Отказы в межсоединениях интегральных схем вызванные

Исследование основных факторов, влияющих на механизм разрушения металлизации интегральных схем из-за электромиграции. Исследование линий металлизации на разных стадиях разрушения их электромиграцией с помощью просвечивающего электронного микроскопа.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 08.04.2019
Размер файла 20,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Отказы в межсоединениях интегральных схем вызванные электромиграцией

Мустафаев Гасан

Аннотация

Алюминий и его сплавы являются основными материалами металлизации. С повышением степени интеграции роль межсоединений возрастает: они занимают все большую площадь кристалла, увеличивается плотность упаковки, что приводит к уменьшению толщины и ширины токопроводящих дорожек. Достаточное для для развития эффектов электромиграции значение плотности тока в наноразмерных стуктурах возникает при токах 50- 100 мА.В работе исследовались факторы влияющие на механизм разрушения металлизации интегральных схем из-за электромиграции. Были проведены исследования линий металлизации на разных стадиях разрушения их электромиграцией с помощью растрового сканирующего и с помощью просвечивающего электронных микроскопов. В целом, основной проблемой, связанной с высокотемпературным нанесением алюминиевой металлизации, является большой размер зерна и шероховатость поверхности, что затрудняет проведение совмещения по такому металлическому слою. Результаты экспериментов дают основание заключить, что геометрические факторы играют доминирующую роль в механизме разрушения металлизации интегральных схем из-за электромиграции. металлизация электромиграция электронный микроскоп

Ключевые слова: металлизация, интегральная схема, электромиграция, полупроводник, контакт, надежность, алюминий, кремний, осаждение, токовый шум

Aluminum and its alloys are the main metallization materials. With an increase in degree of integration the role of interconnections rises: they occupy a growing area of the crystal, the density of the package increases, which leads to a decrease in the thickness and width of the conductive tracks. In nanodimensional structures the value of the current density sufficient for the development of electromigration effects occurs at currents of 50-100 mA. The article explores the factors affecting the mechanism of destruction of the integrated circuits' metallization due to electromigration. The author studies metallization lines at different stages of their destruction by electromigration with the help of raster scanning and transmission electron microscopes. In general, the main problem associated with high-temperature application of aluminum metallization is the large grain size and surface roughness, which makes alignment on such a metal layer difficult. The results of the experiments lead to the conclusion that geometric factors play a dominant role in the mechanism of destruction of metallization of integrated circuits due to electromigration.

Keywords:

metallization, integrated circuit, electromigration, semiconductor, contact, reliability, aluminum, silicon, deposition, current noise

Надежность тонкой металлизации интегральных схем, выполненной из алюминиевых сплавов, в значительной степени определяется интенсивностью электромиграции металлизации [1, 2]. По мере совершенствования технологии интегральных схем увеличивается плотность расположения компонентов на них. Это ведет к уменьшению размеров компонентов и соответственно к уменьшению толщины и ширины полосок металлизации, к увеличению количества отрезков металлизации. Все это требует повышения устойчивости металлизации к электромиграции и ведет к повышению роли микроструктурного анализа, исследования влияния микроструктурных характеристик на надежность металлизации [3-5].

Электромиграция представляет собой значительную опасность для надежности полупроводниковых интегральных схем. Электромиграция может привести к отказу металлизации при прохождении тока высокой плотности. Это явление более критично для КМОП СБИС, поскольку в них используются более высокие токи возбуждения и частоты синхронизации логических МОП ИС.

Результаты исследований электромиграции можно обобщить: электромиграция приводит к появлению пузырей и пустот, как правило в области граней зерен и в точках совмещения трех зерен. Эти пустоты, которые являются мобильными во времени, растут и увеличиваются в размерах. Увеличивающаяся плотность тока в течении металлизации из-за того, что при образовании пустот ее эффективное сечение уменьшается, ведет к повышению температуры металлизации в локальных областях, что приводит к ускорению роста пузырей, к ускорению электромиграции и относительно быстро может вызывать обрывы металлизации.

Электромиграция в тонких пленках интегральных схем в основном вызвана диффузией по границам зерен. Такой тип структурной неоднородности обусловливает около 80% отказов алюминиевой металлизации с большим размером зерен. Резкое изменение размеров зерен часто имеет место в металлизации ступеньки вследствие воздействия, вызванного плохим покрытием ступеньки металлом, что и приводит к снижению величины средней наработки на отказ интегральных схем [6-8].

Для изготовления металлизации с бимодальным распределением размера зерен получали сплав Al - 2% Cu - 0,3% Cr, используя осаждение испарений чистого алюминия толщиной 400 нм на окисную кремниевую пластину, затем осаждение слоя меди (5 нм) и хрома (1 нм) и сверху - слоя алюминия также толщиной 400 нм. После отжига такой структуры размер зерен составляет комплекс малых (0.3 мкм) и больших (порядка 100 мкм) зерен, что обусловлено вторичным ростом зерен на преципитатах. На таких пленках формировали тестовые структуры в виде линий длиной 1 мм и шириной 2 мкм, которые отжигали в вакууме (6.6510-5 Па). Поверхность структур не пассивировали; испытания проводили при постоянном напряжении, температуре 200- 250 °С и плотности тока 1.2106 A/см2. Бимодальное распределение появляется после 1 -мин отжига (примерно 40% площади межсоединений имеет размер зерен 2-4 мкм; после 2-мин отжига доля крупных зерен возрастает до 90%). Отжиг в течение 20 мин привел к мономодальному распределению, причем средний размер зерна составлял примерно половину ширины линии металлизации. Дальнейший отжиг должен привести к сужению разброса размеров зерен более крупных размеров. Изучение температурной зависимости линий с мономодальным распределением размера крупных зерен (отжиг при 550 °С, 20 мин.) и линий с бимодальным распределением (отжиг 450 °С, 30 мин.) показал, что в интервале температур 200- 250 °С энергия активации в обоих случаях равна примерно 0.85 эВ, и лимитирующим процессом является диффузия по границам зерен.

Для обнаружения дефектов алюминиевой металлизации интегральных схем в качестве неразрушающего контроля качества металлизации используют токовые шумы при производстве схем. Так как нарушения металлизации составляют существеннуюдолю отказов, оценка качества металлизации, отбраковка схем с дефектами металлизации дает возможность повышения надежности интегральных схем.

Величины, измеряемые для оценки энергии активации, весьма близки величинам, измеряемым для оценки среднего времени до отказа. Это дает возможность использовать оценки амплитуды напряжения шумов для оценок надежности металлизации для выбора плотности тока в металлизации, обеспечивающей требуемую надежность металлизации при реальной температуре металлизации. Увеличение тока в металлизации или температуры окружающей среды, вызывает повышение электромиграции металлизации и, соответственно, увеличивает уровень 1/f шумов в ней [9]

При очень высоких плотностях тока и температурах окружающей среды возможно нелинейное повышение уровня шумов. Спектральная компонента 1/f может использоваться как индикатор качества пленки или металлизации. Для металлизации, пораженной электромиграцией, имеющей пузыри, участки, лишенные пассивирующей пленки, амплитуда составляющей 1/f больше, чем у таких же участков неповрежденной пленки. Относительно небольшое увеличение плотности тока в металлизации вызывает резкое увеличение амплитуды 1/f составляющей. Это одинаково по воздействию нарастания электромиграции на амплитуду тока и на амплитуду 1/f составляющей.

Были проведены три серии экспериментов на пленках, изготовленных с различными параметрами, чтобы оценить влияние микроструктуры пленок. В первой серии экспериментов испытывались два комплекта пленок, изготовлявшихся нанесением чистого (99.99%) алюминия толщиной 1 мкм на пластинку, покрытую двуокисью кремния при температурах 125 °С (пленка L - типа) и 250 °С (пленка H типа). Пленка H типа имела большую среднюю величину зерна и большее рассеивание величины зерен, чем пленка L типа. Для пленки типа Н средняя величина зерна была 0.8 мкм, а для пленки типа L - 0.5 мкм. Распределение величин зерна у пленок обоих типов было примерно логнормальным. Измерения амплитуды шумов проводились при значениях плотности тока 0.96Ч106 А/см2 и 1.9Ч106 А/см2. Температура пленки поддерживалась при опытах постоянной и равной 220 °С.

Амплитуда уровня шумов в обоих, случаях на один-два порядка выше в образцах, имеющих меньший уровень величины зерна, отожжённых при более низких температурах, чем в образцах, имевших больший уровень величины зерна, отожжённых при больших значениях температуры.

Результаты измерений дают основание утверждать, что разность уровня помех в пленках, работавших при разных плотностях тока, зависит также и от величины зёрна в пленках, т.е. от структуры пленок. При малых плотностях тока эта зависимость заметна. При увеличении плотности тока зависимость становится более явной. Во втором эксперименте шесть групп алюминиевых пленок были нанесены на слой TiW [10]. Температуры, при которых осаждался алюминий, давление и мощность обусловили различную микроструктуру пленок. В дополнение некоторые пластины выдерживались в воздухе между нанесением TiW и Al, т.е. имелось нарушение вакуума во время нанесения пленок. Исследования на просвечивающем электронном микроскопе показали, что пленки, нанесенные при нарушениях вакуума, имели значительно большие средние размеры зерна (около 2- 5мкм), чем пленки на пластинах, на которых вакуум не прерывался между нанесением TiW и Al. При этом, размеры зерна в пленках на пластинах соизмеримы с шириной структуры металлизации (1.8 мкм).

Измерения шумов на этих пластинах выполнялись на двухчастотном мосте переменного тока, что позволяло исключать тепловые шумы. Оценки среднего времени до отказа и сопоставление этих оценок с результатами измерений уровня шумов проводились на одних и тех же пластинах с кристаллами. Анализируя результаты оценок среднего времени до отказа и шумов, следует отметить хорошую корреляцию между амплитудой шумов и средним временем до отказа.

Третья серия экспериментов была проведена на металлизации с определенной структурой. Пленка имела состав: Al + 2% Си + 0,3% Сr . Выдерживанием определенной технологии нанесения и отжига металлизации были достигнуты структуры: а) размер зерна 1-2 мкм; б) с размерами зерна около 8-15 мкм; в) с размерами зерна около 0.2- 0.3 мкм. Интересно, что при уменьшении величины зерна разности в значениях уровней шумов возрастают. Эффективные неразрушающие проверки качества металлизации могут быть обеспечены при повышенных значениях плотностей тока. Подтверждена тесная корреляция среднего времени до отказа и амплитуды уровня шумов, интенсивность которых обратно пропорциональна частоте.

Результаты экспериментов дают основание заключить, что геометрические факторы играют доминирующую роль в механизме разрушения металлизации интегральных схем из-за электромиграции.

В целом, несмотря на различные варианты замены традиционной алюминиевой металлизации другими, эта система может и продолжает использоваться для изготовления СБИС [11, 12].

Библиография

1.Смолин В.К. Особенности применения алюминиевой металлизации в интегральных схемах // Микроэлектроника. - 2004. - Т. 33. - №1 - С. 10-16.

2.Pietranico S., Lefebvre S., Pommier S., Berkani Bouaroudj M., Bontemps S. A study of the effect of degradation of the aluminium metallization layer in the case of power semiconductor devices // Microelectronics Reliability, Volume 51, Issues 9-11, 2011, pp. 1824-1829.

3.Мустафаев А.Г., Мирзаева П.М. Исследование и разработка алгоритмов моделирования процесса обработки ионами контактной системы металлизации // Научно-методический электронный журнал Концепт. 2015. Т. 13. С. 3866-3870.

4.Гончаренко Е.В., Меньшикова Т.Г., Гречкина М.В., Бормонтов Е.Н. Исследование морфологии алюминиевой металлизации на контактных площадках кристалла ПЛИС // Вестник Воронежского государственного технического университета. 2017. Т. 13. № 1. С. 90-94.

5.Красников Г.Я., Зайцев Н.А., Валеев А.С., Неустроев С.А., Мельченко В.И. Коррозионная стойкость и электромиграция пленок алюминия, осажденных при дозированном введении кислорода // Электронная промышленность. 1996. № 4. С. 49-50.

6.Сафонов С.О., Путря М.Г. Ускоренные электромиграционные испытания металлических проводников // В сборнике: Микроэлектроника-2015. Интегральные схемы и микроэлектронные модули: проектирование, производство и применение сборник докладов Международной конференции. 2016. С. 517-526.

7.Мустафаев Г.А., Мустафаев А.Г., Черкесова Н.В. Надежность интегральных микросхем с алюминиевой металлизацией // Электроника и электротехника. -- 2017. - № 3. - С.1-6.

8.Бабкин С. И., Киреев В. Ю., Козырева Т. В. и др. Возможности оценки качества систем металлизации интегральных микросхем на основе алюминиевых сплавов различными методами//Электроника. 2003. № 5. С. 38-44.

9.Вишняков Н.В., Воробьев Ю.В., Гудзев В.В. и др. Развитие методов исследования полупроводниковых материалов и приборных структур микро- и наноэлектроники // Вестник Рязанского государственного радиотехнического университета. 2017. № 60. С. 164-170.

10.Мустафаев Г.А., Уянаева М.М., Панченко В.А. Силициды тугоплавких материалов в технологии СБИС // Материалы Международной научно-технической конференции «Микро- и нанотехнологии в электронике», Нальчик, 2009, С.212-216.

11.Зенин В.В., Гальцев В.П., Каданцев И.А., Марченко О.В., Спиридонов Б.А. Алюминиевая металлизация на кристаллах полупроводниковых приборов и ИС // Вестник Воронежского государственного технического университета. 2009. Т. 5. № 2. С. 32-37.

12.Soestbergen M., Mavinkurve A., Rongen R.T.H., Jansen K.M.B., Ernst L.J., Zhang G.Q. Theory of aluminum metallization corrosion in microelectronics // Electrochimica Acta, Volume 55, Issue 19, 2010, pp. 5459-5469.

Размещено на Allbest.ru

...

Подобные документы

  • Принцип действия поляризационного микроскопа. Определение основных показателей преломления минералов при параллельных николях. Изучение оптических свойств минералов при скрещенных николях. Порядок макроскопического описания магматических пород.

    контрольная работа [518,6 K], добавлен 20.08.2015

  • Характеристика твердости, абразивности, упругости, пластичности, пористости, трещиноватости, устойчивости как основных физико-механических свойств горных пород, влияющих на процесс их разрушения. Классификация складкообразований по разным критериям.

    контрольная работа [5,4 M], добавлен 29.01.2010

  • Способы разрушения нефтяных эмульсий. Обезвоживание и обессоливание нефти. Электрические методы разрушения водонефтяных эмульсий. Способы очистки нефти от механических и агрессивных примесей. Гидраты природных газов. Стабилизация, дегазация нефти.

    реферат [986,1 K], добавлен 12.12.2011

  • Определение твердости горной породы, коэффициента пластичности и работы разрушения, осевой нагрузки на долото при бурении из условия объемного разрушения горной породы, мощности, затрачиваемой лопастным долотом. Механические характеристики горных пород.

    контрольная работа [198,3 K], добавлен 01.12.2015

  • Строение горных пород, деформационное поведение в различных напряженных состояниях; физические аспекты разрушения при бурении нефтяных и газовых скважин: действие статических и динамических нагрузок, влияние забойных условий, параметров режима бурения.

    учебное пособие [10,3 M], добавлен 20.01.2011

  • Электроимпульсный способ разрушения материалов и его технологические возможности. Избирательная дезинтеграция геологических проб. Обработка природного камня электрическими разрядами. Исследование образцов руд и структуры кристаллов до и после испытаний.

    дипломная работа [4,6 M], добавлен 25.03.2013

  • Аварийные участки набережных рек – Иртыш и Омь, их исполнительные конструктивные схемы. Динамика разрушения и анализ его причин, возможные способы восстановления и реконструкции. Определение очередности проведения работ. Меры профилактического характера.

    реферат [1,9 M], добавлен 21.05.2009

  • Характеристика выветривания - процесса разрушения горных пород в приповерхностных условиях под воздействием физико-химических факторов атмосферы, гидросферы и биосферы. Результат морозного выветривания. Зона окисления и восстановления сульфидных руд.

    презентация [7,2 M], добавлен 23.12.2014

  • Современные представления о механизме действия взрыва заряда ВВ в твердой среде. Определение зоны возможного разрушения при проведении горных выработок с помощью моделирования методом электрогидродинамических аналогий и методики теоретических расчетов.

    реферат [13,7 K], добавлен 15.01.2011

  • Основные факторы выветривания - процесса разрушения и изменения горных пород и минералов в приповерхностных условиях под воздействием физико-химических факторов атмосферы, гидросферы и биосферы. Продукты физического выветривания. Строение элювия.

    презентация [8,1 M], добавлен 22.02.2015

  • Стратиграфия и литология разреза пород Подпорожского участка. Определение зон участков и интервалов бурения с возможными осложнениями. Рассмотрение основных методов разрушения кольматирующих отложений и удаления продектов глинизации за пределы фильтра.

    дипломная работа [1,1 M], добавлен 20.01.2013

  • Описание геологического строения данной местности: составление физико-географической характеристики, геологического разреза, орогидрографической и структурно-тектонической схем, изучение литологии территории, исследование наличия полезных ископаемых.

    реферат [25,2 K], добавлен 24.04.2010

  • Характеристика берегозащитных сооружений для сохранения и предотвращения от разрушения морских побережий: искусственные и естественные пляжи, волноотбойные стены, молы, защитные наброски из природного камня или фигурных блоков, волноломы, габионы.

    контрольная работа [823,6 K], добавлен 26.07.2012

  • Минералы как природные тела, однородные по химическому составу и природным свойствам, образующиеся в глубинах и на поверхности Земли. Осадочные, метаморфические и магматические горные породы и их основные виды. Рудные и нерудные полезные ископаемые.

    презентация [553,5 K], добавлен 23.02.2015

  • Дробление горных пород и материалов в результате постепенного и постоянного разрушения верхних слоев литосферы. Проведение исследования образования физического, химического и биологического выветривания. Характерные особенности элювиальных глин.

    презентация [3,5 M], добавлен 10.12.2017

  • Краткая история развития бурения. Области его применения. Основные операции технологического процесса. Категории бурения скважин в зависимости от их глубин. Способы воздействия на горные породы и характер их разрушения на забое. Типы буровых долот.

    реферат [121,9 K], добавлен 03.10.2014

  • Типы каменных осыпей и обвалов, которые образуются в горах в результате разрушения скальных массивов. Выветривание коренных горных пород. Эоловая деятельность на Камчатке. Минеральные источники и геологическая деятельность поверхностных текучих вод.

    курсовая работа [45,6 K], добавлен 12.01.2012

  • Эрозия почв как процесс разрушения верхних, наиболее плодородных слоев почвы водой (водная эрозия) или ветром (дeфляция), причины ее возникновения и виды. Ирригационная эрозия, наблюдаемая в районах opoшаемого земледелия. Урон, наносимый эрозией.

    презентация [1,6 M], добавлен 28.12.2013

  • Деформации пород в окрестности выработки. Влияние типа крепи и формы поперечного сечения выработки на характер разрушения пород. Распределение напряжений вокруг одиночной выработки. Способы управления горным давлением в подготовительных выработках.

    курс лекций [4,6 M], добавлен 27.06.2014

  • Понятие активных действиях вод Мирового океана и морей. Последствия движений вод морей и океанов. Волновые движения, их развитие на поверхности воды и возникновение под действием и по направлению ветра. Основные способы разрушения горных пород берега.

    курсовая работа [5,0 M], добавлен 28.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.