изредка в небольших количествах (до десятых долей процента) NiO.

Сингония моноклинная. Очень редко наблюдается в таблитчатых кристаллах гексагонального и ромбического облика, непригодных, однако, для измерения. Агрегаты. Весьма характерны листоватые, чешуйчатые, часто плотные массы, называемые жировиком, стеатитом, мыльным или горшочным камнем.

Цвет талька бледнозеленый (для крупнолистовых масс) или белый с желтоватым, буроватым, зеленоватым, иногда интенсивным оттенком. Тонкие листочки прозрачны или просвечивают. Блескстеклянный с перламутровым отливом. Ng = 1,575-1,590 и Np = 1,538-1,545.

Твердость около 1. Жирен на ощупь. Листочки гибки, но не упруги. Спайность весьма совершенная по {001}. Спайные листочки дают шестилучевую фигуру удара и часто обнаруживают направления спайности, параллельные линиям удара. Вследствие этого нередко раскалывается на ромбические или гексагональные кусочки. Уд. вес 2,7-2,8. Прочие свойства. Плохой проводник тепла и электричества. Огнеупорен. Тальковый камень не плавится до температуры 1300-1400°.

Диагностические признаки. Легко узнается по низкой твердости, жирному ощущению в руках, светлой окраске и совершенной спайности листоватых разностей. Однако от пирофиллита, особенно в тонкокристаллических массах, отличим лишь по химическим реакциям.

П. п. тр. белеет, расщепляется и с трудом оплавляется по краям в белую эмаль. Будучи сильно прокален, приобретает значительную твердость (около 6). В кислотах нерастворим даже при нагревании. С раствором азотнокислого кобальта после прокаливания становится бледнорозовым (отличие от пирофиллита).

Происхождение. Тальк чаще всего встречается как продукт гидротермального изменения богатых магнезией ультраосновных пород. В этих случаях он, как правило, ассоциирует с остаточными зернами хромшпинелидов и с новообразованиями карбонатов магния (брейнеритом, магнезитом), иногда кальция. Очень характерны в качестве новообразований также метакристаллы гематита или магнетита, изредка апатита. Судя по парагенезису минералов, образование талька за счет силикатов магния происходит с помощью гидротерм, содержащих углекислоту, по следующей схеме реакции:

4(Mg,Fe)2SiO4 + Н2O + ЗСO2 > Mg3[Si4O10][ОН]2 + 3MgCO3 + Fe2O3.

оливин тальк магнезит гематит

Присутствие гематита указывает на окислительную обстановку реакции. В восстановительной среде образуются магнетит и брейнерит и сам тальк содержит некоторое количество FeO.

Месторождения талька связаны и с контактово-метасоматическими процессами, образуясь в гидротермальной стадии на границе доломитов с интрузивными породами. В этих случаях он встречается в виде линзообразных тел и отличается чистотой и высокосортностью. Образование его происходит, очевидно, по следующей схеме:

3CaMg[СO3]2 + 4SiO2 + Н2O > Mg3[Si4O10][ОН]2 + ЗСаСO3 + ЗСO2.

доломит тальк кальцит

Известны псевдоморфозы тонкочешуйчатых агрегатов талька по оливину, энстатиту, диопсиду, актинолиту и другим магнийсодержащим минералам.

Практическое значение. Тальк широко используется в промышленности. Он находит применение главным образом в молотом виде (тальковый порошок) и отчасти в форме кускового талька.

Тонкоразмолотый тальк широко используется в бумажной, а также в резиновой промышленности в качестве наполнителя для увеличения объема данного материала без существенного изменения его полезных свойств. Высшие безжелезистые сорта применяются в парфюмерии (при изготовлении пудры, мазей, пасты). В красочной промышленности употребляется для изготовления огнезащитных и светоупорных красок и мягких карандашей для стекла, материй, металла. В текстильной промышленности используются адсорбционные свойства талькового порошка, в связи с чем он применяется для беления хлопка, вывода жирных пятен и других целей. В керамической промышленности тальковый порошок применяется для изготовления высоковольтных электроизоляторов, глазурей, кислото- и щелочеупорных сосудов, водосточных труб и т. д.

Тальковый камень, обычно содержащий примеси других минералов (главным образом карбонатов и хлоритов), применяется в виде кирпичей, плит и пр. Особенно отличаются огнеупорными свойствами тальковые камни, богатые примесью магнезита. Применяются они для футеровки металлургических печей, топок паровозов и др. Наконец, из молотых тальковых камней с помощью флотационного обогащения можно получать чистый тальковый продукт.

Месторождения. Шабровское месторождение талькового камня (в 25 км к югу от г. Свердловска) известно еще с 20-х годов прошлого столетия. Оно образовалось в связи с воздействием на серпентиниты гидротерм, богатых С02, генетически связанных с более молодыми гранитными интрузиями. В результате этого воздействия возникли самые разнообразные по составу породы: талько-хлоритовые, нередко с кристаллами турмалина, иногда магнетита, и зернами эпидота, апатита и других минералов; пироксено-гранато-эпидотовые, образовавшиеся вследствие привноса вместе с летучими компонентами кремнезема; талько-карбонатные с гематитом и магнетитом; талько-хлорито-актинолитовые породы и проч. Крупнопластинчатый тальк встречается в виде прожилков и жил, располагающихся вкрест простирания среди талько-содержащих пород.

Крупные месторождения, связанные с карбонатными породами, известны в Канаде в Мэдокском округе. Линзообразные тальковые залежи состоят из листоватого талька снежно-белого, светлосерого и коричневого цвета с примесью карбонатов (кальцита и доломита), тремолита и других минералов.

Пирофиллит - Al2[Si4O10][ОН]2 или Аl2O3*4SiO22O. "Пирос" - по-гречески - огонь, "филлон" - лист. Название дано вследствие способности этого минерала расщепляться на тонкие листочки перед паяльной трубкой. Впервые, как минеральный вид, был установлен Р. Германом (1829 г.) в Березовском золоторудном месторождении (Урал).

Химический состав. Аl2O3 28,3%, SiO2 66,7%, Н2O 5,0%. Содержание отдельных компонентов колеблется в довольно широких пределах. В виде примесей устанавливаются: MgO(до 9% и, вероятно, выше), FeO (до 5%), Fe2O3, в ничтожных количествах СаО, щелочи и окись титана.

Сингония моноклинная. Кристаллы, пригодные для измерения, не встречаются. Обычно распространен в виде пластинчато-лучистых агрегатов (см. рис. 38) или скрыточешуйчатой плотной породы, носящей название агальматолита или пагодита. "Агальма" по-гречески - статуя, "пагода" - буддийский идол и храм. Из этого камня выделывались фигуры китайских божков.

Цвет пирофиллита белый с желтоватым оттенком или бледнозеленый; нередко полупрозрачный. Блеск стеклянный с перламутровым отливом для пластинчатых агрегатов. Ng = 1,600, Nm = 1,588 и Np = 1,552.

Твердость около 1. Жирный на ощупь. Тонкие листочки гибки, упругостью не обладают. Спайность совершенная по {001}. Уд. вес 2,66 -2,90.

Диагностические признаки. Характерны очень низкая твердость, светлая окраска, перламутровый или мерцающий блеск. От талька без химических анализов или реакции с азотнокислым кобальтом не отличим. Весьма вероятно, что во многих случаях ошибочно принимается за тальк. Известны случаи, когда пирофиллитовые месторождения вначале разведывались как тальковые.

П. п. тр. не плавится. Расщепляется на тончайшие листочки и обращается в снежно-белую массу. При прокаливании в закрытой трубке выделяет воду при высокой температуре и принимает серебристый отлив. В кислотах не разлагается. С раствором Co[NO3]2 после прокаливания принимает синий цвет (присутствие А1).

Происхождение. Встречается в некоторых гидротермальных жильных месторождениях как низкотемпературный минерал в ассоциации с кварцем, карбонатами, гематитом и другими минералами, образовавшимися в результате гидротермального разложения обычно кислых изверженных пород.

Распространен также в некоторых богатых глиноземом метаморфических сланцах, иногда в весьма значительных массах. Образуется, повидимому, за счет богатых бейделлитом или монтмориллонитом осадочных горных пород при значительно повышенных температурах. Известен также в виде псевдоморфоз по андалузиту, дистену, мусковиту и другим силикатам алюминия и алюмосиликатам, образующимся, повидимому, в процессе наложения гидротермальной деятельности.

Практическое значение. В случаях скоплений в виде сплошных, значительных по размерам масс имеет несомненный промышленный интерес. Свойства пирофиллита таковы, что он может быть широко использован в бумажной, керамической, строительной (в качестве огнеупорного камня), электротехнической (для изоляторов), резиновой (в качестве наполнителя) и других отраслях промышленности. Подробнее о применении было сказано выше (см. тальк). В древние времена в Китае плотные разности его, известные под названием "китайского агальматолита", употреблялись для изготовления различных безделушек, статуэток, грифельных карандашей и пр.

Месторождения. Замечательные по бледнозеленой окраске и перламутровому блеску звездчатые (см. рис. 38) и пластинчато-лучистые агрегаты пирофиллита встречаются в кварцевых жилах среди пирофиллито-карбонатных пород в районе между Березовским и Пышминским месторождениями на Урале (близ г. Свердловска). Пирофиллит здесь наблюдается в виде оторочек на стенках жил, выполненных в середине кварцем. В мелколистоватых и плотных массах встречен также около г. Миасса (Ю. Урал).

Крупные месторождения агальматолита известны в Китае. В виде пирофиллитового сланца в значительных массах распространен в штатах Арканзас, Джорджия и С. Каролина (США). В Бразилии, близ Оуро-Прето (Минас-Жерайж), встречен в форме листоватых агрегатов в ассоциации с топазом. Вообще нужно сказать, что пирофиллит пользуется широким распространением.

2. Группа цеолитов

Сюда относят обширную группу минералов, представляющих собой по существу водные алюмосиликаты, главным образом Са и Na, отчасти Ва, Sr, К и крайне редко Mg и Мn. Судя по списку элементов, эта группа в химическом отношении имеет прямое отношение к рассмотренным выше безводным алюмосиликатам.

Несмотря на то что общее число элементов, участвующих в этих соединениях, невелико, мы имеем весьма значительное количество минеральных видов, отличающихся друг от друга не столько по содержанию воды, сколько по соотношениям катионов между собой, часто не укладывающимся в простые химические формулы. Общая химическая формула может быть выражена таким образом: АmХрO2р - n Н2O, где Х = Si, Аl. Каких-либо определенных соотношений между содержанием щелочей и кремнезема в различных минералах не наблюдается.

Многое еще не совсем ясно в наших представлениях о разных типах анионных радикалов, характеризующих минералы рассматриваемой группы. Тем не менее цеолиты обладают целым рядом общих совершенно своеобразных свойств, и не вызывает никакого сомнения то, что они составляют особую группу. Рентгенометрические исследования показывают, что кристаллические решетки их состоят из каркасов алюмо-кремнекислородных тетраэдров, отличающихся от других типов каркасных решеток тем, что полости в них представлены более широкими "каналами". Такая более открытая кристаллическая жесткая основа содержит в себе слабо связанные с ней молекулы воды. При осторожном нагревании вода может быть постепенно удалена без разрушения кристаллической структуры в целом. Замечательно, что удаленная этим путем вода вслед за тем снова может быть поглощена до прежних пределов или заменена молекулами других веществ (сероводорода, этилового спирта, аммиака и пр.), причем кристаллическая среда сохраняет свою однородность; соответственно меняются лишь оптические свойства. Отсюда естественно, что содержание воды в цеолитах является переменной величиной и зависит от внешних условий (температуры и упругости паров воды в окружающей среде). Так называемая цеолитная вода именно тем и отличается от кристаллизационной, что при нагревании она выделяется не скачками при каких-либо определенных температурах, а постепенно.

Другой характерной особенностью, ярко выраженной у большинства цеолитов, является та легкость, с какой происходит обмен между катионами, уравновешивающими отрицательный заряд каркаса кристаллической решетки, и катионами в окружающем водном растворе. Те или иные катионы раствора способны вытеснять катионы, располагающиеся в "пустотах" среди каркаса цеолитов, без нарушения их структуры. Это свойство используется в практике, главным образом при применении искусственно изготовляемых цеолитов в качестве пермутита для смягчения жестких вод.

В противоположность более "закрытым" каркасным структурам полевых шпатов, в которых каждая "пустая" ячейка занята катионами, в решетках цеолитов свободные пространства использованы не полностью. При сопоставлении данных химических анализов в соответствии со структурами выясняется, что, помимо обычно наблюдаемого в полевых шпатах типа замены катионов с сохранением общего заряда, числа ионов и объема (например, NaSi?TCaAl или KSi?BaAl), в цеолитах существует другой тип замены: Са?Nа2, Ва?К2, NaCa2?Na3Ca.

Как видим, в этих случаях общий заряд заменяемых катионов одинаков с зарядом заменяющих примерно равновеликих катионов, однако число ионов различно. Очевидно, кристаллические решетки цеолитов имеют какой-то "запаса пространства для такого рода подстановок.

Минералы группы цеолитов по сравнению с безводными алюмосиликатами характеризуются меньшей твердостью, меньшим удельным весом, меньшими показателями преломления и более легкой разлагаемостью кислотами. Большинство их вспучивается перед паяльной трубкой, чем и обусловлено их название: "цео" по-гречески - вскипать.

Много общего мы находим и в условиях их образования. При эндогенных процессах они возникают в условиях низких давлений в самые последние низкотемпературные стадии гидротермальных процессов, встречаясь в ассоциации большей частью с кальцитом, халцедоном, кварцем, гидраргиллитом и другими минералами. Они встречаются, как правило, в гидротермально измененных магматических породах, часто в пузыристых эффузивах (мандельштейнах), особенно в базальтах (при подводных извержениях), затем в пегматитах, где образуются в числе последних минералов либо в пустотах, либо метасоматическим путем за счет ранее выделившихся минералов (полевых шпатов, нефелина и др.); в ряде гидротермальных рудных месторождений и в некоторых современных отложениях горячих источников.

В экзогенных условиях цеолиты имеют также широкие области распространения. Имеются указания, например, на образование цеолитов в почвах. Как новообразования цеолиты встречаются в осадочных породах молодого возраста.

Шабазит - (Са,Na2)[AlSi2O6]2*6Н2O. Название происходит от слова "хабазиос", которым назывался какой-то камень, воспетый греческим поэтом Орфеем. Синоним: хабазит.

Химический состав непостоянный даже для образцов из одного и того же месторождения. Чаще всего отвечает написанной химической формуле. В небольших количествах содержатся также Ва и Sr.

Рис.1 Кристалл шабазита

Сингония тригональная. Облик кристаллов ромбоэдрический, близкий к кубическому (рис. 1). Двойники прорастания част, нередко с выступающими на гребнях трехгранными углами. Чаще встречается в виде кристаллических друз, корочек, секреций и плотных агрегатов.

Цвет шабазита белый с красноватым или буроватым оттенком. Блеск стеклянный. Ng = 1,480-1,490 и Nm = 1,478-1,485.

Твердость 4-5. Хрупкий. Спайность по ромбоэдру ясная. Уд. вес 2,08-2,16.

Диагностические признаки. Для шабазита характерны ромбоэдрические кристаллы и спайность по ромбоэдру, углы между гранями которого близки к прямым. По этим признакам он отличается почти от всех других цеолитов. Кальцит обладает меньшей твердостью и легко отличим по отношению к НСl.

П. п. тр. вспучивается и с трудом плавится в пузыристую просвечивающую эмаль. В НСl разлагается с выделением иловатого кремнезема.

Месторождения. Чаще всего встречается во многих странах в виде миндалин в округлых пустотах пузыристых базальтов, фонолитов и других эффузивных пород, нередко в ассоциации с филлипситом, кальцитом и другими минералами. В Исландии был встречен в ископаемых раковинах моллюсков. В обилии образуется при устье некоторых горячих источников.

Натролит - Na2[Al2Si3Ol0]*2Н2O. Название натролит дано Клапротом; в переводе оно означает: натровый камень.

Рис. 2. Кристаллическая решетка натролита Проекция части остова на плоскость (100). По вертикали приведены две элементарные ячейки. Срединная цепочка связанных тетраэдров, располагающаяся сзади плоскости чертежа, показана темнее. Крупные шары - молекулы H2O, мелкие - ионы

Химический состав (в %): Nа2O 16,3, Аl2O3 26,8, SiO2 47,4, Н2O 9,5. Изредка присутствуют Fe2O3, а также К2O.

Рис. 3. Кристаллы натролита

Сингония ромбическая: дипирамидальный в. с. Кристаллическая структура. Основным структурным элементом является группа [Al2Si3O10], состоящая из кольца четырех тетраэдров состава [Al2Si2O8] с добавочным тетраэдром SiO4 или чередующимся с ним АlO4 (рис. 2). Эти группы располагаются в виде беспрерывных цепочек вдоль оси с и связываются друг с другом помощью свободных вершин тетраэдров (Si,Al)O4. В целом четыре такие цепочки располагаются вокруг винтовой оси (на рис. 2 не показана лишь цепочка над плоскостью чертежа). Молекулы Н2O образуют зигзагообразную цепочку, параллельную оси с, вокруг каждой двойной винтовой оси. Ионы Nal+ окружены четырьмя ионами О2- и двумя молекулами Н2O. Подобно другим цеолитам, в натролите ионы Na могут заменяться из окружающих растворов другими катионами. Облик кристаллов обычно столбчатый. Кристаллы простые, образованы гранями призмы {110}, иногда пинакоидов {010}, {100} и дипирамиды {111} (рис. 3). Двойники по (110), также по (100). Агрегаты. Часто встречается в радиальнолучистых агрегатах или в виде кристаллических корок, а также плотный в форме сферолитов и волокнистых масс.

Цвет. Бесцветный или белый с желтоватым, зеленоватым и красноватым оттенком. Блеск стеклянный, у волокнистых масс-шелковистый. Ng = 1,485- 1,493, Nm = 1,476-1,482 и Np = 1,473-1,480.

Твердость 5-5,5. Хрупкий. Спайность по {110} средняя. Уд. вес 2,2-2,5.

Диагностические признаки. Макроскопически трудно отличить от других аналогичных по форме и условиям нахождения цеолитов. Для точных определений приходится прибегать к измерению оптических констант, рентгенометрии или химическому анализу.

П. п. тр. легко плавится, не вспучиваясь, в прозрачное стекло. Вода при нагревании до 300° почти полностью удаляется, а по охлаждении вновь поглощается. В НСl растворяется с выделением студенистого кремнезема.

Месторождения. Часто встречается в миндалинах и жеодах эффузивных изверженных пород (базальта). Как продукт гидротермального изменения нефелина, а также в радиальнолучистых агрегатах известен в пегматитах нефелиновых сиенитов в Вишневых и Ильменских горах.

Сколецит - Ca[Al2Si3O10]*ЗН2O. "Сколекс" по-гречески-червь. Назван по свойству червеобразно искривляться перед паяльной трубкой.

Химический состав (в %): СаО 14,3, Аl2O3 26,0; SiO2 45,9, Н2O 13,8.

Сингония моноклинная: моноклинно-призматический в. с. Псевдотетрагональный. Облик кристаллов столбчатый, с развитием граней [НО], {111}, а также {010}. По виду кристаллов не отличим от натролита. Двойники по (100) со штриховкой на гранях {010}. Агрегаты игольчатые, радиальнолучистые. Наблюдается также в волокнистых сферолитовых массах.

Цвет. Бесцветный или белый. Блеск стеклянный, у волокнистых масс- шелковистый. Ng = 1,519, Nm = l,518 и Np=l,512.

Твердость 5-5,5. Хрупкий. Спайность по {110] средняя. Уд. вес 2,2-2,4.

Диагностические признаки. Без данных химических анализов и поведения п. п. тр. не отличим от натролита.

П. п. тр. вспучивается, червеобразно искривляется (отличие от натролита). Плавится в пузыристое стекло. В НСl разлагается с образованием студенистого кремнезема.

Месторождения. В СССР был встречен в Вишневых горах (Урал), на Северном Кавказе и в других местах. Широко распространен в пузыристых лавах базальта в виде миндалин и жеод, особенно в Исландии и в Колорадо (США). Крупные кристаллы были встречены в Пуна, на юго-восток от Бомбея (Индия).

Гейландит - (Ca,Na2)[AlSi3O8]2*5H2O. Химический состав (в %): СаО 9,2, Аl2O3 16,8, SiO2 59,2, Н2O 14,8. Обычно присутствует Na2O, часто SrO (иногда до 3,6%), К2O и ВаО.

Рис. 4. Кристаллы гейландита

Сингония моноклинная: моноклинно-призматический в. с. Кристаллическая структура обладает элементами слоистой структуры. Облик кристаллов изометрический или таблитчатый (рис. 4); обычно они встречаются поодиночке. Господствующие формы: {010}, {001}, {100} и {101}. Агрегаты. Нередко наблюдается в листоватых массах с параллельным срастанием пластинок, в лучисто-листоватых агрегатах в виде секреций в пустотах.

Цвет. Бесцветный или белый, желтый, кирпично-красный (благодаря микроскопическим включениям Fe2O3). Блеск стеклянный, на плоскостях спайности перламутровый. Ng = 1,505, Nm = 1,499 и Np = 1,498.

Твердость 3,5-4. Хрупкий. Спайность по (0101 совершенная. Уд. вес 2,18-2,22.

Диагностические признаки. От других цеолитов отличается по характерному пластинчатому облику кристаллов, совершенной спайности, обусловливающей перламутровый отлив, и пластинчато-зернистым агрегатам.

П. п. тр. расщепляется, вспучивается и сплавляется в белую эмаль. В НСl легко разлагается с выделением студенистого кремнезема.

Месторождения. Встречается в пустотах эффузивных пород (базальтов и др.) например в Исландии. Спорадически наблюдался в жильных серебряных месторождениях Андреасберг в Гарце (Германия), Конгсберг (Норвегия) и др.

Филлипсит - (K2,Ca)[Al2Si4O12]*4,5H2O.

Химический состав (в %): SiO2 44-48, Аl2O3 22-24, СаО 3-8, К2O 4-11, Н20 15-17. Присутствует также Na2O (до 6%).

Рис. 5. Четверник филлипсита

Сингония моноклинная: моноклинно-призматический в. с. Облик кристаллов столбчатый (вдоль оси а). Простые кристаллы редки. Обычно наблюдаются двойники, часто ромбического или квадратного сечения, а также четверники (рис. 5), иногда крестообразного сечения со штриховкой по {010} параллельно ребру между 6 (010) и m(110). Встречаются и более сложные двойниковые срастания.

Цвет. Бесцветный или белый с сероватым, желтоватым и красноватым оттенком. Блеск стеклянный. Ng = 1,503, Nm = 1,500 и Nр = 1,498.

Твердость 4-4,5. Хрупкий. Спайность по {001} и {010} довольно ясная. Уд. вес 2,2.

Диагностические признаки. Характерны формы двойников. Очень похож на более редко встречающиеся гармотом и десмин, но отличается от них по оптическим константам.

П. п. тр. сильно крошится, частично вспучивается и затем плавится в белую эмаль. В НСl растворяется с выделением хлопьевидного или студенистого кремнезема.

Месторождения. Как и многие другие цеолиты, встречается в пустотах эффузивных, в частности щелочных, пород (лейцитовых базальтов и др.) в виде миндалин, секреций на стенках пустот, например среди лав на МонтеСомма (Везувий), в Сицилии, Исландии и в других местах. Образуется также в современных глубоководных осадках Тихого океана, вероятно как продукт разложения вулканического пепла (до 20-30% всего осадка).

Гармотом - (К2,Ва)[Al2Si5O14]*5H2O. Сингония ромбическая. Чрезвычайно характерны двойники крестообразного сечения, вытянутые вдоль оси а, аналогичные двойникам филлипсита (рис. 6).

Рис.6.Крестообразный четверник гармотома

Цвет белый с сероватым или желтоватым оттенками, а также бурый, красный. Ng = l,508, Nm = 1,505 и Np = l,503.

Твердость 4,5. Спайность по {010} заметная, по {001} несовершенная. Уд. вес 2,44-2,50.

П. п. тр. белеет, крошится и без вспучивания плавится довольно трудно в белое просвечивающее стекло. В НСl разлагается с выделением порошкообразного кремнезема.

Встречается в сходных с другими цеолитами условиях, главным образом в эффузивных изверженных породах, иногда в гнейсах и некоторых гидротермальных рудных месторождениях: Андреасберг в Гарце (Германия) с галенитом, сфалеритом, кварцем и др.; в окрестностях Стронциана (Шотландия) с кальцитом, галенитом и др.

Десмин - (Na2,Ca) [Al2Si6O16]*6H2O.Синоним: стильбит.

Рис. 7. Десмин. Слева - двойник прорастания с двойниковой плоскостью (001). Справа - снопообразный агрегат двойниковых индивидов

Сингония моноклинная. Часто всречается в виде двойников (рис. 369), нередко аналогично филлипситу и гармотому-в четверниках с крестообразным сечением. Эти сложные двойниковые кристаллы обычно группируются в снопообразные формы агрегатов (рис. 7, за что этот минерал и получил свое название ("десме" - по-гречески связка).

Цвет белый с желтоватым или красноватым оттенком. Блеск стеклянный, по спайности перламутровый. Ng= 1,500, Nm = 1,498 и Np = 1,493.

Твердость 3,5-4. Спайность по {010} совершенная и по {100} ясная. Уд. вес 2,09-2,20. П. п. тр. расщепляется, вспучивается, принимает веерообразные и червеобразные формы и сплавляется в белую эмаль. В НСl разлагается с образованием порошковатого кремнезема.

Встречается в пустотах и трещинах в виде секреций, преимущественно в эффузивных изверженных породах. Иногда устанавливается в рудных гидротермальных жилах. В СССР наблюдался в Крыму (Карагач около г.Симферополя), около Боржоми (Грузинская ССР), на Ангаре близ д. Черной и в других местах.

Список использованной литературы

1. Справочник, под ред. Ф.Я. Галахова, в. 5, ч. 1-4, Л., 1985-88;

2. Пущаровский Д. Ю., Структурная минералогия силикатов и их синтетических аналогов, М., 1986;

3. Горшков B.C., Савельев В.Г., Федоров Н.Ф., Физическая химия силикатов и других тугоплавких соединений, М., 1988;

4. Либау Ф., Структурная химия силикатов, пер. с англ., М., 1988. Р. Г. Гребенщиков.

5. Баженов А.И., Полуэктова Т.И. Практикум по минералогии. Учебное пособие. - Томск, изд.ТПИ им. С.М. Кирова, 1988. - 95 с.

6. Бетехтин А.Г. Курс минералогии. - М.: Государственное изд-во геологической литературы, 1951. - 542 с.

7. Бетехтин А.Г. Курс минералогии: учебное пособие. ? М.: Изд-во КДУ, 2008. ? 736 с.

8. Миловский А.В. Минералогия и петрография. - М.: Недра, 1985. - 432с.

9. Википедия - сводная энциклопедия [Электронный ресурс] // http:// ru.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

  • Оптические и электрические свойства минералов, направления использования минералов в науке и технике. Характеристика минералов класса "фосфаты". Обломочные осадочные породы, месторождения графита, характеристика генетических типов месторождений.

    контрольная работа [32,4 K], добавлен 20.12.2010

  • Принципы классификации кристаллов. Физические свойства, происхождения и применение минералов класса вольфраматов. Особенности аморфных тел. Свойства кристаллических веществ. Минералы черной металлургии осадочного происхождения, механизм их образования.

    контрольная работа [1,4 M], добавлен 03.04.2012

  • Понятие и особенности минеральных видов, их признаки. Полиморфные модификации веществ, свойства минеральных индивидов. Нахождение минералов в природе. Характеристика физических, оптических, механических свойств минералов. Наука минералогия, ее задачи.

    реферат [161,3 K], добавлен 09.12.2011

  • Характеристика природных химических соединений, представляющих собой обособления с кристаллической структурой. Исследование механических, оптических, физических и химических свойств минералов. Изучение шкалы твердости Мооса, групп силикатных минералов.

    презентация [1,7 M], добавлен 27.12.2011

  • Понятие силикатов и алюминосиликатов, их происхождение, история изучения и современные знания, кристаллохимическая систематика. Процесс образования силикатов в земной коре, необходимое время, яркие представители и их применение в деятельности человека.

    реферат [3,5 M], добавлен 05.05.2009

  • Понятие и место в природе минералов, их строение и значение в организме человека, определение необходимых для здоровья доз. История исследования минералов от древних времен до современности. Классификация минералов, их физические и химические свойства.

    реферат [36,2 K], добавлен 22.04.2010

  • Морфология минералов, их свойства, зависимость состава и структуры. Развитие минералогии, связь с другими науками о Земле. Формы минералов в природе. Габитус природных и искусственных минералов, их удельная плотность и хрупкость. Шкала твёрдости Мооса.

    презентация [2,0 M], добавлен 25.01.2015

  • Физические свойства минералов и их использование в качестве диагностических признаков. Понятие о горных породах и основные принципы их классификации. Охрана природы при разработке месторождений полезных ископаемых. Составление геологических разрезов.

    контрольная работа [843,1 K], добавлен 16.12.2015

  • Характеристика Лебединского месторождения. Гидрогеологические условия месторождений. Образование и разновидности кварцита. Силикатно-магнетитовые и гематитомагнетитовые кварциты. Отходы, получаемые при обогащении руд. Добыча силикатов и алюмосиликатов.

    курсовая работа [49,7 K], добавлен 29.06.2012

  • Происхождение, химические свойства минералов. Особенности формирования эвапоритовых залежей. Плотность, спайность, излом минералов. Пылеватые и глинистые сцементированные и сильноуплотненные породы. Физико-механические свойства алевролитов и аргиллитов.

    реферат [25,4 K], добавлен 13.12.2012

  • Основные сведения о строении, свойствах и росте кристаллов. Учение о кристаллографических символах. Симметрия пространственных решеток. Характеристика горных пород. Предмет современной минералогии как науки. Процессы образования минералов в природе.

    курс лекций [852,6 K], добавлен 05.05.2012

  • Определение и понимание генезиса, парагенезиса, типоморфизма и других генетических признаков минералов. Значение генетической минералогии. Изменение минералов при различных геологических и физико-химических процессах и в разных областях земной коры.

    курсовая работа [22,5 K], добавлен 05.04.2015

  • Кристаллическая структура и химический состав как важнейшие характеристики минералов. Осадочное происхождение минералов. Классификация диагностических свойств минералов. Характеристика природных сульфатов. Особенности и причины образования пегматитов.

    контрольная работа [2,2 M], добавлен 07.10.2013

  • Процесс образования изумрудов. Физические, химические и оптические свойства минералов. Дихроизм, дисперсия света, плотность, твердость, спайность и блеск. Определение синтетических изумрудов. Главные месторождения минералов. Самые уникальные изумруды.

    реферат [570,6 K], добавлен 19.03.2012

  • Основные определения при изучении магнитных свойств минералов: интенсивность намагничивания, магнитная восприимчивость. Магнитные свойства минералов: диамагнитные, парамагнитные, антиферромагнитные. Ядерный магнитный резонанс. Магнитная сепарация.

    контрольная работа [19,3 K], добавлен 24.06.2011

  • Свойства кристаллического вещества. Природа окраски минералов и твердость минералов. Характеристика алмаза. Островные силикаты, их свойства. Основные типы неметаллических полезных ископаемых. Главные представители драгоценных и поделочных камней.

    реферат [3,0 M], добавлен 12.01.2011

  • Классификация и структурные особенности глинистых минералов. Электронографический и электронно-микроскопический метод. Подготовка образцов к анализу. Особенности структуры минералов группы каолинита. Определение структурных характеристик монтмориллонита.

    курсовая работа [1,1 M], добавлен 09.06.2015

  • Физические свойства ртути. Применение полезного ископаемого. Номенклатура товарной продукции, получаемой из ртутного сырья и ее назначение. Минералы, из которых извлекают ртуть, их описание и состав. Технологические свойства основных минералов ртути.

    реферат [888,0 K], добавлен 21.05.2015

  • Классификация, химический состав и кристаллическая структура минералов, изоморфизм и полиморфизм. Физические процессы, определяющие рост кристаллов. Эволюционные закономерности построения минералов, их значение для познания биологической эволюции.

    реферат [2,2 M], добавлен 30.08.2009

  • Понятие и распространенность монтмориллонита, его общая характеристика и отличительные особенности, а также отрасли практического применения. Описание и основные сферы использования доломита, опала, мирабилита, флюорита, апатита, алмаза, серы и кварца.

    презентация [1,8 M], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.