Циклокриостратиграфия едомных толщ. Часть 2
Циклокриостратиграфические исследования особенности строения и развития сингенетических повторно-жильных льдов в циклически построенных едомных толщах евразийской Арктики. Мезоциклы как основной результат изменения уровня воды в озерах, реках, морях.
Рубрика | Геология, гидрология и геодезия |
Вид | статья |
Язык | русский |
Дата добавления | 08.04.2019 |
Размер файла | 4,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Московский государственный университет им. М.В. Ломоносова (МГУ) 119991, Россия, г. Москва, ул. Ленинские Горы, 1, оф. 2009
Циклокриостратиграфия едомных толщ. Часть 2.
Васильчук Юрий Кириллович
доктор геолого-минералогических наук
профессор
Аннотация
жильный лед арктика мезоцикл
Показано, что целью циклокриостратиграфии является определение, характеристика и интерпретация периодических или квазипериодических вариаций в криостратиграфии многолетнемерзлых толщ (преимущественно синкриогенных) и их использование для построения и уточнения особенностей формирования многолетнемерзлых толщ. Сформулировано понятие криоциклит - это комплекс многолетнемерзлых толщ (слоев) и их ассоциаций с подземными льдами, характеризующийся в вертикальном разрезе (в скважине, обнажении, шурфе и т. д.) направленностью и непрерывностью изменения криотекстурных (и вещественных) свойств подземных льдов и вмещающих их пород, отражающимися в характере границ между ними. Основными методами исследования являются радиоуглеродный, изотопный, геохимический. Показано, что нередко в едомных толщах отдельные циклиты точно повторяют друг друга, т.е. проявляется ритмичность. Выполнены циклокриостратиграфические исследования особенности строения и развития сингенетических повторно-жильных льдов в циклически построенных едомных толщах евразийской Арктики: Западной Сибири, Якутии, Чукотки, Новосибирских островов, Аляски и севера Канады. Выделены микро-, мезо- и макроциклы в едомных толщах, отличающиеся вертикальным масштабом и длительностью. Микроциклы возникают в результате изменения глубины активного слоя и накопления тонкого осадка в течение нескольких лет. Их вертикальный масштаб варьирует от сантиметров до десятков сантиметров, а их время формирования колеблется от одного до сотен лет. Мезоциклы являются результатом изменения уровня воды в озерах, реках, морях, если образование ледяных жил происходит на заливаемых низких берегах или на мелководье. Вертикальная масштаб мезоциклов составляет несколько метров, а их период обычно колеблется от нескольких сотен до нескольких тысяч лет. Макроциклы относятся к существенному изменению режима седиментации или редко - и в основном на южной границе формирования ледяных жил - с радикальными климатическими изменениями. Вертикальный масштаб макроциклов измеряется десятками метров, и их продолжительность обычно измеряется многими десятками, а иногда сотнями тысяч лет.
Ключевые слова: поздний плейстоцен, радиоуглерод, изотоп, едома, хроностратиграфия, криостратиграфия, геокриоциклы, макроциклы, мезоциклы, микроциклы
Abstract
The author shows that the purpose of cyclocryostratigraphy is to determine, characterize and interpret periodic or quasiperiodic variations in the cryostratigraphy of permafrost sections (mainly syncriogenic ones) and their use for refining the features of the formation of permafrost. The author formulates the concept of cryocyclitis as a complex of permafrost layers and their associations with ice wedges, characterized by the direction and continuity of the change in the cryostructures properties of the ground ice and its surrounding sediments, reflected in the location of the boundaries between them, which can be seen in a vertical section (in a borehole, outcrop, bore pit, etc.). The main research methods are the radiocarbon, stable isotope and geochemical ones. The study shows that often in the yedoma strata individual cyclites duplicate each other, thus demonstrating a continuous process. The author performs the cyclocryostratigraphic research of the structural features and development of the Late Pleistocene syngenetic ice wedge in the cyclical yedoma of the Asian Arctic: Western Siberia, Yakutia, Chukotka, Novosibirsk Islands, Alaska and northern Canada.Three cycles can be distinguished in the development of syngenetic ice wedges. Microcycles result from the changes in active-layer depth and the accumulation of a thin sedimentlayer over several years. Their vertical scale varies from centimetres to tens of centimetres, and their formation time ranges from one to hundreds of years. Mesocycles result from a change in the lake water level if ice-wedge formation took place on the banks or beneath shallow water. The vertical scale of mesocycles is a few metres, and their timescale usually varies from several hundred to a few thousand years. Macrocycles relate to a major change in the sedimentationregime or rarely - and mostly at the southern border of ice-wedge formation - with major climatic oscillations. The vertical scale of macrocycles numbers tens of metres, and their duration varies usually from many tens to sometimes hundreds of thousands of years.
Keywords: geo-cryo-cycles, Cryostratigraphy, Chronostratigraphy, yedoma, isotopes, radiocarbon, Late Pleistocene, macro-cycles, meso-cycles, micro-cycles
Целью циклокриостратиграфии является определение, характеристика и интерпретация периодических или квазипериодических вариаций в криостратиграфии многолетнемерзлых толщ (преимущественно синкриогенных) и их использование для построения и уточнения особенностей формирования многолетнемерзлых толщ.
Криоциклит - это комплекс многолетнемерзлых толщ (слоев) и их ассоциаций с подземными льдами, характеризующийся в вертикальном разрезе (в скважине, обнажении, шурфе и т. д.) направленностью и непрерывностью изменения криотекстурных (и вещественных) свойств подземных льдов и вмещающих их пород, отражающимися в характере границ между ними, и двуединым строением.
Автором выполнены циклокриостратиграфические исследования особенности строения и развития сингенетических повторно-жильных льдов в циклически построенных едомных толщах евразийской Арктики: Западной Сибири, севера и центральных районов Якутии, Магаданской области, Чукотки, арктических островов, проанализированы данные о строении едомных толщ Новосибирских островов, Аляски и севера Канады.
Основными методами циклокриостратиграфических исследований применявшимися автором были криолитологический, радиоуглеродный, изотопный, геохимический.
Показано, что нередко в едомных толщах отдельные циклиты точно повторяют друг друга, т.е. проявляется ритмичность. Выделены микро-, мезо- и макроциклы в едомных толщах, отличающиеся вертикальным масштабом и длительностью. Длительность микроциклов исчисляется от первых лет до сотен лет. Вертикальный масштаб микроциклов сантиметры - десятки сантиметров. Длительность мезоциклов обычно исчисляется от многих сотен лет до первых тысяч. Длительность макроциклов обычно исчисляется многими десятками и иногда сотнями тысяч лет. Вертикальный масштаб макроциклов - десятки метров.
Криоциклиты, должны составлять внутреннюю иерархическую "лестницу" - от элементарных до наиболее сложных. Последние, в свою очередь, будут элементами тел уже другого, более высокого уровня структуры. Многолетнемерзлый слой является элементом криоциклитов, а их элементарной "ячейкой" будет элементарный криоциклит.
Под элементарным криоциклитом - микрокриоциклитом понимается простое по своей структуре сочетание многолетнемерзлых слоев и вмещаемых ими повторно-жильных льдов одного типа.
Элементарные криоциклиты, повторяясь в разрезе, могут составить следующий субуровень криогенных тел - мезокриоциклиты, и т. д. Но, нередко мезокриоциклиты, и даже макрокриоциклиты могут являться элементарным криоциклитом. Число субуровней, т.е. "ступеней" на иерархической классификационной структуры криоциклитов невелико, сейчас можно уверенно говорить не более, чем о трех-четырех субуровнях.
Сингенетические повторно-жильные льды в районах распространения многолетнемерзлых пород являются одним из наиболее важных показателей глобального изменения климата и в свою очередь одним из наиболее уязвимых элементов верхней части литосферы, так как их головы обычно расположены непосредственно под слоем сезонного протаивания. Последнее обстоятельство вызывает немалый интерес и вместе с тем заставляет по новому взглянуть на историю развития северных районов криолитозоны. Действительно, головы безусловно сингенетических повторно-жильных льдов, как голоценовых (рис. 1, а), так и плейстоценовых (рис. 1, б) как правило залегают на глубине не более 1 м.
И если встречаемость неглубокого залегания жил в низкотемпературной криолитозоне в общем-то воспринимается нормально, то находка ледяной жилы датированной по вмещающей тефре возрастом более 740 тыс. лет, непосредственно под слоем сезонного протаивания в районе Доусона (рис. 2) вызвало острую дискуссию в литературе [1, 2]. Дело в том, что эта территория Клондайка находится в зоне прерывистого распространения многолетнемерзлых пород. Ледяные жилы здесь представляют собой вертикально слоистые клинья. Вулканический пепел называющийся тефра голд ран (Gold Run) был найден в деятельном слое. Пепел простирался на 50 м по латерали и он перекрывает два ледяных клина. Скорее всего нижележащие жилы моложе слоя вулканического пепла. Пепел был датирован 740 000 ± 60 000 лет двумя разными методами (isothermal plateau and the diameter-corrected fission track) [1]. Таким образом, эти реликтовые ледяные жилы перекрытые пеплом представляют собой самые древние льды Северной Америки и являются свидетельством того, что ММП существовали в зоне прерывистого распространения многолетнемерзлых пород как минимум со среднего плейстоцена.
Эта публикация, вызвала активную дискуссию. Так, С.А.Зимов [2] указал, что многолетнемёрзлые породы на южном пределе своего распространения очень чувствительны к изменению климата: если средняя годовая температура воздуха изменяется на несколько градусов, то температура многолетнемёрзлых пород достаточно быстро изменится на то же количество градусов. Таким образом, потепление воздуха всего на 2°C могло привести к деградации многолетнемёрзлых пород на Юконе. Из этого следует, что климат на этой территории никогда не был существенно теплее, чем сейчас. Для нас же сейчас важно, что многолетнемёрзлые породы даже при весьма мягких геокриологических условиях могут просуществовать десятки и даже сотни тысяч лет. Примерно в таких же сравнительно мягких геокриологических условиях встречаются позднеплейстоценовые жилы в Центральной Якутии, отмечены голы ледяных жил, залегающие непосредственно под слоем сезонного протаивания в окрестностях села Сырдах в относительно высокотемпературных мерзлых породах (рис. 3).
а
б
Рис. 1. Залегание голов ледяных жил непосредственно под слоем сезонного протаивания: а - голоценовой жилы в торфянике Юньягинский, близ г.Воркуты, позднеплейстоценовых жил на острове Мостах (б). Фото Н.А.Буданцевой и Ю.Н.Чижовой, Х.Хуббертена
Рис. 2. Залегание головы ледяной жилы возрастом около 740 тыс. лет, непосредственно под слоем сезонного протаивания в районе Доусона в относительно высокотемпературных мерзлых породах. Фото Ч.Чой
Рис. 3. Залегание голов ледяных жил непосредственно под слоем сезонного протаивания в окрестностях села Сырдах в Республике Саха (Центральная Якутия) в относительно высокотемпературных мерзлых породах. Фото с сайта http://pikabu.ru/story/vechnaya_merzlota_3147836
Циклокриостратиграфия едомных толщ
В соответствии с принципом субординации едомные толщи, должны составлять внутреннюю иерархическую "лестницу"- от элементарных до наиболее сложных.
Автором выделено три типа цикличности: микро-, мезо и макроцикличность [3] и создана создана модель мезо- и макроциклического формирования сингенетических повторно-жильных льдов [4, 5, 6]:
Рис. 4. Модель мезо- и макроциклического формирования сингенетических повторно-жильных льдов (по Ю.К.Васильчуку [4]). I и III - субаэральные фазы развития, II - субаквальная (супрааквальная фаза развития). В течение субаэрального развития массива формируются преимущественно оторфованные слои, и рост жил происходит преимущественно в ширину. В течение субаквального развития массива формируются преимущественно слои минеральных отложений (песков, супесей, глин) и рост жил прекращается или замедляется, в последнем случае происходит наращивание жил вверх. 1 - торф; 2 - супесь с песком; 3 - супесь; 4 - 6: жильный лед ранней (4), средней (5) и поздней (6) фаз развития; 7 - вода (озеро, река, губа и т.д.); 8 - принципиальный отбор образцов из жил первой субаэральной фазы; 9 - принципиальный отбор образцов из жил второй субаэральной фазы Под последним мы понимаем все же небольшую мощность воды на поверхности полигонального массива, она редко превышает 1-1,5 м (в противном случае залегающие ниже жилы даже в суровых условиях позднего плейстоцена могли бы протаять)
Микроцикличность связана с сезонной периодичностью изменения глубины деятельного слоя и накопления тонкого слоя наилка, Длительность микроциклов исчисляется от первых лет до сотен лет. Вертикальный масштаб микроциклов сантиметры - десятки сантиметров.
Мезоцикличность связана с пульсирующим изменением уровня водоема, по берегам которого, или на отмелях которого идет формирование жил. Длительность мезоциклов обычно исчисляется от многих сотен до первых тысяч лет. Вертикальный масштаб мезоциклов первые метры.
Макроцикличность связана с коренной перестройкой режима седиментации или реже (в основном на юге ареала повторно-жильных льдов) с крупными климатическими осцилляциями. Длительность макроциклов обычно исчисляется многими десятками- и иногда сотнями тысяч лет. Вертикальный масштаб макроциклов десятки метров.
Согласно модели мезо- и макроциклического формирования сингенетических повторно-жильных льдов [4, 5, 6]выделены субаэральные фазы развития и субаквальные фазы развития ледяных клиньев. В течение субаэрального развития массива формируются преимущественно оторфованные слои, и рост жил происходит преимущественно в ширину (рис. 4). В течение субаквального развития массива формируются преимущественно слои минеральных отложений (песков, супесей, глин) и рост жил прекращается или замедляется, в последнем случае происходит наращивание жил вверх.
Также автором разработана модель формирования полигонально-жильных систем различного строения, связанного с различиями в скорости осадконакопления и темпов чередования ритмов осадконакопления (рис. 5): I-III - медленное осадконакопление при различной частоте смены ритмов осадконакопления: I) частой; II) средней; III) редкой; IV-VI - быстрое осадконакопление при различной частоте смены ритмов осадконакопления: IV) частой; V) средней; VI) редкой.
Рис. 5. Модель формирования полигонально-жильных систем различного строения, связанного с различиями в скорости осадконакопления и темпов чередования ритмов осадконакопления (по Ю.К.Васильчуку [4]): I-III - медленное осадконакопление при различной частоте смены ритмов осадконакопления: I) частой; II) средней; III) редкой; IV-VI - быстрое осадконакопление при различной частоте смены ритмов осадконакопления: IV) частой; V) средней; VI) редкой. 1 - вмещающие жилу грунты (схематично): а - субаэральные, б - субаквальные (супрааквальные); 2 - жильный лед; 3 - часть жильного льда, прирастающего в течение более длительного субаэрального периода: а - при средней, б - при частой смене ритмов осадконакопления
Формирование сингенетических повторно-жильных льдов в песчаных и супесчано-суглинистых грунтах имеет существенные различия. В силу того, что песчаные грунты, как правило накапливаются быстрее, то и жильные льды в них растут по вертикали быстрее. Это приводит к тому, что в песчаных грунтах, чаще формируется хорошо выраженная ярусность - циклитность строения повторно-жильных структур по вертикали.
Циклитность повторно-жильных льдов, залегающих в позднеплейстоценовых песках
Циклитный полигонально-жильный комплекс в разрезе озерной толщи Ледового обрыва. Ю.К. и А.К. Васильчук [7] описано циклическое залегание повторно-жильных льдов в песчаной озерной толще, фациально замещающей едомные отложения Ледового обрыва, расположенного на левом берегу р. Майн в 13 км ниже устья р. Алган. В песчаной озерной толще были изучены три яруса ледяных жил, каждая из которых была высотой 3-4 м (рис. 6).
Рис. 6. Циклитное залегание поздненеоплейстоценовых повторно-жильных льдов в нижней части песчаной озерной толщи Ледового обрыва, фациально замещающей едомную (вблизи контакта с классическим едомным останцом, располагающегося на рисунке справа внизу) и изотопно-кислородный состав жил: 1 - торф; 2 - песок; 3 - супесь; 4 - лед сингенетических жил; 5 - гравий и галечник; 6 - значения д18O в ледяных жилах, ‰.
Жилы каждого из трех ярусов залегают в мелких песках и перекрываются торфом и супесью. Важной особенностью является и существенная дифференциация значений д18O в жилках разных ярусов. В жиле на высоте 5 м над уровнем реки значение д18O составило от -23.8‰, в жиле на высоте 8.5 м над урезом реки оно составило -28.0 ‰, а в жиле на высоте 9-10 м над урезом значение д18O составило от -26.7 ‰ (см. рис. 6), что свидетельствует о возможном питании нижней из этих жил речной или озерной водой, имеющей более тяжелый изотопный состав, чем снег.
На возможность участия речных или озерных вод в формировании жил указывает и присутствие мелкого гравия во льду нижнего фрагмента ледяной жилы из едомного массива, контактирующего с озерными песками. Здесь также на высоте 1.5 м значение д18O несколько выше (-25.6 ‰), чем в других фрагментах жил из основного едомного массива (см. рис. 6).
Озерными желтыми песками как бы «пропилено» несколько горизонтальных даек в едоме и в теле более древних едомных жил, т.е. пески накапливались немного позднее: нижний фрагмент озерных песков датируется 39-34 тыс. лет назад. Наиболее молодые даты соответствуют завершению накопления озерных песков и относятся к периоду 14-15 тыс. лет назад.
О датировании завершения периода накопления озерных песков следует сказать особо, поскольку на высоте 30-35 м от уреза и соответственно на глубине около 5-7 м от кровли в толще песков по веточкам А.Н. Котовым получена радиоуглеродная дата 14000 ± 200 лет (МАГ-1026). Здесь же по залегающему в толще бивню мамонта авторы получили дату 15100 ± 70 лет (ГИН-5370). Подчеркнем, что датирование разреза здесь весьма уверенное, поскольку определения получены по самому разному материалу, к тому же датированный бивень имел очень свежий облик, а такой материал дает весьма надежные 14С даты.
В песчаной озерной толщи Ледового обрыва встречена полигонально-жильная система V типа формировавшаяся в условиях быстрого осадконакопления при средней частоте смены ритмов осадконакопления (см. рис. 5).
Гетероциклитный полигонально-жильный комплекс в разрезе Усть-Алганского обрыва . Разрез Усть-Алганский расположен на левом берегу р. Майн в 6 км ниже устья р. Алган, т.е. на 7 км выше Ледового обрыва. Высота Усть-Алганского обрыва составляла около 60 м. Усть-Алганская толща по составу близка озерным осадкам Ледового обрыва. Это в основном мелкий песок, желтовато-серый и серый, горизонтально-слоистый. В интервале глубин 20-23 м (на высоте 37-40 м от уреза реки), 49-53 м (на высоте 7-11 м над урезом реки) и 55,3-55,7 м (на высоте 4,7-4.3 м над урезом реки) авторами отмечены частые прослои аллохтонного торфа мощностью от 0,5 до 2 см. В двух нижних оторфованных слоях содержится большое количество веток кустарников, изредка стволов деревьев. В разрезе Ю.К. и А.К.Васильчук [7] отмечены 7 ярусов узких повторно-жильных льдов (рис. 7), ширина их редко превышает 1 м, высота составляет 7-8 м, расстояние между жилами от 3 до 4 м.
Рис. 7. Циклитное строение опорного криолитологического разреза поздненеоплейстоценового ледового комплекса в долине р.Майн, в обнажении Усть-Алганский обрыв и - значения д18O, ‰ в повторно-жильных и текстурных льдах: 1 - торф; 2 - песок; 3 -жильный лед; 4 - древесные остатки; 5 - значения д18O в ледяных жилах, ‰; 6 - отбор образцов для изотопных определений; 7 - отбор образцов для радиоуглеродных определений и 14С датировки
По-видимому, в начальный период формирования Усть-Алганской толщи в ее образовании активно участвовали русловые процессы, что и приводило к накоплению мощных линз и прослоев аллохтонного материала. Об аллохтонном происхождении говорят и инверсии радиоуглеродных дат. На высоте 5 м над урезом по хорошо сохранившимся веткам и древесине авторами получена дата 32700 ± 1800 лет (ГИН-5367), а на высоте 7 м - более древняя 42400 ± 2100 лет (ГИН-5366). Ранее, в основании разреза по веткам получена дата 43 тыс. лет назад, а выше - более 57 тыс. лет назад [8]. Хронологическая инверсия вызвана привносом органики из более древних толщ, размывавшихся выше по течению реки. Более молодую датировку можно принять за нижнюю границу накопления толщи и тогда, с учётом большой мощности толщи, надо признать, что на отдельных этапах седиментация здесь происходила очень быстро.
Такой взгляд подтверждается и данными изотопно-кислородных определений из повторно-жильных льдов, которые так же, как и в озерных толщах Ледового обрыва, залегают ярусно. В жилах нижнего яруса на высоте 4-6 м над уровнем реки значения д18O составили от -24.9 до -23.4‰, а в жилах второго снизу яруса на высоте 8-10 м над урезом реки они варьируют от -27.8 до -27.1‰ (см. рис. 7), что очевидно, свидетельствует о преимущественном питании жил второго снизу яруса талой снеговой водой, тогда как в жилах нижнего яруса заметно присутствие речной или озерной (старичной) воды. Правда, более положительные значения д18O в жилах можно объяснить и влиянием более мягких зим 32-30 тыс. лет назад.
В песчаной озерной толще Усть-Алганского обрыва встречены полигонально-жильные системы I и IV типов формировавшаяся в условиях быстрого или медленного осадконакопления при частой смене ритмов осадконакопления (см. рис. 5).
Гетероциклитный полигонально-жильный комплекс в разрезе Туостахской впадины . Т.Н.Каплиной с соавторами [9] описаны мощные повторно-жильные льды в песчаной толще Туостахской впадины. Туостахская впадина располагается в пределах Яно-Адычанского эрозионно-денудационного плоскогорья, в области редкостойных лиственничных лесов в нижнем течении р. Адыча (правый приток Яны). Абсолютные отметки днища впадины повышаются с севера на юг от 300 до 800 м. Современные русла р. Адыча и ее притоков располагаются на отметках 145-135 м. Хорошо выраженный элемент долин во впадине - терраса высотой около 70 м над реками, сложенная преимущественно песками. Разрез ее вскрывается р. Адыча по правому берегу в обнажениях Хотон-Хая (в 1 км выше с. Бетенкёс) и Улахан-Сулар (в 7,5 км ниже с. Бетенкёс).
Фаунистические материалы в изобилии найденные в разрезе Улахан-Сулар позволили Т.Н.Каплиной заключить, что в разрезе 70-метровой террасы присутствуют отложения весьма широкого возрастного диапазона - от позднего плиоцена до позднего плейстоцена. Разрез Улахан-Сулар изучался Т.Н.Каплиной по нескольким расчисткам (рис. 8); их сопоставление дало возможность выделить в нем семь различных по литологии и криогенному строению осадков пачек.
Рис. 8. Повторно-жильные льды в песчаных отложениях разреза Улахан-Сулар. Из Т.Н.Каплиной и др. [9]: 1 - щебень с песчаным заполнителем; 2 - пески мелкие; 3 - пески пылеватые; 4 - переслаивание супесей, суглинков и песков; 5 - супесь; 6 - суглинок; 7 - прослойки торфа; 8 - древесные макроостатки; 9 - раковины моллюсков; 10 - ледяные жилы; 11 - псевдоморфозы по ледяным жилам; 12 - изначальные грунтовые жилы; 13 - спорово-пыльцевое опробование; 14 - образцы флоры и их номера; 15 - древесина, датированная по 14С; 16 - место находки Dicrostonyx cf. simplicior Fejfar; 17 - границы пачек; номера пачек даны в кружках. I-III - расчистки
Пачка 1. В верхней по течению реки части разреза Улахан-Сулар на пляже р. Адыча выходит пачка (мощность пачки более 2 м) щебня, красно-бурого цвета с песчаным и супесчаным заполнителем. Лежащие выше осадки ложатся на щебни с размывом.
Пачка 2. Выше красно-бурых щебней залегает довольно сложно построенная пачка, состоящая из темно-серых мелких и средних песков, в которые включены плитообразные линзы темно-серых супесей. Пески, по видимому русловые - они насыщены макроостатками древесины и костными остатками. Супесчаные слои имеют внутри тонкую горизонтальную слоистость за счет прослоек автохтонного, преимущественно мохового торфа, мощность их от 0,25 до 0,6 м. Супеси скорее всего являются осадками, отшнурованных от реки, ложбин низкой поймы, по которым в паводки осуществлялся сток. Как полагает Т.Н. Каплина по кровле пачки 2 проходит граница раннего и среднего плейстоцена.
Пачка 3. На супесях и песках с размывом лежат пески средней крупности и крупные ярко-рыжего и серого цвета. Иногда они содержат дресву и щебень. Слоистость песков часто косая, местами косоволнистая, Слои песков содержат большое количество макроостатков древесины, среди которых преобладают стволы и ветви кустарников; некоторые из них окатаны, но некоторые имеют хорошую сохранность. Эта пачка, представляет собой русловой аллювий древней реки и рассматривается Т.Н. Каплиной как базальный горизонт лежащей выше аллювиальной толщи.
Пачка 4. На пачке 3 обычно с резким контактом залегает линза серых песков, которые вверх по разрезу постепенно обогащаются прослойками заиленных пылеватых песков и торфа. По подошве линзы песков располагаются пни хвойных деревьев, захороненные в прижизненном положении. Сохранность древесины очень хорошая, обломки и пни имеют свежий вид. В нижней части линзы отмечается обилие мелкой древесины, в том числе ветвей кустарников. Вверх по разрезу древесина исчезает. Линза серых песков имеет протяженность вдоль реки 70 м. Разрез линзы завершается погребенной лежащими выше осадками торфянистой почвой. В этой пачке встречена система повторно-жильных льдов. Расстояние между ледяными жилами составляет 10-12 м, ширина их поверху не превышает 0,5 м. Лед жил сильно загрязнен грунтом, элементарные ледяные жилки имеют ширину 1 мм. Осадки пачки 4 согласно Т.Н.Каплиной, накопились в пойменной (возможно, старичной) ложбине. Погребенная почва свидетельствует о некотором перерыве в осадконакоплении, однако этот перерыв вряд ли был длительным. Во всяком случае для роста описанных выше ледяных жил, по заключению Т.Н.Каплиной, было достаточно промежутка времени в несколько сотен лет [9].
Пачка 5. Эта пачка слагает основную часть разреза Улахан-Сулар (см. рис. 8). Пачка сложена преимущественно серыми и желто-серыми мелкими песками и кажется монотонной, однако в выделяются слои, различающиеся по литологическим особенностям. Преобладают мелкие серо-желтые пески, переслаивающиеся местами с песками средней крупности. В песках описана мелкая линзовидная и косоволнистая слоистость. Такие пески содержат обычно только тонкие корешки трав. В пачке встречены серии крутопадающих косых слоев. Такая серия имеется в расчистке I на высотах от 60 до 64 м, а в расчистке II такая пачка вскрыта на высотах от 35,4 до 37,0 м (см. рис. 8). В обнажении Хотон-Хая серия косых слоев была отмечена на высотах от 32 до 40 м над урезом реки. В описываемых сериях растительные остатки отсутствуют. Эти осадки Т.Н.Каплина считает пристрежневым аллювием древней реки. Значительную часть разреза составляет горизонтальное переслаивание желтых мелких песков и оторфованных песков (типа погребенных почв); иногда внутри таких песков встречаются тонкие прослойки серого суглинка, по-видимому, это осадки низкой поймы с зачаточными почвенными горизонтами. К тому же элементу долины, принадлежат серые мелкие пески, переслаивающиеся с темно-серыми заиленными песками, мощностью от 0,5 до 2,8 м, обогащенными корешками трав и обрывками мхов. На высотах от 23,5 до 26 м над рекой залегает слой неяснослоистых, сильно заиленных песков, также содержащих исключительно корешки трав. Этот слой интересен присутствием в нем еще одной системы ледяных жил, которые имеют небольшие размеры - ширину 0,1-0,15 м и вертикальную протяженность около 1,5 м. Жилы фиксируют момент локального и кратковременного роста повторно-жильных льдов на низкой пойме (прирусловой отмели). В расчистке II в кровле пачки 5 Т.Н.Каплиной отмечены псевдоморфозы по достаточно крупным ледяным жилам - размером до 4 м по вертикали и до 2 м в ширину. Псевдоморфозы выполнены песком с кусками торфа, вероятно попавшими в них в результате деятельности потока, так как во вмещающих и непосредственно перекрывающих псевдоморфозы осадках торф отсутствует. Псевдоморфозы фиксируют перерыв в осадконакоплении. Вопрос о том, является ли этот перерыв существенным стратиграфическим перерывом неясно. Во всяком случае в других расчистках на том же уровне разрез сложен монотонными песками, и видимые следы перерыва отсутствуют (см. рис. 8). Выше по течению (см. рис. 8, расч. III) разрез песчаной толщи несколько отличается от разреза расчистки II. Здесь Т.Н.Каплиной обнаружено два яруса клиновидных грунтовых тел. Оба яруса располагаются в однотипных осадках - ритмично переслаивающихся мелких серо-желтых песках и плотных темно-серых заиленных пылеватых песках. Осадки содержат корешки трав. Ширина клиновидных грунтовых тел поверху составляет 0,5-2 м, по вертикали они протягиваются на 4-5 м. Расстояния между ними составляют 4-8 м. В выполнении четко прослеживаются элементарные грунтовые жилки, из которых более «молодые» секут возникшие ранее. Эта особенность, по мнению Т.Н.Каплиной, свидетельствует о том, что клиновидные тела возникли в результате повторяющегося зимнего морозного растрескивания грунтов и заполнения морозобойных трещин грунтом, т. е. являются изначально грунтовыми жилами. Значительная вертикальная протяженность грунтовых жил, по-видимому, свидетельствует о их унаследованном (сингенетическом) развитии в ходе накопления осадков. Как известно, такие структуры могут возникать как в слое сезонного протаивания в области многолетнемерзлых пород, так и в слое сезонного промерзания в условиях суровых малоснежных зим [9].
Пачка 6 представляет собой линзу, имеющую протяженность вдоль реки около 100 м. В ней переслаиваются мелкие серые пески, заиленные темно-серые пески и автохтонный торф. В основании пачки присутствует масса макроостатков древесины; на высоте около 50 м залегает слой древесного торфа. Из этого слоя по древесине получена радиоуглеродная дата более 43 000 лет назад (МГУ-570). В верхней части пачки древесные остатки исчезают. По-видимому, эта линза представляет собой осадки небольшой пойменной ложбины, испытавшей быстрое заполнение с захоронением произраставшей здесь растительности. Пачка 6 включает систему ледяных жил шириной по верху 0,5-0,7 м, вертикальной протяженностью до 6 м. Жилы имеют черты сингенеза (выход годичных жилок на боковые контакты, небольшие «плечики»).
Пачка 7 завершает разрез. Ее слагают мелко- и среднезернистые пески, переслаивающиеся с заиленными песками. Характерна волнистая или косоволнистая слоистость и отдельные корешки трав. Пески, вероятно, относятся к осадкам русла и прирусловой отмели. Описанные выше особенности песчаной толщи Туостахской впадины, по мнению Т.Н.Каплиной, позволяют считать ее констративной аллювиальной толщей с набором фаций от руслового пристрежневого аллювия (крупные косые серии) до периодически заливаемых пойменных (возможно, старичных) ложбин (переслаивание песков с торфом, погребенная древесина). Для песчаной аллювиальной толщи, включающей пачки 3-7, Т.Н.Каплиной предложено название улахан-суларской свиты. Наличие в разрезе улахан-суларской свиты трех циклов (ярусов) ледяных жил свидетельствует о том, что свита начиная с высоты 12 м накапливалась при существовании многолетнемерзлых пород. Среднегодовые температуры мерзлых толщ были, по заключению Т.Н.Каплиной [9] не выше -3,5°С, поскольку ледяные жилы росли в песках прирусловых отмелей и часто заливаемых ложбин. Мало того, на протяжении накопления свиты существование мерзлых пород было непрерывным, и даже под руслом реки, отложившей песчаную толщу, сквозных таликов не возникало. Это обстоятельство также свидетельствует о суровом геотемпературном режиме эпохи накопления улахан-суларской свиты.
В песчаной толще разреза Улахан-Сулар встречена полигонально-жильная система IV типа формировавшаяся в условиях быстрого осадконакопления при частой смене ритмов осадконакопления (см. рис. 5).
Гетероциклитный полигонально-жильный комплекс в разрезе Сыпного яра . Ярусные повторно-жильные льды в песчаных толщах Сыпного яра, мощностью около 50 м, на Индигирке - были детально изучены вначале Ю.Н.Михалюком, затем Ю.А.Лаврушиным [10], а позднее еще более детально Т.Н.Каплиной и А.В. Шером [11]. Здесь на большом протяжении вскрывается преимущественно песчаная толща аллювиальных осадков Ю.А. Лаврушин описал песчаную толщу Сыпного яра как самостоятельную свиту, назвал ее шангинской и отнес предположительно к раннему - началу среднего плейстоцена, он выделил песчаную толщу Сыпного яра как самостоятельный тип констративного аллювия Субарктики, характеризующийся ярусным расположением систем ледяных жил [10].
Сыпной яр расположен на правом берегу р. Индигирки, в крутой излучине, в 25-40 км выше по течению от устья р. Шангиной и вскрывает мощную толщу осадков, выполняющих тектоническую депрессию Шангинского дола. Абсолютные отметки поверхности здесь постепенно снижаются с юга на север, в сторону р. Шангиной от 80 до 50 м. Протяженность яра вдоль реки составляет около 15 км. Уступы основной поверхности, выходящей к берегу, имеют высоту над рекой 48-52 м. Кроме того, в обнажении вскрываются разрезы трех террас высотой соответственно 42-45, 35 и 25 м над рекой (рис. 9).
Рис. 9. Многоярусные повторно-жильные льды в песчаных отложениях разреза Сыпной Яр. Из Т.Н.Каплиной и А.В.Шера [11]: 1 - пески с горизонтальным напластованием; 2 - пески с крупным косым напластованием; 3 - супеси и суглинки; 4 - переслаивание песков, супесей и суглинков; 5 - ленточные суглинки; 6 - торф; 7 - переслаивание торфа и песка; 8 - жилы: а - ледяные, б - ледогрунтовые; 9 - псевдоморфозы по ледяным жилам; 10 - криотекстуры: а - массивные, б - поясковые; 11 - осыпи; 12 - точки находок фауны позвоночных; 13- моллюски
Основная толща Сыпного яра состоит из многочисленных напластований крупных линэовидных тел, длина которых по простиранию составляет от 200 до 400 м, а мощность колеблется от 8 до 12 м. Эти линзы сложены в основном мелкими песками, однако в них часто присутствуют прослои заиленных пылеватых песков и супесей. Слоистость внутри линз изменяется от плохо выраженной, скрытой, до весьма отчетливой. Общее направление слоистости часто связано с линзовидным залеганием осадков - в средних частях линз отмечаются протяженные горизонтально-слоистые пачки, а в краевых частях те же слои залегают крутонаклонно. Одна линза на другую обычно наслаивается со срезанием (рис. 10). Наслоение линзовидно залегающих пачек, частая смена литологических разностей отражает динамическую обстановку накопления аллювия, отличающуюся сменами фациальных условий. Это характерно для всей основной толще Сыпного яра и позволяет считать ее единой, сложно построенной толщей аллювия констративного типа [11]. В основной толще Сыпного яра выделяются следующие литолого-фациальные разности:
1. Переслаивание песков с торфом и супесями (суглинками). Преобладают от заиленных и мелких песков до песков средней крупности. Слои торфа включают остатки древесных и кустарниковых растений, иногда - захороненные в вертикальном положении пни. Костных остатков в этих отложениях не найдено. Подробное описание этой пачки приведено Ю.А, Лаврушиным, выделившим ее в качестве нижнешангинской подсвиты. Ю.А.Лаврушин [10] отметил высокую льдистость песков и привел данные Ю.Н. Михалюка о наличии в этой пачке двух ярусов ледяных жил, подтвержденные наблюдениями Т.Н.Каплиной (см. рис. 7). Кроме того, под нижним слоем торфа располагается ярус четко выраженных псевдоморфоз по повторно-жильным льдам, имеющих в верхней части структуры облекания. Ширина структур по верху 1,5-2 м, вертикальная (видимая) протяженность около 2 м. Наличие двух ярусов ледяных жил, по крайней мере, одного яруса псевдоморфоз в нижней пачке осадков с древесными остатками позволяет уверенно говорить о том, что процессы формирования полигонально-жильных льдов протекали не только после завершения, но и в ходе ее накопления. Более того, несмотря на то что ледяные жилы погребались под песками и, следовательно, испытывали хотя бы временное затопление, они не вытаивали [11].
Рис. 10. Циклитные повторно-жильные льды в песчаных отложениях разреза Сыпной Яр. Зарисовка В.В. Павлыша, из Т.Н.Каплиной и А.В.Шера [11]: 1 - пески мелкие светло-серые; 2 - пески мелкие и оглеенные темно-серые; 3 - торф и гумусированные супеси; 4 - ледяные жилы; 5 - псевдоморфозы по ледяным жилам
2. Пески мелкие с участием средних (местами даже гравия), косонаслоенные (с наклоном слойков до 30°), лишенные растительных остатков. Именно такие пески были отнесены Ю.А. Лаврушиным [10] к среднешангинским дельтовым осадкам. Т.Н.Каплина и А.В.Шер [11] считают их осадками пристержневой фации аллювия. Криогенные текстуры песков исключительно массивные, влажность 18-22%, никаких полигонально-жильных образований в таких песках обнаружено не было.
3. Пески мелкие, с мелкой косой или косоволнистой слоистостью. За редкими исключениями, эти пески не содержат растительных остатков. Костные остатки обычно залегают по напластованию, и имеют очень хорошую сохранность, как, например, лопатка бизона с ажурной костной тканью, сохранившейся на месте лопаточного хряща. Вероятнее всего, эти пески являются осадками нижних частей прирусловых отмелей. Криотекстуры только массивные, характерные значения влажности 23-25%. В таких песках часто встречаются системы тонких грунтовых жил.
4. Пески мелкие в мелком полого-волнистом переслаивании с заиленными песками, создающем на выветрелых стенках характерную ребристость. Отмечается обилие захороненных корешков трав, сгущения которых приурочены к прослоям заиления, иногда мелкие остатки мхов. С такими песками связаны находки А.В.Шером целых скелетов мелких позвоночных: скелеты копытных леммингов, молодой особи зайца, часть скелета небольшой птицы. В песках этого типа найдены такие исключительно хрупкие остатки, как скорлупа яйца кулика, сохранившая не только крапчатый рисунок, но и форму яйца. Этот тип песков можно рассматривать как осадки периодически заиливающейся, вероятно, верхней части прирусловой отмели. Криотекстуры массивные, характерная влажность 25-30%.
5. Супеси (суглинки) и заиленные пески, сменяющие друг друга по вертикали. Эти породы образуют слои или линзы мощностью от 0,5 до 12 м. Наиболее мощные слои были встречены в разрезе цирка СПЦ-III. Единого горизонта, как и все остальные фациальные разности, в толще они не образуют, а располагаются в разных разрезах на разных уровнях. В цирке СПЦ-II зафиксировано три таких слоя. С этими прослоями связаны находки частей скелетов млекопитающих, иногда залегающих даже в анатомическом порядке, как, например, часть стопы мамонта (четыре кости) или задняя конечность бизона (шесть костей). Характерными для супесей (легких суглинков) являются криотекстуры "пояскового" типа - ритмичное чередование в разрезе более и менее льдистых слоев. Наиболее обычны толстые (0,5-3 см) ледяные шлиры, разделенные слоями толщиной 5-10 см, в которых криотекстура микролинзовидная или сетчатая, реже массивная. В отдельных пачках "пояски" образованы не собственно ледяными шлирами., а сгущениями микролинзочек льда. Суммарная влажность супесей (легких суглинков) с "поисковыми" криотекстурами составляет от 80 до 120%. Ледяные жилы в супесчано-суглинистых пачках имеют различные размеры, причем отмечается связь как вертикальных, так и горизонтальных размеров с мощностью пачек. Наиболее мощные ледяные жилы были обнаружены в разрезе СШ-П на высоте 14-18 м над рекой (см. рис. 9), где ширина жил по верху составляла 2,5 м. Размеры полигонов в среднем составляют 7-9 м, но следует отметить, что часто встречаются сгущения сетки до 3-4 м, правда, в этих случаях сами жилы имеют меньшие размеры [11]. При резкой смене снизу вверх по разрезу (при налегании) русловых песков на супеси (легкие суглинки) верхняя поверхность ледяных жил имеет обычно ровный горизонтальный срез. При постепенных переходах (через постепенное изменение состава с супесей на пески) часто у ледяных жил сохраняются небольшие ростки, иногда в разрезах можно видеть несколько вложенных ярусов ледяных жил, что свидетельствует о динамичности, изменчивости условий их роста, вероятно, о достаточно быстром накоплении наслаивающихся друг на друга пачек аллювия [11]. Все исследованные ледяные жилы имели высокую степень загрязненности грунтом - много вертикальных полосок, состоящих из тонкого песка или пыли. Большинство ледяных жил, залегающих в заиленных пылеватых песках, начиная с высоты (от нижнего конца) 0,7-1 м, имеют на боковых контактах характерные признаки сингенеза - ступенчатость и припаивание ледяных "поясков" к плечикам жил, а также выходы элементарных ледяных жилок на боковые контакты. Наряду с ледяными встречены некрупные ледогрунтовые жилы - шириной до 0,3 м, вертикальной протяженностью до 1,5 м. Такие жилы встречены в заиленных пылеватых песках, но часто приурочены и к мелким пескам, т.е. они росли в нижней части прирусловой отмели [Каплина, Шер, 1977].
Особого внимания заслуживает мощная линза сильнольдистых осадков с крупными ледяными жилами, которую выделил Ю. Н. Михалюк и зафиксировал также Ю. А. Лаврушин [10], изобразив ее на рисунке Сыпного яра в качестве вкладки мощностью до 12 м и признав ее возрастным аналогом воронцовской свиты. В верхней части основного разреза Сыпного Яра Т.Н.Каплиной была обнаружена линза, по-видимому, супесчаного состава, отличающаяся очень сильной льдистостью пород. Неравномерное ("поясковое") распределение последней по вертикали отражается в ребристости стенки, где она выходит. В линзе имеются ледяные жилы с неровными зубчатыми краями, явно сингенетические [11].
Согласно Т.Н.Каплиной и А.В.Шеру [11] в эпоху накопления толщи Сыпного яра морозобойное растрескивание происходило практически повсеместно, в песках и супесях (легких суглинках), начиная с низкого уровня прирусловой отмели (пески с мелкой косой слоистостью), где формировались грунтовые, а иногда и ледогрунтовые жилки, и кончая поймой. Толща осадков Сыпного яра скорее всего имеет позднеплейстоценовый возраст. В течение всей эпохи накопления осадков, вскрывающихся в Сыпном яру в заиленных песках и супесях, в диапазоне фаций от верхней части прирусловой отмели до высокой поймы формировались полигональные системы ледяных жил. Повторение этих фаций в разрезах обусловливает ярусное расположение систем ледяных жил, а различное вертикальное расположение горизонтов с жилами в разных частях разреза яра свидетельствует о непрерывности процесса льдообразования. О постоянной суровости геокриологических условий свидетельствует и сохранение ледяных жил при погребении их русловым аллювием. Ярусное расположение жил обусловлено не климатическими изменениями, а сменами фаций по разрезу [10, 11].
В песчаной толще Сыпного Яра встречена полигонально-жильная система IV типа формировавшаяся в условиях быстрого осадконакопления при частой смене ритмов осадконакопления, а в тонкодисперсных отложениях здесь встречена полигонально-жильная система III типа формировавшаяся в условиях медленного осадконакопления при редкой смене ритмов осадконакопления (см. рис. 5).
То, что даже в современных условиях - более мягких, чем позднеплейстоценовые в русловой песчаной фации могут расти повторно-жильные льды на Индигирке показано Ю.А.Лаврушиным [10]. В разрезе высокой поймы Индигирки, в 10-12 км ниже сел. Похвального толща руслового аллювия представлена пачкой правильно горизонтально чередующихся тонких прослоев песка и растительного детрита (рис. 11).
Пески очень мелкие, серовато-коричневые, полимиктовые, залегают прослоями толщиной до 2-5 см. Прослои растительного детрита имеют ту же мощность. Общая видимая мощность отложений достигает 3,0 м. Скорее всего это пачка руслового аллювия, накапливавшегося в условиях затонов. Пески пронизаны мощными повторно-жильными льдами, уходящими под урез реки.
В разрезе террасы на р. Мессояхе И.Д.Данилов [12] наблюдал несколько псевдоморфоз, на продолжении которых располагались ледяные жилы. Одна из них - небольшого размера имеет важное значение с точки зрения понимания условий образования псевдоморфоз (рис. 12).
Рис. 11. Мощные повторно-жильные льды в песчаных отложениях высокой поймы на левом берегу Индигирки, в 12 км ниже пос. Похвального. Из Ю.А.Лаврушина [10]: 1 - очень мелкий песок; 2 - торф; 3 - почва; 4 - ледяная жила; 5 - вертикально стоящие корешки растений. А -отложения прирусловой отмели: а - субфация верхней части отмели, б - субфация затона
Рис. 12. Ледяная жила и псевдоморфоза над ней, погребенные в толще русловых аллювиальных песков (левый берег р. Мессояха в нижнем течении). Из И.Д.Данилова [12]
Ледяная жила и псевдоморфоза над ней залегают в нижней части террасы в мелких песках, для которых характерна косая сильно срезанная, наклонная, косоволнистая и линзовидная слоистость. Длина ледяной жилы 1,8 м, ширина в верхней части 0,1 м. Жила состоит из серии четких вертикальных элементарных жилок, которые прослеживаются также сбоку, несколько в стороне от основной жилы. В нижней части слои песков загибаются вдоль контакта с ледяной жилой вниз. Над ледяной жилой находится псевдоморфоза, сложенная темно-серым, пылеватым, мелким песком прослоя, который располагается непосредственно над ней. Материал этого прослоя втягивается в просадку. Вертикальная протяженность последней составляет всего 0,3 м. Сверху она срезана серией крупнокосослоистых песков средней крупности и мелких.
Погребенное положение ледяной жилы и связанной с ней псевдоморфозы, которые захоронены в генетически единой и одновозрастной толще аллювиальных отложений, по заключению И.Д.Данилова [12] говорит о формировании как самих ледяных жил, так и псевдоморфоз по ним в ходе осадконакопления, а не после его окончания. По составу и строению рассматриваемые аллювиальные отложения должны быть отнесены к русловым или низкопойменным фациям аллювия.
Срезание псевдоморфозы и вмещающих волнисто- и линзовидно-слоистых песков более крупнозернистыми косослоистыми песками И.Д.Данилов [12] связывает с миграцией русла реки или размывом ранее отложившихся осадков во время наиболее сильных паводков в условиях поймы. При этом размывались верхние части ледяных жил, в то время как нижние частично или полностью вытаивали, что приводило к образованию псевдоморфоз по ним. Степень вытаивания определялась главным образом скоростью осадконакопления. Поскольку наиболее вероятно, что размыв и последующая аккумуляция происходили во время весеннего половодья при низких температурах воды, эффект термического воздействия был ограничен. В дальнейшем жилы переходили в погребенное состояние в донных условиях или выше меженного уровня воды на пойме, песчаных отмелях, островах.
Рядом с основной ледяной жилой И.Д.Даниловым встречены тонкие элементарные ледяные жилки, вытаивание которых может привести к формированию в стороне от основной псевдоморфозы мелких клиновидных смещений и трещин - грунтовые «жилы отгибания».
Расположение наиболее крупных псевдоморфоз в верхней части разреза террасы И.Д.Данилов связывает с тем, что по мере накопления осадков и перехода русловых отмелей и островов на режим низкой, а затем высокой поймы, размыв ранее отложенных осадков и содержащихся в них ледяных жил происходил все более редко и слабо. Вследствие этого ледяные жилы сохранили истинные или близкие им размеры, которым и соответствуют размеры псевдоморфоз. Образование псевдоморфоз связано с избирательным термокарстом на пойме, в особенности в периоды половодий, когда ярко проявляются различия в геотермическом режиме пойменных осадков.
Криогенное строение отложений террасы, согласно выводам И.Д.Данилова [12] свидетельствует о синхронном осадконакоплении и промерзании. Об этом говорит высокая льдистость отложений (до 60-80%), в особенности свойственная нижним и средним частям разреза, крупные пластовые залежи льда, согласно облекаемые слоистостью вмещающих пород, погребенные жилы льда и т.д. Образование псевдоморфоз, таким образом, не связано с оттаиванием пород в целом, хотя некоторые из них секут почти всю видимую в обнажениях часть разреза аллювиальных отложений. Протаивали лишь в результате избирательного термокарста некоторые ледяные жилы и близлежащие участки пород, льдистость которых благодаря этому в настоящее время невелика (5-10%).
Процесс образования псевдоморфоз по ледяным жилам в толще русловых аллювиальных песков долины Мессояхи, по заключению И.Д.Данилова [12] носил не повсеместный, а избирательный характер, что убедительно подтверждается существованием поныне наряду с псевдоморфозами аналогичных им по размерам и условиям залегания ледяных жил.
Полигонально-жильные комплексы в песчаных отложениях в дельте Лены в районе хребта Чекановский
Обширная равнина располагается к северу от хребта Чекановский. Вблизи хребта абсолютная высота водораздела достигает до 100 м и снижается до 20 м к северу. Эта полого-наклонная равнина разделена на многочисленные отдельные фрагменты протоками низовий Лены - Булукурской, Оленекской, Арынской и другими, а также мелкими реками и ручьями, берущими начало на хребте Чекановский.
Гетероциклитный полигонально-жильный комплекс в разрезе Буорхая, на о.Курунгнах , расположен в центральной части дельты р.Лены на восточной стороне о.Курунгнах между 72°20'00'' с.ш., 126°17'16'' в.д. и 72°21'02'' с.ш., 126°19'16'' в.д. Отложения ледового комплекса перекрывают 15-20 м песчаный горизонт. Этот горизонт состоит из переслаивания тонких слоев песков средней крупности и мелких и суглинистых песков без органики. В песках залегают несколько узких ледяных жил. Криотекстура песков преимущественно массивная [13].
...Подобные документы
80-е годы - период интенсивных геологоразведочных работ в секторах Баренцева моря. Связь процессов нефтегазообразования с геологическими стадиями развития бассейна Арктики. Тектоническое строение российского сектора Арктики, его нефтегазоносность.
реферат [1,6 M], добавлен 21.03.2011Физико-географические условия и гидрометеорологические факторы формирования половодья на реках Ростовской области. Географическое положение, рельеф, геологическое строение, поверхностные воды. Атмосферные осадки и увлажнение почвы в период снеготаяния.
дипломная работа [2,5 M], добавлен 27.11.2015Анализ и оценка внутренних вод России, бассейны рек. Запасы воды, сосредоточенные в озерах государства. Сферы и особенности применения крупнейших рек и озер России в хозяйстве. Территории распространения запасов подземных вод, искусственные водоемы.
презентация [1,0 M], добавлен 28.12.2010Криолитозоны: сущность понятия; распространение; присхождение; структура. Подземные воды криолитозоны: надмерзлотные; межмерзлотные; внутримерзлотные; подмерзлотные. Группы льдов, формирующихся в горных породах: погребенный; инъекционный; конституционный.
контрольная работа [15,4 K], добавлен 24.11.2010Гидроморфологическая и физико-географическая характеристика озер. Водные и околоводные растения. Влияние абиотических факторов на динамику развития фитопланктона. Оценка качества воды в Карасунских озерах. Рекомендации по мелиорации Покровского озера.
дипломная работа [624,1 K], добавлен 30.12.2014Основы современного понимания физикохимии воды. Особенности атмосферного льда, снежного покрова, снежных лавин и гляциальных селей. Морские, речные и озерные льды. Наледи, вечная мерзлота. Ледники и ледниковые покровы. Палеогляциология и обитатели льдов.
реферат [4,3 M], добавлен 28.02.2011История исследования Антарктиды. Характеристика геологического строения континента, размеры его ледникового покрова. Сейсмическая активность материка. Особенности климатических и метеорологических процессов. Внутренние воды, растительный и животный мир.
контрольная работа [25,7 K], добавлен 23.11.2010Термический режим водоема и климатические особенности региона. Изрезанность берегов Онежского озера. Приходная часть водного баланса озера. Глубины, рельеф дна и грунт. Среднее годовое число пасмурных дней. Основные методы решения тепловых задач.
курсовая работа [273,4 K], добавлен 28.09.2014Геологическая съемка в районах развития вулканогенных образований. Предполевое дешифрирование аэрофотоматероалов и составление предварительной геологической карты. Методика опробования вулканогенных пород для выявления их минералогических особенностей.
реферат [24,5 K], добавлен 12.12.2010Вода в жидком, твердом и газообразном состоянии и ее распределение на Земле. Уникальные свойства воды. Прочность водородных связей. Круговорот воды в природе. Географическое распределение осадков. Атмосферные осадки как основной источник пресной воды.
реферат [365,1 K], добавлен 11.12.2011Описание регионального и детального уровня сейсмических работ в Припятском районе Беларуси. Общая характеристика подсолевых, глинистых и надсолевых сейсмологических комплексов республики. Изучение соленосных толщ и порядок сейсмофациальнрго картирования.
контрольная работа [1,9 M], добавлен 28.07.2013Общие представления об уравнениях состояния. Уравнение состояния Кнудсена. Программы и методические указания для расчета плотности воды. Результаты расчета вертикального профиля плотности воды. Анализ изменения плотности воды с глубиной в разных широтах.
курсовая работа [1,6 M], добавлен 10.12.2012Определение глубины промерзания и возможности развития морозного пучения. Расчёт притока воды к траншее. Оценка возможности развития суффозионного процесса. Проведение инженерно-геологических изысканий с использованием лабораторных и полевых методов.
контрольная работа [357,7 K], добавлен 14.02.2016Понятие круговорота воды в природе, водной оболочки Земли, их структура, значение. Сущность испарения и конденсации как физических процессов, условия их осуществления. Особенности и состав годового поступления воды. Источники движения воды на Земле.
презентация [1,2 M], добавлен 23.11.2011Описание стратифицированных толщ и интрузивных образований, условий их залегания, образования, и тектонических процессов, происходивших на данной территории. Построение геологических разрезов, выделение складчатых и дизъюнктивных структурных форм.
курсовая работа [2,8 M], добавлен 04.11.2015Физико-географическая характеристика и климат Астраханской области. Поверхностные и подземные воды области. Литолого-стратиграфическая характеристика и тектоника данного региона. Влияние геологического строения и истории развития на формирование рельефа.
курсовая работа [32,4 K], добавлен 11.03.2011Процессы миграции флюидов в недрах. Масштабы и физико-химические особенности нефтематеринских толщ земной коры. Классификация и свойства коллекторов. Структура порового пространства. Эмиграция углеводородов в водо-, газорастворённом и свободном состоянии.
курсовая работа [6,9 M], добавлен 19.04.2015Строение и возраст земной коры. Строение и развитие структуры земной коры материков. Общая характеристика, этапы развития и описание строения геосинклинальных складчатых поясов. Особенности строения древних и молодых платформ. Спрединг океанического дна.
реферат [23,7 K], добавлен 24.05.2010В каких формах встречается вода в природе. Сколько воды на Земле. Понятие круговорота воды в природе. Сколько воды содержится в организме человека. Понятие испарения и конденсации. Три агрегатных состояния воды. Применение воды в деятельности человека.
презентация [2,7 M], добавлен 19.02.2011Виды воды в горных породах, происхождение подземных вод, их физические свойства и химический состав. Классификация подземных вод по условиям образования, газовый и бактериальный состав. Оценка качества технической воды, определение ее пригодности.
презентация [92,8 K], добавлен 06.02.2011